首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wen  Zhao  Shuang-Lin  Dong 《Hydrobiologia》2003,492(1-3):181-190
Primary productivity, biomass and chlorophyll-a of size fractionated phytoplankton (<0.22 m, <3 m, <8 m, <10 m, <40 m, <64 m, <112 m and <200 m) were estimated in 6 ponds and 5 experimental enclosures. The results showed that the planktonic algae less than 10 m are important in the biomass and production of phytoplankton in saline–alkaline ponds. The production of size fractionated phytoplankton corresponding to <112 m, <10 m and <3 m in saline–alkaline ponds were 10.5 ± 6.6 , 8.6 ± 5.4 and 0.33 ± 0.1 mgC l–1 d–1, respectively. Mean community respiration rate was 1.80 ± 0.73, 1.69 ± 0.90 and 1.38 ± 1.12 mgC l–1 d–1, respectively. The average production of phytoplankton corresponding to micro- (10–112 m), nano- (3–10 m) and pico- (<3 m) were 1.61, 8.30 and 0.33 mgC l–1 d–1, respectively. The ratio of those to the total phytoplankton production was 15%, 79% and 3%, respectively. The mean respiration rate of the different size groups was 0.11, 0.31 and 1.38 mgC l–1 d–1; the ratio of those to total respiration of phytoplankton was 6%, 17% and 77%, respectively. The production of size-fractionated phytoplankton corresponding to <200 m, <10 m and <3 m in enclosures was 2.19 ± 1.63, 2.08 ± 1.75 and 0.22 ± 0.08 mgC l–1 d-1, respectively. Mean community respiration rates were 1.25 ± 1.55, 1.17 ± 1.42 and 0.47 ± 0.32 mgC l–1 d–1, respectively. The average production of phytoplankton corresponding to micro- (10–200 m), nano- (3–10 m) and pico- (<3 m) plankton was 0.11, 1.86 and 0.22 mgC l–1 d–1, respectively. The ratio of those to the total production of phytoplankton was 5%, 85% and 10%, respectively. The mean respiration rate of different size groups were 0.08, 0.72 and 0.46 mgC l–1 d–1, the ratio of those to total respiration of phytoplankton was 6%, 57% and 37%, respectively. The concentrations of chlorophyll-a of the phytoplankton in the corresponding size of micro- (10–112 m), nano- (3–10 m) and pico- (<3 m) plankton in the experimental ponds were 19.3, 98.2 and 11. 9 g l–1, respectively. The ratio of those to the total chlorophyll-a was 15%, 76% and 9%, respectively. The concentrations of chlorophyll-a of phytoplankton micro- (10–200 m), nano- (3–10 m) and pico- (<3 m) plankton in enclosures were 1.7, 34.3 and 3.0 g l–1, respectively. The ratio of those to the total chlorophyll-a was 4%, 88% and 8%, respectively.  相似文献   

2.
A slightly halophilic bacterium (strain NEAU-ST10-25T) was isolated from saline–alkaline soils in Zhaodong City, Heilongjiang Province, China. The strain is a Gram-negative, aerobic motile rod. It accumulates poly-β-hydroxyalkanoate and produces exopolysaccharide. It produces beige-yellow colonies. Growth occurs at NaCl concentrations (w/v) of 0–15 % (optimum 3 %), at temperatures of 4–60 °C (optimum 35 °C) and at pH 6–12 (optimum pH 9). Its G+C content is 53.8 mol%. Phylogenetic analyses based on the separate 16S rRNA gene and concatenation of the 16S rRNA, gyrB and rpoD genes indicate that it belongs to the genus Halomonas in the class Gammaproteobacteria. The most phylogenetically related species is Halomonas alkaliphila DSM 16354T, with which strain NEAU-ST10-25T showed 16S rRNA, gyrB and rpoD gene sequence similarities of 99.2, 82.3 and 88.2 %, respectively. The results of DNA–DNA hybridization assays showed 60.47 ± 0.69 % DNA relatedness between strain NEAU-ST10-25T and H. alkaliphila DSM 16354T, 42.43 ± 0.37 % between strain NEAU-ST10-25T and Halomonas venusta DSM 4743T and 30.62 ± 0.43 % between strain NEAU-ST10-25T and Halomonas hydrothermalis DSM 15725T. The major fatty acids are C18:1 ω7c (62.3 %), C16:0 (17.6 %), C16:1 ω7c/C16:1 ω6c (7.7 %), C14:0 (2.9 %), C12:0 3-OH (2.8 %), C10:0 (2.1 %) and C18:1 ω9c (1.6 %) and the predominant respiratory quinone is ubiquinone 9 (Q-9). The proposed name is Halomonas zhaodongensis, NEAU-ST10-25T (=CGMCC 1.12286T = DSM 25869T) being the type strain.  相似文献   

3.
The bacterial community composition in the A horizon of a natural saline–alkaline soil located in Ararat Plain (Armenia) was studied using molecular and culture-based methods The sequence analysis of a 16S rRNA gene clone library and denaturing gradient gel electrophoresis (DGGE) profiles indicated dominance of Firmicutes populations. The majority of the sequences of the bacterial 16S rRNA gene library were close relatives of representatives belonging to the genera Halobacillus (41.2%), Piscibacillus (23.5%), Bacillus (23.5%) and Virgibacillus (11.8%). Eight novel moderately halophilic bacilli isolates were successfully obtained from the enriched cultures of the saline–alkaline soil samples. 16S rRNA gene sequence analyses of isolates revealed their affiliation (97.7–99.7% similarity) to representatives of the genera Bacillus, Piscibacillus and Halobacillus. All isolates were able to tolerate high concentrations of NaCl and highly alkaline conditions. This is the first study combining cultivation-independent and -dependent approaches to reveal the bacterial diversity of the saline–alkaline soils of Ararat Plain and it suggested an important role of bacilli as key microbes in biogeochemical cycles of these environments.  相似文献   

4.
5.
不同形态氮化合物添加对中国北方盐渍化草地土壤呼吸的影响 持续增加的氮沉降在提高陆地生态系统生产力的同时也会对土壤微生物产生显著影响;土壤呼吸由植物根系呼吸和土壤微生物呼吸组成,因此影响植物生产力和微生物的因子都会影响到土壤呼吸。以往氮富集对土壤呼吸的研究主要在土壤中性的草地生态系统开展,而对于盐渍化草地土壤呼吸是如何响应氮沉降的研究尚不多见,这限制了全球变化陆地生态系统土壤呼吸模型预测的准确性和完整性。本研究以中国北方农牧交错带盐渍化草地为研究对象,通过3年(2017–2019年)野外监测土壤呼吸及相关生物和非生物因子的变化,探讨了不同形态氮化合物添加(NH4NO3、(NH4)2SO4和NH4HCO3)对盐渍化草地土壤呼吸的影响及其调控机制。结果表明:(i)土壤呼吸受大气温度、土壤温度及降水的调控,呈现双峰的季节动态变化趋势和显著的年际差异。(ii)与对照相比,经过3年的处理,土壤呼吸在NH4NO3、(NH4)2SO4和NH4HCO3添加处理下分别提高了19.9%、13.0%和16.6%。(iii)NH4NO3添加对土壤呼吸较高的促进作用与较高的地上生物量、地下生物量以及土壤NO3含量有关。(iv)在NH4HCO3 添加处理下,土壤碳排放(土壤呼吸)显著增加而碳输入(净生产力)无显著改变,表明NH4HCO3添加会降低土壤碳的固持。(v)净地下生产力(BNPP)是盐渍化草地土壤呼吸的最主要调控因子,并且土壤阳离子浓度和pH值通过影响土壤微生物间接影响土壤呼吸。上述研究结果表明,草地添加NH4NO3的研究高估了氮沉降对土壤呼吸的影响,并且在碳循环预测模型中应充分考虑盐渍化草地土壤碳动态。  相似文献   

6.
7.
L. Zhang  K. Yan 《Plant biosystems》2013,147(6):1247-1254
The diurnal variations of photosynthesis of three dominant species, including Glycine soja, Phragmites australis, and Cynanchum chinensis, in the Yellow River Delta in China have been studied under the same natural conditions using a Li-6400 portable photosynthesis system. The results showed that the curves of diurnal variations of net photosynthetic rate (PN) of the three plants were different. The diurnal variation of PN on C. chinensis was a midday depression pattern and had two peaks. However, PN of G. soja and P. australis showed single-peak curves. The transpiration rate (E) of G. soja was significantly higher than that of P. australis and C. chinensis, both showed single-peak curves. In general, the diurnal course of stomatal conductance (gs) followed the same pattern of PN. A similar diurnal pattern of intercellular CO2 concentration (Ci), vapor pressure deficit (VPD), and water use efficiency (WUE) was observed among different species. VPD showed single-peak curves, while WUE was characterized by double-peak curves, which was contrary to Ci. Linear correlations among photosynthetic variables and key environmental factors indicate high positive correlations between PN and E, PN and photosynthetic active radiation, PN and leaf temperature (Tleaf), PN and VPD, and between PN and gs except C. chinensis. Negative correlations among PN and relative humidity, PN and Ci were found. The irradiance response curves derived from the leaves were substantially affected by different species. C. chinensis showed highest apparent quantum efficiency, followed by P. australis and G. soja, while apparent dark respiration (Rd), convexity (k), light saturation point, and maximum gross CO2 assimilation rate (Pmax) of G. soja were higher than those of P. australis and C. chinensis. The irradiance response curve of PN and WUE of different plant species followed the same order: G. soja>C. chinensis>P. australis. They were both higher than most of other species. It was concluded that plant species adapting to the saline–alkaline habitat showed higher photosynthesis. In addition, G. soja is also effective to improve saline–alkaline soil quality.  相似文献   

8.
Population indices of bacteria and archaea were investigated from saline–alkaline soil and a possible microbe–environment pattern was established using gene targeted metagenomics. Clone libraries were constructed using 16S rRNA and functional gene(s) involved in carbon fixation (cbbL), nitrogen fixation (nifH), ammonia oxidation (amoA) and sulfur metabolism (apsA). Molecular phylogeny revealed the dominance of Actinobacteria, Firmicutes and Proteobacteria along with archaeal members of Halobacteraceae. The library consisted of novel bacterial (20%) and archaeal (38%) genera showing ≤95% similarity to previously retrieved sequences. Phylogenetic analysis indicated ability of inhabitant to survive in stress condition. The 16S rRNA gene libraries contained novel gene sequences and were distantly homologous with cultured bacteria. Functional gene libraries were found unique and most of the clones were distantly related to Proteobacteria, while clones of nifH gene library also showed homology with Cyanobacteria and Firmicutes. Quantitative real-time PCR exhibited that bacterial abundance was two orders of magnitude higher than archaeal. The gene(s) quantification indicated the size of the functional guilds harboring relevant key genes. The study provides insights on microbial ecology and different metabolic interactions occurring in saline–alkaline soil, possessing phylogenetically diverse groups of bacteria and archaea, which may be explored further for gene cataloging and metabolic profiling.  相似文献   

9.
The role of nitrification-denitrification in the loss of nitrogen from urea applied to puddled soils planted to rice and subjected to continuous and intermittent flooding was evaluated in three greenhouse pot studies. The loss of N via denitrification was estimated indirectly using the15N balance, after either first accounting for NH3 volatilization or by analyzing the15N balance immediately before and after the soil was dried and reflooded. When urea was broadcast and incorporated the loss of15N from the soil-plant systems depended on the soil, being about 20%–25% for the silt loams and only 10%–12% for the clay. Ammonia volatilization accounted for an average 20% of the N applied in the silt loam. Denitrification losses could not account for more than 10% of the applied N in any of the continuously flooded soil-plant systems under study and were most likely less than 5%. Intermittent flooding of soil planted to rice did not increase the loss of N. Denitrification appeared to be an important loss mechanism in continuously flooded fallow soils, accounting for the loss of approximately 40% of the applied15N. Loss of15N was not appreciably enhanced in fallow soils undergoing intermittent flooding. Apparently, nitrate formed in oxidized zones in the soil was readily denitrified in the absence of plant roots. Extensive loss (66%) of15N-labeled nitrate was obtained when 100 mg/pot of nitrate-N was applied to the surface of nonflooded soil prior to reflooding. This result suggests that rice plants may not compete effectively with denitrifiers if large quantities of nitrate were to accumulate during intermittent dry periods.  相似文献   

10.
Samples of surface (0–10 cm) and subsurface soils (10–20 cm) were collected using a grid sampling method in July and September in order to study the spatial and temporal distribution patterns of all forms of nitrogen and total nitrogen (TN) and the relationships between nitrogen concentrations and selected soil properties in Fulaowenpao wetland, a typical inland alkaline wetland. Results showed that there existed obvious heterogeneity at spatial and temporal scales. Generally, higher spatial variability for nitrate nitrogen (NO3-–N), ammonium nitrogen (NH4+–N) and available nitrogen (AN) were observed compared to organic nitrogen (Org-N) and TN. At the spatial scale, concentrations of NO3-–N, NH4+–N and AN in surface soils were higher than those in subsurface soils, but no significant differences were observed between both soil layers (p < 0.05). However, concentrations of Org-N and TN were significantly higher in surface soils compared to subsurface soils (p < 0.05), and both of them had similar spatial distribution patterns. At the temporal scale, with the exception of NH4+–N in both soil layers and NO3-–N in subsurface soils, concentrations of all the other forms of nitrogen and TN were generally higher in September than them in July, while there were no significant differences between both sampling periods (p < 0.05) except for AN (p < 0.01) in both soil layers. Correlation analysis showed that AN, Org-N and TN were significantly and positively correlated with soil organic matter, total phosphorous, and clay contents, while they were significantly negatively correlated with soil pH values; NO3-–N was also correlated with soil organic matter and total phosphorous, however, NH4+–N was only closely lined to water contents.  相似文献   

11.
Bai J H  Wang Q G  Gao H F  Xiao R  Deng W  Cui B S 《农业工程》2010,30(4):210-215
Samples of surface (0–10 cm) and subsurface soils (10–20 cm) were collected using a grid sampling method in July and September in order to study the spatial and temporal distribution patterns of all forms of nitrogen and total nitrogen (TN) and the relationships between nitrogen concentrations and selected soil properties in Fulaowenpao wetland, a typical inland alkaline wetland. Results showed that there existed obvious heterogeneity at spatial and temporal scales. Generally, higher spatial variability for nitrate nitrogen (NO3-–N), ammonium nitrogen (NH4+–N) and available nitrogen (AN) were observed compared to organic nitrogen (Org-N) and TN. At the spatial scale, concentrations of NO3-–N, NH4+–N and AN in surface soils were higher than those in subsurface soils, but no significant differences were observed between both soil layers (p < 0.05). However, concentrations of Org-N and TN were significantly higher in surface soils compared to subsurface soils (p < 0.05), and both of them had similar spatial distribution patterns. At the temporal scale, with the exception of NH4+–N in both soil layers and NO3-–N in subsurface soils, concentrations of all the other forms of nitrogen and TN were generally higher in September than them in July, while there were no significant differences between both sampling periods (p < 0.05) except for AN (p < 0.01) in both soil layers. Correlation analysis showed that AN, Org-N and TN were significantly and positively correlated with soil organic matter, total phosphorous, and clay contents, while they were significantly negatively correlated with soil pH values; NO3-–N was also correlated with soil organic matter and total phosphorous, however, NH4+–N was only closely lined to water contents.  相似文献   

12.
Many invasive plant species show high rates of nutrient acquisition relative to their competitors. Yet the mechanisms underlying this phenomenon, and its implications for ecosystem functioning, are poorly understood, particularly in nutrient-limited systems. Here, we test the hypothesis that an invasive plant species (Microstegium vimineum) enhances its rate of nitrogen (N) acquisition by outcompeting soil organic matter-degrading microbes for N, which in turn accelerates soil N and carbon (C) cycling. We estimated plant cover as an indicator of plant N acquisition rate and quantified plant tissue N, soil C and N content and transformations, and extracellular enzyme activities in invaded and uninvaded plots. Under low ambient N availability, invaded plots had 77% higher plant cover and lower tissue C:N ratios, suggesting that invasion increased rates of plant N acquisition. Concurrent with this pattern, we observed significantly higher mass-specific enzyme activities in invaded plots as well as 71% higher long-term N availability, 21% lower short-term N availability, and 16% lower particulate organic matter N. A structural equation model showed that these changes were interrelated and associated with 27% lower particulate organic matter C in invaded areas. Our findings suggest that acquisition of N by this plant species enhances microbial N demand, leading to an increased flux of N from organic to inorganic forms and a loss of soil C. We conclude that high N acquisition rates by invasive plants can drive changes in soil N cycling that are linked to effects on soil C.  相似文献   

13.
Summary The effect of increasing concentrations of p,p DDT on dry matter production and nitrogen fixation of white clover (Trifolium repens L.) growing in pots with volcanic soils of the southern region of Chile was studied. The chlorinated insecticides content of the soils ranged from low to very high (>20 mg/kg), being associated with the amount of insecticide applied. A detrimental effect of medium and high levels of DDT on growth, dry matter production and N-accumulation of clover was observed. The effects on nodulation and nitrogenase activity were smaller. These effects were higher when nutrient solutions were used instead of soil, because of the protective effects of soil colloids.
Resumen Se estudió el efecto de concentraciones crecientes de p,p DDT sobre la producción y parámetros de fijación de N del trébol blanco (Trifolium repens L.) en condiciones de invernadero en suelos volcánicos de la zona sur de Chile. Los contenidos de insecticidas clorados de los suelos de la región son desde bajos hasta muy altos (>20 mg/kg), dependiendo de las aplicaciones. Se apreció un efecto depresivo del DDT a dosis medias y altas sobre el crecimiento, producción de materia seca y N-acumulado del trébol y un efecto menor sobre nodulación y actividad nitrogenásica. Estos efectos fueron más acentuados cuando se trabajó con soluciones nutritivas que con suelo, debido a la protección ejercida por los coloides del suelo.

Résumé On a étudié l'effet de concentrations croissantes de p,p-DDT sur la production de matière sèche et sur la fixation de l'azote par le trèfle blanc (Trifolium repens L.) cultivé en serre sur des échantillons de sols volcaniques du sud du Chili. Dans les sols de cette région, la teneur en résidus d'insecticides chlorés varie entre <1 et >20 mg/kg suivant le niveau des prelévements. Le DDT inhibe la croissance, la production de matière sèche et l'accumulation d'azote par le trèfle. De plus, nous avons constaté un effet secondaire sur la nodulation et l'activité nitrogénasique. Ces effets sont plus marqués lorsqu'on utilise des solutions nutritives au lieu de terre, ce qui est dû à une protection éxercée par les colloides du sol.
  相似文献   

14.
Induction of assimilatory NO 3 reduction through the application of an easily decomposable substrate in alkaline–saline soils of the former lake Texcoco (Mexico) resulted in a fast immobilization of NO 3 in excess of N required for metabolic activity and the release of large concentrations of NO 2 and smaller amounts of NH 4 + . We postulated that this was regulated by the amounts of NO 3 and glucose added, and affected by the specific characteristics of soil from the former lake Texcoco. This was investigated by spiking soils of different electrolytic conductivity (EC) 56.0 dS m−1 (soil A of Texcoco) and 11.6 dS m−1 (soil B of Texcoco) with different concentrations of NO 3 and glucose while dynamics of CO2, NH 4 + , NO 2 and NO 3 were monitored in an aerobic incubation for 7 days. For comparison reasons (control) an agricultural soil with low EC (0.3 dS m−1) was included as well. In the agricultural soil, 67% of the added glucose mineralized within 7 days, but only 15% in soil A of Texcoco and 20% in soil B of Texcoco. The application of NO 3 to the agricultural soil added with glucose increased cumulative production of CO2 1.2 times, 1.5 times in soil A of Texcoco and 1.8 times in soil B of Texcoco. Concentration of NO 2 increased to > 100 mg NO 2 -N kg−1 when 1000 mg glucose-C kg−1 and 500 mg NO 3 -N kg−1 were added to soil A and B of Texcoco, but remained < 3 mg NO 2 -N kg−1 in the agricultural soil. The ratio between the cumulative production of CO2 and the decrease in concentration of NO 3 was approximately one in soil A and B of Texcoco, but 10 in the agricultural soil after 3 days. It was found that micro-organisms in the alkaline–saline soil of the former lake Texcoco were capable of immobilizing large quantities of NO 3 when an easy decomposable substrate was available in excess of what might be required for metabolic activity while producing large concentrations of NO 2 , but these phenomena were absent in an agricultural soil. In soil of Texcoco, concentrations of NO 2 and NH 4 + increased with increased salinity and availability of NO 3 . This ability to remove large quantities of NO 3 under these conditions and then utilize it at a later time might benefit micro-organisms of the N limited alkaline–saline soils of Texcoco.  相似文献   

15.
Summary Atmospheric pollution deposits, largely consisting of soot, were removed from sycamore leaves growing downwind of a coking plant, and added to soil. Increases in plant available S-ions (S2O3 2−; S4O6 2− and SO4 2−) and N (NH4 + and NO3 ) occurred due to the action of soil microorganisms on the deposits. Although the detrimental effects of air pollution on plant growth have been previously emphasised, supply of nutrients resulting from the microbial transformation of particulate pollutants may prove important to the growth of pollution-resistant plant communities.  相似文献   

16.
We investigated the nitrogen (N) dynamics of an alpine–nival ecotone on Mt. Schrankogel, Tyrol, Austria, in relation to temperature. Natural abundance of 15N was used as a tool to elucidate differences in N cycling along an altitudinal transect ranging from 2,906 to 3,079 m, corresponding to a gradient in mean annual temperature of 2.4 °C. The amount of total soil N, of plant available N and soil C/N ratio decreased significantly with increasing altitude, whereas soil pH increased. Soil δ 15N decreased with increasing altitude from +2.2 to −2.1‰ and δ 15N of plant tissues (roots and leaves) decreased from −3.7 to −5.5‰. The large shift in soil δ 15N of 4.3‰ from the lowest to the highest site suggested substantial differences in N cycling in alpine and nival ecosystems in the alpine nival ecotone investigated. We concluded that N cycling at the alpine–nival ecotone is likely to be controlled by various factors: temperature, soil age and development, atmospheric N deposition and plant competition. Our results furthermore demonstrate that the alpine–nival ecotone may serve as a sensitive indicator of global change.  相似文献   

17.
We examined the content and isotopic composition of nitrogen within soils of a juniper woodland and found that a cryptobiotic crust composed of cyanobacteria, lichens, and mosses was the predominant source of nitrogen for this ecosystem. Disturbance of the crust has resulted in considerable spatial variability in soil nitrogen content and isotopic composition; intercanopy soils were significantly depleted in nitrogen and had greater abundance of 15N compared to intra-canopy soils. Variations in the 15N/14N ratio for inter- and intra-canopy locations followed similar Rayleigh distillation curves, indicating that the greater 15N/14N ratios for inter-canopy soils were due to relatively greater net nitrogen loss. Coverage of cryptobiotic crusts has been reduced by anthropogenic activities during the past century, and our results suggest that destruction of the cryptobiotic crust may ultimately result in ecosystem degradation through elimination of the predominant source of nitrogen input.  相似文献   

18.
19.
Large amounts of terrestrial organic C and N reserves lie in salt-affected environments, and their dynamics are not well understood. This study was conducted to investigate how the contents and dynamics of ‘native’ organic C and N in sandy soils under different plant species found in a salt-affected ecosystem were related to salinity and pH. Increasing soil pH was associated with significant decreases in total soil organic C and C/N ratio; particulate (0.05–2 mm) organic C, N and C/N; and the C/N ratio in mineral-associated (<0.05 mm) fraction. In addition, mineral-associated organic C and N significantly increased with an increase in clay content of sandy soils. During 90-day incubation, total CO2-C production per unit of soil organic C was dependent on pH [CO2-C production (g kg−1 organic C) = 22.5 pH – 119, R 2 = 0.79]. Similarly, increased pH was associated with increased release of mineral N from soils during 10-day incubation. Soil microbial biomass C and N were also positively related to pH. Metabolic quotient increased with an increase in soil pH, suggesting that increasing alkalinity in the salt-affected soil favoured the survival of a bacterial-dominated microbial community with low assimilation efficiency of organic C. As a result, increased CO2-C and mineral N were produced in alkaline saline soils (pH up to 10.0). This pH-stimulated mineralization of organic C and N mainly occurred in particulate but not in mineral-associated organic matter fractions. Our findings imply that, in addition to decreased plant productivity and the litter input, pH-stimulated mineralization of organic matter would also be responsible for a decreased amount of organic matter in alkaline salt-affected sandy soils.  相似文献   

20.
Salt-induced soil degradation is common in farmlands and limits the growth and development of numerous crop plants in the world. In this study, we isolated salt-tolerant bacteria from the rhizosphere of Tamarix chinensis, Suaeda salsa and Zoysia sinica, which are common wild plants grown on a saline–alkaline land, to test these bacteria's efficiency in alleviating salt stress in tomato plants. We screened out seven strains (TF1–7) that are efficient in reducing salt stress in tomato seedlings. The sequence data of 16S rRNA genes showed that these strains belong to Arthrobacter and Bacillus megaterium. All strains could hydrolyze casein and solubilize phosphate, and showed at least one plant growth promotion (PGP)-related gene, indicating their potential in promoting plant growth. The Arthrobacter strains TF1 and TF7 and the Bacillus megaterium strain TF2 and TF3 could produce indole acetic acid under salt stress, further demonstrating their PGP potential. Tomato seed germination, seedling length, vigor index, and plant fresh and dry weight were enhanced by inoculation of Arthrobacter and B. megaterium strains under salt stress. Our results demonstrated that salt-tolerant bacteria isolated from the rhizosphere of wild plants grown on saline–alkaline lands could be used for alleviating salt stress in crop plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号