首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Environmental factors, such as viral infection, have been implicated as potential triggering events leading to the initial destruction of pancreatic beta cells during the development of autoimmune diabetes. Double-stranded RNA (dsRNA), the active component of a viral infection that stimulates antiviral responses in infected cells, has been shown in combination with interferon-gamma (IFN-gamma) to stimulate inducible nitric oxide synthase (iNOS) expression and nitric oxide production and to inhibit beta cell function. Interferon regulatory factor-1 (IRF-1), the activation of which is induced by dsRNA, viral infection, and IFN-gamma, regulates the expression of many antiviral proteins, including PKR, type I IFN, and iNOS. In this study, we show that IRF-1 is not required for dsRNA + IFN-gamma-stimulated iNOS expression and nitric oxide production by mouse islets. In contrast to islets, dsRNA + IFN-gamma fails to induce iNOS expression or nitric oxide production by macrophages isolated from IRF-1(-/-) mice; however, dsRNA + IFN-gamma induces similar levels of IL-1 release by macrophages isolated from both IRF-1(-/-) and IRF-1(+/+) mice. Importantly, we show that dsRNA- or dsRNA + IFN-gamma-stimulated IRF-1 expression by mouse islets and peritoneal macrophages is independent of PKR. These results indicate that IRF-1 is required for dsRNA + IFN-gamma-induced iNOS expression and nitric oxide production by mouse peritoneal macrophages but not by mouse islets. These findings suggest that dsRNA + IFN-gamma stimulates iNOS expression by two distinct PKR-independent mechanisms; one that is IRF-1-dependent in macrophages and another that is IRF-1-independent in islets.  相似文献   

2.
Total saponin of heat-processed ginseng (TSHG) stimulated the production of nitric oxide (NO) in interferon-gamma (IFN-gamma)-primed macrophages through the increased expression of inducible nitric oxide synthase (iNOS). However, TSHG by itself had a very weak effect on the NO synthesis without IFN-gamma priming. The saponins of white ginseng inhibited the NO production in lipopolysaccharide (LPS)/IFN-gamma activated macrophages rather than the stimulation of NO production found in IFN-gamma primed macrophages. The NO production by TSHG-stimulated macrophages was inhibited by the NOS inhibitor (N(G)-monomethyl-L-arginine (L-NMMA)) and nuclear factor-kappaB inhibitor (pyrrolidine dithiocarbamate (PDTC)). TSHG showed different serum-dependence from LPS on the activation of IFN-gamma primed macrophages. This property of TSHG may explain the intensified anti-tumor properties of heat-processed ginseng through its immunostimulating activity.  相似文献   

3.
C5-deficient AKR mouse macrophages were initially found to be refractory to activation by lipid A to mediate tumor cytotoxicity for P815 mastocytoma or L1210 mouse leukemia targets as compared with responsive C3H mouse macrophages. The lower level of tumor cytotoxicity by lipid A-activated AKR macrophages correlated with lower levels of cytotoxic nitric oxide generation as measured by nitrite end product accumulation. The refractory state of AKR macrophages was unexpectedly found to be independent of their C5 deficiency in that IFN-gamma reconstituted their response to activation by lipid A coincident with an increase in C1q mRNA synthesis. AKR macrophages were augmented in their lipid A activation by exogenous soluble C1q in the absence of IFN-gamma, which corresponded with an increased production of nitric oxide by C1q-reconstituted macrophages. In contrast, responsive C3H mouse macrophages with sufficient levels of C1q synthesis were inhibited by exogenous soluble monomeric C1q in their lipid A activation. Both AKR and C3H macrophages plated over immobilized C1q were inhibited in their lipid A activation for tumor cytotoxicity and nitric oxide generation. Our results provide evidence that C1q modulates macrophage activation by lipid A for nitric oxide-mediated tumor cytotoxicity under the influence of IFN-gamma, which stimulates C1q synthesis and secretion. These findings strongly suggest that macrophage synthesis of C1q, but not C5, is a prerequisite for their activation by lipid A.  相似文献   

4.
CBA mice develop cutaneous lesions when infected with Leishmania major. The disease development was significantly reduced by injecting into the lesion a combination of rIFN-gamma and rTNF-alpha. The doses of IFN-gamma and TNF-alpha used were suboptimal in that either cytokine alone did not have any effect. The therapeutic effect of IFN-gamma and TNF-alpha in vivo is reflected in their ability to activate macrophages to kill the intracellular parasites in vitro. The macrophage leishmanicidal activity induced by TNF-alpha and IFN-gamma can be completely inhibited by a specific inhibitor (L-NG monomethyl arginine) of nitric oxide synthesis. There was a direct correlation between the intracellular killing of the parasites and the production of nitric oxide by the macrophages. In contrast, there was no correlation between leishmanicidal activity and superoxide production by macrophages.  相似文献   

5.
IFN-gamma primes murine macrophages to render them responsive for triggering by subactivating concentrations of bacterial LPS to mediate nonspecific tumor cytotoxicity. However, IFN-gamma also has direct anti-proliferative effects on transformed cells that serve as sensitive tumor targets for cytotoxic macrophages. We investigated the effects of preexposure of L1210 mouse leukemia and P815 mouse mastocytoma targets to rIFN-gamma on changes in their susceptibility to cytotoxicity by LPS-activated mouse peritoneal macrophages (PM). Co-incubation of inflammatory PM and either L1210 or P815 targets with IFN-gamma and LPS produced a classical synergistic cytotoxicity for both targets over that of IFN-gamma or LPS alone. Similar synergistic augmentation of cytotoxicity occurred when effector PM were preprimed for 24 h with IFN-gamma before testing for cytotoxicity of untreated targets. However, pretreatment of L1210 and P815 targets for 24 h with IFN-gamma (50 U) before assay produced divergent results in that L1210 was more susceptible, whereas P815 was less susceptible to cytotoxicity by LPS-activated macrophages. Similar results were obtained when both macrophages and targets were pretreated separately with IFN-gamma for 24 h before their combined assay for tumor cytotoxicity. Pretreatment of L1210 targets for 1, 4, or 24 h with IFN-gamma produced similar effects on their increased susceptibility to macrophage cytotoxicity. In contrast, P815 pretreated for 1 and 4 h with IFN-gamma showed an early increased susceptibility to macrophage cytotoxicity followed by a decrease after 24 h pretreatment. The pretreatment of L1210 or P815 targets with IFN-gamma before their exposure to LPS-activated macrophages had no effect on the production of TNF. However, there was a corresponding increase in nitric oxide generation by LPS-activated macrophages after their exposure to IFN-gamma pretreated L1210 targets and a decrease in the presence of IFN-gamma-pretreated P815 targets that correlated with their changes in susceptibility to macrophage killing. Nitric oxide generation by macrophages alone in response to LPS was found to be greater than when effector macrophages were exposed to the tumor targets and this was either increased by L1210 or decreased by P815 that had been pretreated with IFN-gamma. Our results indicate that IFN-gamma may act directly and differentially on tumor targets to alter their susceptibility for macrophage cytotoxicity, which was coupled to changes in the generation of cytotoxic nitric oxide, rather than TNF production by the macrophage.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
Interleukin-4 (IL-4) and interleukin-10 (IL-10) were evaluated for their ability to inhibit the production of nitric oxide (NO) by interferon-gamma (IFN-gamma)- or lipopolysaccharide (LPS)-activated murine macrophages (RAW 264.7 and J774.2). Macrophages pre-treated with IL-4 and then stimulated with IFN-gamma or LPS showed significant inhibition in their ability to produce NO as measured by nitrite production. Simultaneous treatment of IL-4 pre-incubated cells with IFN-gamma and LPS together augmented nitrite accumulation. On the other hand, similar exposures of the macrophages to IL-10 followed by IFN-gamma or LPS treatments resulted in significantly increased NO production. Thus IL-10 failed to suppress IFN-gamma or LPS-induced NO production and showed opposite effects in these experiments to IL-4. We conclude that the two lymphokines have differing roles in the control of production of NO and might act to control the secretion of nitric oxide in vivo.  相似文献   

7.
We have investigated the ability of different cells present in murine tumors to induce apoptosis of activated CD8(+) T cells in vitro. Tumor cells do not induce apoptosis of T cells; however, macrophages that infiltrate tumors are potent inducers of apoptosis. Tumor macrophages express cell surface-associated TNF, TNF type I (CD120a) and II (CD120b) receptors, and, upon contact with T cells which induces release of IFN-gamma from T cells, secrete nitric oxide. Killing of T cells in vitro is blocked by Abs to IFN-gamma, TNF, CD120a, or CD120b, or N-methyl-L-arginine. In concert with that finding, tumor macrophages isolated from either TNF type I or type II receptor -/- mice are not proapoptotic and do not produce nitric oxide upon contact with activated T cells. Control macrophages do not express TNF receptors or release nitric oxide. Tumor cells or tumor-derived macrophages do not express FasL, and blocking Abs to either Fas or FasL have no effect on macrophage-mediated T cell killing. These results demonstrate that macrophages which infiltrate tumors are highly proapoptotic and may be responsible for elimination of activated antitumor T cells within the tumor bed.  相似文献   

8.
The aim of this study was to investigate the effects of interferon-gamma and -beta (IFN-gamma, -beta), interleukin-4 and -10 (IL-4, -10) and Hpopolysaccharide (LPS) on the metabolism and composition of phospholipid fatty acids in macrophages. Murine J774.2 macrophages were incubated with radiolabelled fatty acids and the appropriate stimulus and the incorporation and composition of the phospholipid classes was determined. IFN-gamma and IL-4 specifically stimulated enhanced incorporation of [(14)C]-linoleic acid into the phosphatidytethanolamine fraction. IL-4 (in contrast to IFN-gamma and LPS) reduced incorporation of [(14)C]- arachidonic acid into phosphatidylinositol. Incubation of J774.2 cells with linoleic acid significantly increased TNFalpha and nitric oxide production; arachidonic acid enhanced TNFalpha production but reduced nitric oxide production. It is concluded that IFN-gamma, IL-4 and IL-10 may differentially regulate macrophage activation via effects on the metabolism of polyunsaturated fatty acids.  相似文献   

9.
Macrophage inducible nitric oxide synthase is able to generate massive amounts of nitric oxide (NO) which contributes to the host immune defense against viruses and bacteria. Monocyte-macrophages stimulated with the bacterial wall component lipopolysaccharide (LPS) and cytokines such as interferon-gamma (IFN-gamma) express the inducible form of nitric oxide synthase (iNOS). Furthermore, tumor necrosis factor-alpha (TNF-alpha) is one of the central regulatory cytokines in macrophage antimicrobial activity and synergizes with IFN-gamma in the induction of NO synthesis. Because of its pivotal role in both antimicrobial and tumoricidal activities of macrophages, a significant effort has focused on developing therapeutic agents that regulate NO production. In the present study fermented papaya preparation (FPP) is shown to exert both immunomodulatory and antioxidant activity in the macrophage cell line RAW 264.7. Interestingly, a low and a high molecular weight fraction (LMF and HMF, respectively) of FPP exhibited different activity patterns. FPP fractions alone did not affect NO production. However in the presence of IFN-gamma, both LMF and HMF significantly increased iNOS activity and nitrite as well as nitrate accumulation. NO radical formation measured in real-time by electron paramagnetic resonance spectroscopy was higher in the presence of LMF and IFN-gamma. On the contrary, iNOS mRNA levels were enhanced further with HMF than with LMF. Moreover, LMF displayed a stronger superoxide anion scavenging activity than HMF. In the presence of IFN-gamma, both FPP fractions stimulated TNF-alpha secretion. However in non-stimulated macrophages, TNF-alpha secretion was enhanced by HMF only. Since water-soluble FPP fractions contained no lipid A, present data indicate that FPP is a macrophage activator which augments nitric oxide synthesis and TNF-alpha secretion independently of lipopolysaccharides.  相似文献   

10.
Viral infection has been implicated as a triggering event that may initiate beta-cell damage during the development of autoimmune diabetes. In this study, the effects of the viral replicative intermediate, double-stranded RNA (dsRNA) (in the form of synthetic polyinosinic-polycytidylic acid (poly IC)) on islet expression of inducible nitric oxide synthase (iNOS), production of nitric oxide, and islet function and viability were investigated. Treatment of rat islets with poly(IC) + interferon-gamma (IFN-gamma) stimulates the time- and concentration-dependent expression of iNOS and production of nitrite by rat islets. iNOS expression and nitrite production by rat islets in response to poly(IC) + IFN-gamma correlate with an inhibition of insulin secretion and islet degeneration, effects that are prevented by the iNOS inhibitor aminoguanidine (AG). We have previously shown that poly(IC) + IFN-gamma activates resident macrophages, stimulating iNOS expression, nitric oxide production and interleukin-1 (IL-1) release. In addition, in response to tumor necrosis factor-alpha (TNF-alpha) + lipopolysaccharide, activated resident macrophages mediate beta-cell damage via intraislet IL-1 release followed by IL-1-induced iNOS expression by beta-cells. The inhibitory and destructive effects of poly(IC) + IFN-gamma, however, do not appear to require resident macrophages. Treatment of macrophage-depleted rat islets for 40 h with poly(IC) + IFN-gamma results in the expression of iNOS, production of nitrite, and inhibition of insulin secretion. The destructive effects of dsRNA + IFN-gamma on islets appear to be mediated by a direct interaction with beta-cells. Poly IC + IFN-gamma stimulates iNOS expression and inhibits insulin secretion by primary beta-cells purified by fluorescence-activated cell sorting. In addition, AG prevents the inhibitory effects of poly(IC) + IFN-gamma on glucose-stimulated insulin secretion by beta-cells. These results indicate that dsRNA + IFN-gamma interacts directly with beta-cells stimulating iNOS expression and inhibiting insulin secretion in a nitric oxide-dependent manner. These findings provide biochemical evidence for a novel mechanism by which viral infection may directly mediate the initial destruction of beta-cells during the development of autoimmune diabetes.  相似文献   

11.
Nitric oxide induces BNIP3 expression that causes cell death in macrophages   总被引:4,自引:0,他引:4  
Nitric oxide (NO) is involved in many physiological processes and also causes pathological effects by inducing apoptosis. It can enhance or suppress apoptosis depending on its concentration and the cell type involved. In this report, we used cDNA microarray analysis to show that SNAP, an NO donor, strongly induces Bcl-2/adenovirus E1B 19kDa-interacting protein 3 (BNIP3) in macrophages. BNIP3 is a mitochondrial pro-apoptotic protein that contains a Bcl-2 homology 3 domain and a COOH-terminal transmembrane (TM) domain. Macrophages activated by LPS/IFN-gamma produce nitric oxide synthase 2 (NOS2) and release endogenous NO. Expression of BNIP3 was also induced in macrophages by LPS/IFN-gamma, and the induction was blocked by a NOS2 inhibitor, S-methyl-isothiourea. Peritoneal macrophages from NOS2-null mice failed to produce BNIP3 in response to LPS/IFN-gamma. We conclude that BNIP3 expression in macrophages is controlled by the intracellular level of nitric oxide. Overexpression of BNIP3 but not of BNIP3 deltaTM, a BNIP3 mutant without the TM domain and C-terminal tail, led to apoptosis of the cells. Promoter analysis showed that the region between -281 and -1 of the 5'-upstream enhancer region of murine BNIP3 was sufficient for NO-dependent expression of BNIP3.  相似文献   

12.
After corneal infection, herpes simplex virus type 1 (HSV-1) invades sensory neurons with cell bodies in the trigeminal ganglion (TG), replicates briefly, and then establishes a latent infection in these neurons. HSV-1 replication in the TG can be detected as early as 2 days after corneal infection, reaches peak titers by 3-5 days after infection, and is undetectable by 7-10 days. During the period of HSV-1 replication, macrophages and gammadelta TCR+ T lymphocytes infiltrate the TG, and TNF-alpha, IFN-gamma, the inducible nitric oxide synthase (iNOS) enzyme, and IL-12 are expressed. TNF-alpha, IFN-gamma, and the iNOS product nitric oxide (NO) all inhibit HSV-1 replication in vitro. Macrophage and gammadelta TCR+ T cell depletion studies demonstrated that macrophages are the main source of TNF-alpha and iNOS, whereas gammadelta TCR+ T cells produce IFN-gamma. Macrophage depletion, aminoguanidine inhibition of iNOS, and neutralization of TNF-alpha or IFN-gamma all individually and synergistically increased HSV-1 titers in the TG after HSV-1 corneal infection. Moreover, individually depleting macrophages or neutralizing TNF-alpha or IFN-gamma markedly reduced the accumulation of both macrophages and gammadelta TCR+ T cells in the TG. Our findings establish that after primary HSV-1 infection, the bulk of virus replication in the sensory ganglia is controlled by macrophages and gammadelta TCR+ T lymphocytes through their production of antiviral molecules TNF-alpha, NO, and IFN-gamma. Our findings also strongly suggest that cross-regulation between these two cell types is necessary for their accumulation and function in the infected TG.  相似文献   

13.
Attenuated Salmonella induce immunosuppressive, microbicidal and tumoricidal macrophages in mice. All three effects are mediated by activated macrophages producing nitric oxide (NO). NO is induced by the innate immune response pathway involving IL-12, NK cells and IFN-gamma in response to infection. NO has beneficial and detrimental effects on the host.  相似文献   

14.
A murine macrophage cell line, J774, expresses high levels of the enzyme nitric oxide synthase (NOS) and produces large amounts of nitric oxide (NO) when activated with recombinant interferon (IFN)-gamma and a low concentration of LPS (10 ng/ml). Both the expression of NOS and the production of NO were inhibited by recombinant IL-10 in a dose-dependent manner. The inhibition was effective only when the cells were pretreated with IL-10; addition of IL-10 at the same time or after IFN-gamma activation was without effect. These results demonstrate that IL-10, a product of Th2 (helper T lymphocyte 2) cells, can antagonise the function of IFN-gamma, a product of Th1 cells, by modulating the mechanism of synthesis of nitric oxide in the macrophages.  相似文献   

15.
Monophosphoryl lipid A (MLA), a substructure of bacterial lipopolysaccharide (LPS), is being developed as a prophylactic for sepsis and septic shock. In the present study it was shown that MLA induced a rapid accumulation of IFN-gamma in mice that correlated with an in vivo priming of macrophages. Primed macrophages could be induced in vitro to synthesize nitric oxide, a key mediator of macrophage cytotoxicity. Due to its rapid clearance, MLA was not present in circulation at the time when IFN-gamma accumulated, suggesting that MLA could not synergize with IFN-gamma to systemically activate macrophages in vivo. MLA treatment tolerized mice against the IFN-gamma response--ie., treatment of mice with MLA on day 1 blocked LPS from inducing IFN-gamma on days 2-4. The significance of these results in relation to MLA's ability to enhance non-specific resistance and block LPS lethality in animals is discussed.  相似文献   

16.
Legionella pneumophila is the etiologic agent of Legionnaires' disease. This bacterium contains a single monopolar flagellum, of which the FlaA subunit is a major protein constituent. The murine macrophage resistance against this bacterium is controlled by the Birc1e/Naip5 gene, which belongs to the NOD family. We evaluated the intracellular growth of the flaA mutant bacteria as well as another aflagellated fliA mutant, within bone marrow-derived macrophages from mice with an intact (C57BL/6, BALB/c) or mutated (A/J) Birc1e/Naip5 gene. The flaA mutant L. pneumophila multiplied within C57BL/6 and BALB/c macrophages while the wild-type strain did not. Cell viability was not impaired until 3 days after infection when the flaA mutant bacteria replicated 10(2-3)-fold in macrophages, implying that L. pneumophila inhibited host cell death during the early phase of intracellular replication. The addition of recombinant interferon-gamma (IFN-gamma) to the infected macrophages restricted replication of the flaA mutant within macrophages; these treated cells also showed enhanced nitric oxide production, although inhibition of nitric oxide production did not affect the IFN-gamma induced inhibition of Legionella replication. These findings suggested that IFN-gamma activated macrophages to restrict the intracellular growth of the L. pneumophila flaA mutant by a NO independent pathway.  相似文献   

17.
M Denis 《Cellular immunology》1991,132(1):150-157
Murine peritoneal macrophages were isolated and their ability to restrict growth of a virulent Mycobacterium tuberculosis in response to IFN-gamma was assessed in various conditions. Doses of IFN-gamma ranging from 10 to 100 U stimulated high levels of antimycobacterial activity, as seen by inhibition of growth. Addition of catalase, superoxide dismutase, and other scavengers of reactive oxygen species before infection failed to abrogate this restriction of growth, suggestive of a lack of involvement of reactive oxygen species in this phenomenon. Addition of arginase before infection inhibited the bacteriostatic ability of IFN-gamma-pulsed macrophages as did addition of NG-monomethyl L-arginine, an inhibitor of the synthesis of inorganic nitrogen oxide. In both cases, this inhibition was reversed by adding excess L-arginine in the medium. Moreover, nitrite production in macrophages was correlated with their ability to restrict tubercle bacilli growth. These results imply that nitric oxide or another inorganic nitrogen oxide is an important effector molecule in restricting growth of M. tuberculosis in IFN-gamma-pulsed murine macrophages.  相似文献   

18.
To test our hypothesis that interferon-gamma (IFN-gamma) has a direct prooxidant effect on macrophage-mediated LDL oxidation behind its antioxidant effect via induction of inducible nitric oxide synthase (iNOS), we incubated LDL with wild-type (iNOS(+/+)) or iNOS knockout mouse (iNOS(-/-)) macrophages preincubated with IFN-gamma or IFN-gamma plus lipopolysaccharide (IFN-gamma/LPS) for 24 h. LDL oxidation was measured in terms of formation of thiobarbituric acid reactive substances (TBARS) and electrophoretic mobility. Thiol production, nitrite production, and superoxide production from macrophages were measured by using Ellman's assay, the Griess reagent, and the SOD-inhibitable cytochrome c reduction method, respectively. IFN-gamma alone or combined with LPS induced iNOS expression and increased nitrite production in iNOS(+/+) macrophages, but not in iNOS(-/-) macrophages. TBARS formation from LDL was suppressed in IFN-gamma- and IFN-gamma/LPS-treated iNOS(+/+) macrophages but was increased in IFN-gamma-treated iNOS(-/-) macrophages. In the presence of N(G)-monomethyl-l-arginine (l-NMMA), a NOS inhibitor, the suppressive effect of IFN-gamma and IFN-gamma/LPS was abolished and TBARS formation was even increased to a level above that of untreated iNOS(+/+) macrophage. NOC 18, an NO donor, dose dependently inhibited macrophage-mediated LDL oxidation. IFN-gamma increased superoxide and thiol productions in both types of macrophages. We conclude that IFN-gamma promotes macrophage-mediated LDL oxidation by stimulating superoxide and thiol production under conditions where iNOS-catalyzed NO release is restricted.  相似文献   

19.
We sought to determine the impact of bovine IFN-gamma on the interaction between Mycobacterium bovis and bovine macrophages. Bovine macrophages released small amounts of nitric oxide (NO), TNF-alpha, IL-1beta and IL-12 upon infection with bacille Calmette-Guérin (BCG). Prior pulsing of cells with IFN-gamma significantly enhanced the release of NO and IL-12. Infection of bovine macrophages with virulent M. bovis led to the release of higher levels of pro-inflammatory mediators, compared to levels released upon BCG infection. IFN-gamma treatment of macrophages enhanced the release of pro-inflammatory mediators, but did not modify bacterial replication in M. bovis-infected macrophages. Treatment of macrophages with a combination of IFN-gamma and LPS led to a reduction in bacterial replication. Infected cells treated with IFN-gamma/LPS progressed mostly through an apoptotic pathway, whereas untreated infected cells eventually died by necrosis. Agents that prevented the acquisition of bacteriostatic activity by activated macrophages also prevented the induction of apoptosis in infected macrophages (IL-10 and neutralizing anti-TNF-alpha). We conclude that virulent M. bovis is a major determinant of release of pro-inflammatory cytokines by macrophages. IFN-gamma amplifies the macrophage cytokine release in response to M. bovis. Induction of apoptosis is closely linked to the emergence of macrophage resistance to M. bovis replication, which is dependent on endogenous TNF-alpha release.  相似文献   

20.
An aqueous acetone extract of the pericarps of Mallotus japonicus (MJE) inhibited nitric oxide (NO) production by a murine macrophage-like cell line, RAW 264.7, which was activated by lipopolysaccharide (LPS) and interferon-gamma (IFN-gamma). Seven phloroglucinol derivatives isolated from MJE exhibited inhibitory activity against NO production. Among these phloroglucinol derivatives, isomallotochromanol exhibited strong inhibitory activity toward NO production, exhibiting an IC(50) of 10.7 microM. MJE and the phloroglucinol derivatives significantly reduced both the induction of inducible nitric oxide synthase (iNOS) protein and iNOS mRNA expression. NO production by macrophages preactivated with LPS and IFN-gamma for 16 h was also inhibited by MJE and the phloroglucinol derivatives. Furthermore, MJE and the derivatives directly affected the conversion of L-[(14)C]arginine to L-[(14)C]citrulline by the cell extract. These results suggest that MJE and the phloroglucinol derivatives have the pharmacological ability to suppress NO production by activated macrophages. They inhibited NO production by two mechanisms: reduction of iNOS protein induction and inhibition of enzyme activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号