首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aim  Limnomysis benedeni Czerniavsky, 1882 is a mysid crustacean native to the Ponto-Caspian (Black and Caspian Sea) rivers and estuaries, and has recently spread across Europe through intentional and unintentional introductions. We explored the structuring of genetic variation in native and non-native populations with an aim to trace the sources of the invasions, and to infer whether the spread has occurred through a single or multiple invasion waves.
Location  Native estuaries in the Ponto-Caspian basin (Volga, Don, Dnieper, Dniester, Danube) and the recently colonized range along the Danube–Rhine river systems and Lithuania.
Methods  A fragment of the mitochondrial COI gene was sequenced to assess genetic affinities and diversity in native and recently established populations.
Results  The genetic diversity in the native regions is organized into several strongly diverged haplotype groups or lineages, partly allopatric, partly sympatric. All these lineages have also spread beyond the native range. Even the recent rapid dispersal across Europe along the Danube–Rhine system towards the North Sea basin involved several lineages from the Danube delta sector. The structuring of genetic diversity among invaded sites suggests multiple invasion events to the Danube–Rhine drainage. This contrasts with data from some other Ponto-Caspian species, where a single haplotype seems to have occupied most invaded areas. There is no evidence that intentionally stocked reservoirs in the Baltic Sea basin would have contributed to further unintentional spread of L. benedeni.
Main conclusions  Limnomysis benedeni is spreading across Europe using the southern invasion corridor. The invasion most likely involved several waves from differentiated sources in the native Danube delta area.  相似文献   

2.
Aim To explore the potential of genetic processes and mating systems to influence successful plant invasions, we compared genetic diversity of the highly invasive tropical treelet, Miconia calvescens, in nine invasive populations and three native range populations. Specifically, we tested how genetic diversity is partitioned in native and invaded regions, which have different invasion histories (multiple vs. single introductions). Lastly, we infer how levels of inbreeding in different regions impact invasion success. Location Invaded ranges in the Pacific (Hawaii, Tahiti, New Caledonia) and Australia and native range in Costa Rica. Methods Genetic diversity was inferred by analysing variation at nine microsatellite loci in 273 individuals from 13 populations of M. calvescens. Genetic structure was assessed using amova , isolation by distance (IBD) within regions, a Bayesian clustering approach, and principal coordinates analysis. Results Microsatellite analysis revealed that invaded regions exhibit low levels of allelic richness and genetic diversity with few private alleles. To the contrary, in the native range, we observed high levels of allelic richness, high heterozygosity and 78% of all private alleles. Surprisingly, despite evident genetic bottlenecks in all invasive regions, similarly high levels of inbreeding were detected in both invasive and native ranges (FIS: 0.345 and 0.399, respectively). Bayesian clustering analysis showed a lack of geographical structure in the Pacific and evidence of differing invasion histories between the Pacific and Australia. While Pacific populations are derived from a single introduction to the region, multiple introductions have taken place in Australia from different source regions. Main conclusions Multiple introductions have not resulted in increased genetic diversity for M. calvescens invasions. Moreover, similar inbreeding levels between native and invaded ranges suggests that there is no correlation between levels of inbreeding and levels of standing genetic diversity for M. calvescens. Overall, our results show that neither inbreeding nor low genetic diversity is an impediment to invasion success.  相似文献   

3.
Retracing introduction routes is crucial for understanding the evolutionary processes involved in an invasion, as well as for highlighting the invasion history of a species at the global scale. The Asian long‐horned beetle (ALB) Anoplophora glabripennis is a xylophagous pest native to Asia and invasive in North America and Europe. It is responsible for severe losses of urban trees, in both its native and invaded ranges. Based on historical and genetic data, several hypotheses have been formulated concerning its invasion history, including the possibility of multiple introductions from the native zone and secondary dispersal within the invaded areas, but none have been formally tested. In this study, we characterized the genetic structure of ALB in both its native and invaded ranges using microsatellites. In order to test different invasion scenarios, we used an approximate Bayesian “random forest” algorithm together with traditional population genetics approaches. The strong population differentiation observed in the native area was not geographically structured, suggesting complex migration events that were probably human‐mediated. Both native and invasive populations had low genetic diversity, but this characteristic did not prevent the success of the ALB invasions. Our results highlight the complexity of invasion pathways for insect pests. Specifically, our findings indicate that invasive species might be repeatedly introduced from their native range, and they emphasize the importance of multiple, human‐mediated introductions in successful invasions. Finally, our results demonstrate that invasive species can spread across continents following a bridgehead path, in which an invasive population may have acted as a source for another invasion.  相似文献   

4.
Invasions by exotic organisms have had devastating affects on aquatic ecosystems, both ecologically and economically. One striking example of a successful invader that has dramatically affected fish community structure in freshwater lakes of North America is the sea lamprey (Petromyzon marinus). We used eight microsatellite loci and multiple analytical techniques to examine competing hypotheses concerning the origins and colonization history of sea lamprey (n = 741). Analyses were based on replicated invasive populations from Lakes Erie, Huron, Michigan, and Superior, populations of unknown origins from Lakes Ontario, Champlain, and Cayuga, and populations of anadromous putative progenitor populations in North America and Europe. Populations in recently colonized lakes were each established by few colonists through a series of genetic bottlenecks which resulted in lower allelic diversity in more recently established populations. The spatial genetic structure of invasive populations differed from that of native populations on the Atlantic coast, reflecting founder events and connectivity of invaded habitats. Anadromous populations were found to be panmictic (theta(P) = 0.002; 95% CI = -0.003-0.006; P > 0.05). In contrast, there was significant genetic differentiation between populations in the lower and upper Great Lakes (theta(P) = 0.007; P < 0.05; 95% CI = 0.003-0.009). Populations in Lakes Ontario, Champlain, and Cayuga are native. Alternative models that describe different routes and timing of colonization of freshwater habitats were examined using coalescent-based analyses, and demonstrated that populations likely originated from natural migrations via the St Lawrence River.  相似文献   

5.
The Asian cyprinid fish, the topmouth gudgeon (Pseudorasbora parva), was introduced into Europe in the 1960s. A highly invasive freshwater fish, it is currently found in at least 32 countries outside its native range. Here we analyse a 700 base pair fragment of the mitochondrial cytochrome b gene to examine different models of colonisation and spread within the invasive range, and to investigate the factors that may have contributed to their invasion success. Haplotype and nucleotide diversity of the introduced populations from continental Europe was higher than that of the native populations, although two recently introduced populations from the British Isles showed low levels of variability. Based on coalescent theory, all introduced and some native populations showed a relative excess of nucleotide diversity compared to haplotype diversity. This suggests that these populations are not in mutation-drift equilibrium, but rather that the relative inflated level of nucleotide diversity is consistent with recent admixture. This study elucidates the colonisation patterns of P. parva in Europe and provides an evolutionary framework of their invasion. It supports the hypothesis that their European colonisation was initiated by their introduction to a single location or small geographic area with subsequent complex pattern of spread including both long distance and stepping-stone dispersal. Furthermore, it was preceded by, or associated with, the admixture of genetically diverse source populations that may have augmented its invasive-potential.  相似文献   

6.
Aim Human activities have weakened biogeographical barriers to dispersal, increasing the rate of introduction of alien plants. However, their impact on beta diversity and floristic homogenization is poorly understood. Our goal is to compare the phylogenetic beta diversity of native species with that of two groups of alien species, archaeophytes and neophytes (introduced before and after ad 1500, respectively), across European urban floras to explore how biological invasions affect phylogenetic turnover at a continental scale. Location Twenty European cities located in six countries between 49 and 53° N latitude in continental Europe and the British Isles. Methods To compare the phylogenetic beta diversity of native and alien species we use the average phylogenetic dissimilarity of individual floras from their group centroid in multivariate space. Differences in phylogenetic beta diversity among different species groups are then assessed using a randomization test for homogeneity of multivariate dispersions. Results Across European urban floras, and when contrasted with natives, archaeophytes are usually associated with lower levels of phylogenetic beta diversity while neophytes tend to increase phylogenetic differentiation. Main conclusions While archaeophytes tend to promote limited homogenization in phylogenetic beta diversity, because of their diverse geographical origin together with short residence times in the invaded regions, neophytes are not promoting biotic homogenization of urban floras across Europe. Therefore, in spite of the increasing rate of alien invasion, an intense phylogenetic homogenization of urban cities is not to be expected soon.  相似文献   

7.
生物入侵是不均衡世界的一个永恒话题,尤其是当人类有意或无意地引入物种后,很多引入显然是无害的,但另外一些则有着严重的后果,会给入侵地的生物以至于整个生物群落造成影响,本文总结了分布区扩张的常见模式,概述了它们对遗传多样性和种群结构式样所造成的影响,描述了如何根据以一批遗传标记所得到的遗传多样性式样来推断入侵途径,来揭示伴随扩张选择和嘌变在形成种群遗传样式中的作用,本文对日益增多的群体遗传学方法进行了总结,这些技术可以用来在不同的时间尺度上推断种群规模所发生的巨大变化(瓶颈效应及种群扩张),最后,我们以欧洲栎瘿蜂(膜翅目,瘿蜂科,瘿蜂族)一系列入侵的数据为例对一些方法进行了说明,从500-10000年的时间尺度上,多态的等位酶位点上等位基因频率的数据表明:1)遗传多样性沿入侵路线呈不断下降的趋势,支持了冰河期避难所作为遗传多样性中心的作用;2)入侵地区的种群与该物种原产地的种群相比,遗传上的分化更为强烈,这种种群结构在空间上的变异可能是被栎瘿蜂开发的资源尤其是栎树寄主在斑块上出现变异的反映。  相似文献   

8.
Aim The highly adaptable estuarine crab (Carcinus maenas) has successfully invaded five temperate geographic regions outside of its native Europe. Here, we determine which environmental factors predict the current distribution of C. maenas and what the potential geographic range of this species might be. We also investigated whether the invasion potential of C. maenas differs with respect to the origin of a native subpopulation. Location Models were developed using global observation records of C. maenas. Methods Boosted regression trees were used to model observations from the (1) native, (2) invasive, (3) southern European, (4) northern European and (5) the combined native and invasive geographic ranges of C. maenas. Results Most established invasions were predicted mainly based on temperature. Interestingly, the environment encountered by established invasions failed to predict the majority of northern European populations; suggesting that invasion potential may differ between distinct native populations. Supporting this suggestion, a model of northern European populations, distinguished from southern European populations based on genetic structure, only predicted established invasions south of Nova Scotia. By contrast, a model of southern European populations predicted most established invasions. Main conclusions These results suggest that invasion potential depends on the European origin of an invasive population and that most invasions have arisen from southern Europe. Finally, a model based on combined native and invasive ranges of C. maenas identified potential geographic range extension along many currently invaded coastlines and the potential invasion of countries like Chile, China, Russia, Namibia and New Zealand.  相似文献   

9.
Admixture between differentiated populations is considered to be a powerful mechanism stimulating the invasive success of some introduced species. It is generally facilitated through multiple introductions; however, the importance of admixture prior to introduction has rarely been considered. We assess the likelihood that the invasive Ambrosia artemisiifolia populations of Europe and Australia developed through multiple introductions or were sourced from a historical admixture zone within native North America. To do this, we combine large genomic and sampling data sets analysed with approximate Bayesian computation and random forest scenario evaluation to compare single and multiple invasion scenarios with pre‐ and postintroduction admixture simultaneously. We show the historical admixture zone within native North America originated before global invasion of this weed and could act as a potential source of introduced populations. We provide evidence supporting the hypothesis that the invasive populations established through multiple introductions from the native range into Europe and subsequent bridgehead invasion into Australia. We discuss the evolutionary mechanisms that could promote invasiveness and evolutionary potential of alien species from bridgehead invasions and admixed source populations.  相似文献   

10.
Invasive species offer excellent model systems for studying rapid evolutionary change. In this context, molecular markers play an important role because they provide information about pathways of introduction, the amount of genetic variation introduced, and the extent to which founder effects and inbreeding after population bottlenecks may have contributed to evolutionary change. Here, we studied microsatellite variation in eight polymorphic loci among and within 27 native and 26 introduced populations of garlic mustard (Alliaria petiolata), a European herb which is a current serious invader in North American deciduous forests. Overall, introduced populations were genetically less diverse. However, considerable variability was present and when compared to the probable source regions, no bottleneck was evident. Observed heterozygosity was very low and resulted in high inbreeding coefficients, which did not differ significantly between native and introduced populations. Thus, selfing seems to be equally dominant in both ranges. Consequently, there was strong population differentiation in the native (F(ST) = 0.704) and the introduced (F(ST) = 0.789) ranges. The high allelic diversity in the introduced range strongly suggests multiple introductions of Alliaria petiolata to North America. Out of six European regions, the British Isles, northern Europe, and central Europe had significantly higher proportions of alleles, which are common to the introduced range, and are therefore the most probable source regions. The genetic diversity established by multiple introductions, and the lack of inbreeding depression in this highly selfing species, may have contributed to the invasion success of Alliaria petiolata.  相似文献   

11.
Evolutionary responses of native plants to novel community members   总被引:4,自引:0,他引:4  
Both ecological and evolutionary processes can influence community assembly and stability, and native community members may respond both ecologically and evolutionarily as additional species enter established communities. Biological invasions provide a unique opportunity to examine these responses of native community members to novel species additions. Here, I use reciprocal transplant experiments among naturally invaded and uninvaded environments, along with experimental removals of exotic species, to determine whether exotic plant competitors and exotic insect herbivores evoke evolutionary changes in native plants. Specifically, I address whether the common native plant species Lotus wrangelianus has responded evolutionarily to a series of biological invasions by adapting to the presence of the exotic plant Medicago polymorpha and the exotic insect herbivore Hypera brunneipennis. Despite differences in selection regimes between invaded and uninvaded environments and the presence of genetic variation for traits relevant to the novel competitive and plant-herbivore interactions, these experiments failed to reveal evidence that Lotus has responded evolutionarily to the double invasion of Medicago followed by H. brunneipennis. However, when herbivory from H. brunneipennis was experimentally reduced, Lotus plants from source populations invaded by Medicago outperformed plants from uninvaded source populations when transplanted into heavily invaded destination environments. Therefore, Lotus showed evidence of adaptation to Medicago invasion but not to the newer invasion of an exotic shared herbivore. The presence of this exotic insect herbivore alters the outcome of evolutionary responses in this system and counteracts adaptation by the native Lotus to invasion by the exotic plant Medicago. This result has broad implications for the conservation of native communities. While native species may be able to adapt to the presence of one or a few exotics, a multitude of invasions may limit the ability of natives to respond evolutionarily to the novel and frequently changing selection pressures that arise with subsequent invasions.  相似文献   

12.
Daphnia lumholtzi is a planktonic crustacean native to subtropical regions in Africa, Asia and Australia. Since its invasion to the southern USA in ~1990 it has spread across North America as far north as the Laurentian Great Lakes. We assessed invasion history using microsatellite makers and to explore the influence of mean annual temperature on the genetic structure along a latitudinal gradient in North America. Genotypic data were obtained from 9 microsatellite markers for 178 individuals from 13 populations (eight populations introduced to North America and five populations in the native range). Pairwise Fst values as well as Bayesian clustering showed a strong subdivision between native and introduced populations. Bayesian clustering identified multiple genetic clusters in recently invaded locations, suggestive of multiple invasions from various sources, including Asia and Africa. Using variation partitioning, we determined the amount of variation for genetic clusters of populations in the invaded range due to mean annual air temperature and the year of first detection. The results point to a primary introduction into the southern range of North America, with a subsequent northward expansion, and multiple introductions possibly from both the native range and by secondary spread from previously-invaded locations. Separate analysis of genetic clusters within the invaded range suggests additional effects of temperature conditions on geographic genetic structure, possibly as a consequence of D. lumholtzi’s tropical origin.  相似文献   

13.
Considerable progress in our understanding of the population genetic changes associated with biological invasions has been made over the past decade. Using selectively neutral loci, it has been established that reductions in genetic diversity, reflecting founder effects, have occurred during the establishment of some invasive populations. However, some colonial organisms may actually gain an ecological advantage from reduced genetic diversity because of the associated reduction in inter-colony conflict. Here we report population genetic analyses, along with colony fusion experiments, for a highly invasive colonial ascidian, Didemnum vexillum. Analyses based on mitochondrial cytochrome oxidase I (COI) partial coding sequences revealed two distinct D. vexillum clades. One COI clade appears to be restricted to the probable native region (i.e., north-west Pacific Ocean), while the other clade is present in widely dispersed temperate coastal waters around the world. This clade structure was supported by 18S ribosomal DNA (rDNA) sequence data, which revealed a one base-pair difference between the two clades. Recently established populations of D. vexillum in New Zealand displayed greatly reduced COI genetic diversity when compared with D. vexillum in Japan. In association with this reduction in genetic diversity was a significantly higher inter-colony fusion rate between randomly paired New Zealand D. vexillum colonies (80%, standard deviation ±18%) when compared with colonies found in Japan (27%, standard deviation ±15%). The results of this study add to growing evidence that for colonial organisms reductions in population level genetic diversity may alter colony interaction dynamics and enhance the invasive potential of newly colonizing species.  相似文献   

14.
To become invasive, exotic species have to succeed in the consecutive phases of introduction, naturalization, and invasion. Each of these phases leaves traces in genetic structure, which may affect the species’ success in subsequent phases. We examined this interplay of genetic structure and invasion dynamics in the South African Ragwort (Senecio inaequidens), one of Europe’s fastest plant invaders. We used AFLP and microsatellite markers to analyze 19 native African and 32 invasive European populations. In combination with historic data, we distinguished invasion routes and traced them back to the native source areas. This revealed that different introduction sites had markedly different success in the three invasion phases. Notably, an observed lag‐phase in Northern Germany was evidently not terminated by factors increasing the invasiveness of the resident population but by invasive spread from another introduction centre. The lineage invading Central Europe was introduced to sites in which winters are more benign than in the native source region. Subsequently, this lineage spread into areas in which winter temperatures match the native climate more closely. Genetic diversity clearly increases with population age in Europe and less clearly decreases with spread rate up to population establishment. This indicates that gene flow along well‐connected invasion routes counteracted losses of genetic diversity during rapid spread. In summary, this study suggests that multiple introductions, environmental preadaptation and high gene flow along invasion routes contributed to the success of this rapid invader. More generally, it demonstrates the benefit of combining genetic, historical, and climatic data for understanding biological invasions.  相似文献   

15.
We compared the levels and distribution of genetic diversity in Eurasian and North American populations of Brachypodium sylvaticum (Huds.) Beauv. (false brome), a newly invasive perennial bunchgrass in western North America. Our goals were to identify source regions for invasive populations, determine the number of independent invasion events, and assess the possibility that postinvasion bottlenecks and hybridization have affected patterns of genetic diversity in the invaded range. We tested the hypothesis that this Eurasian grass was accidentally introduced into two areas in Oregon and one site in California by examining nuclear microsatellites and chloroplast haplotype variation in 23 introduced and 25 native populations. In the invaded range, there was significantly lower allelic richness (R(S)), observed heterozygosity (H(O)) and within-population gene diversity (H(S)), although a formal test failed to detect a significant genetic bottleneck. Most of the genetic variation existed among populations in the native range but within populations in the invaded range. All of the allelic variation in the invaded range could be explained based on alleles found in western European populations. The distribution of identified genetic clusters in the North American populations and the unique alleles associated with them is consistent with two historical introductions in Oregon and a separate introduction to California. Further analyses of population structure indicate that intraspecific hybridization among genotypes from geographically distinct regions of western Europe occurred following colonization in Oregon. The California populations, however, are more likely to be derived from one or perhaps several genetically similar regions in the native range. The emergence and spread of novel recombinant genotypes may be facilitating the rapid spread of this invasive species in Oregon.  相似文献   

16.
Species invading new ranges are subject to a series of demographic events that can strongly shape genetic diversity. Describing this demographic history is important for understanding where invasive species come from and how they spread, and is critical to testing hypotheses of postinvasion adaptation. Here, we analyse nuclear and chloroplast genetic diversity to study the invasion history of the widespread colonizing weed, Silene latifolia (Caryophyllaceae). Bayesian clustering and PCA revealed strong population structure in the native range of Europe, and although genotypes from multiple native sources were present in the introduced range of North America, the spatial distribution of genetic variance was dramatically reorganized. Using approximate Bayesian computation (ABC), we compared support for different invasion scenarios, including the number and size of independent introduction events and the amount of admixture occurring between sources of introduced genotypes. Our results supported independent introductions into eastern and western North America, with the latter forming a bridgehead for a secondary invasion into the Great Lakes region of central North America. Despite small estimated founder population sizes, the duration of the demographic bottleneck after the initial introduction appeared extremely short‐lived. This pattern of repeated colonization and rapid expansion has effectively eroded the strong population structure and cytonuclear associations present in Europe, but has retained overall high genetic diversity since invasion. Our results highlight the flexibility of the ABC approach for constructing a narrative of the demographic history of species invasions and provide baseline for future studies of evolutionary changes in introduced S. latifolia populations.  相似文献   

17.
The amphipod Dikerogammarus villosus has colonized most of the European main inland water bodies in less than 20 years, having deteriorating effect on the local benthic communities. Our aim was to reveal the species phylogeography in the native Black Sea area, to define the source populations for the colonization routes in continental Europe and for the newly established UK populations. We tested for the loss of genetic diversity between source and invasive populations as well as along invasion route. We tested also for isolation by distance. Thirty three native and invasive populations were genotyped for mtDNA (COI, 16S) and seven polymorphic nuclear microsatellites to assess cryptic diversity (presence of deeply divergent lineages), historical demography, level of diversity within lineage (e.g., number of alleles), and population structure. A wide range of methods was used, including minimum spanning network, molecular clock, Bayesian clustering and Mantel test. Our results identified that sea level and salinity changes during Pleistocene impacted the species phylogeography in the Black Sea native region with four differentiated populations inhabiting, respectively, the Dnieper, Dniester, Danube deltas and Durungol liman. The invasion of continental Europe is associated with two sources, i.e., the Danube and Dnieper deltas, which gave origin to two independent invasion routes (Western and Eastern) for which no loss of diversity and no isolation by distance were observed. The UK population has originated in the Western Route and, despite very recent colonization, no drastic loss of diversity was observed. The results show that the invasion of the killer shrimp is not associated with the costs of loosing genetic diversity, which may contribute to the success of this invader in the newly colonized areas. Additionally, while it has not yet occurred, it might be expected that future interbreeding between the genetically diversified populations from two independent invasion routes will potentially even enhance this success.  相似文献   

18.
Facilitated by the intensification of global trading, the introduction and dispersal of species to areas in which they are historically non‐native is nowadays common. From an evolutionary standpoint, invasions are paradoxical: not only non‐native environments could be different from native ones for which introduced individuals would be ill‐adapted, but also small founding population size should be associated with reduced adaptive potential. As such, biological invasions are considered valuable real‐time evolutionary experiments. Here, we investigated the population structure and adaptive potential of the highly invasive topmouth gudgeon (Pseudorasbora parva) across Europe and East Asia. We RAD‐sequenced 301 specimens from sixteen populations and three distinct within‐catchment invaded regions as well as two locations in the native range. With 13,785 single nucleotide polymorphisms, we provide conclusive evidence for a genome‐wide signature of two distinct invasion events, in Slovakia and Turkey, each originating from a specific area in the native range. A third invaded area, in France, appears to be the result of dispersal within the invasive range. Few loci showed signs of selection, the vast majority of which being identified in the Slovakian region. Functional annotation suggests that faster early stage development, resistance to pollution and immunocompetence contribute to the invasion success of the local habitats. By showing that populations in the invasive range have different evolutionary histories, our study reinforces the idea that populations, rather than species, are the units to consider in invasion biology.  相似文献   

19.
Aim To assess how habitat affinities in the native distribution range influence the invasion success of 282 central European neophytes (alien plants introduced after ad 1500). Location Czech Republic. Methods Classification trees were used to determine which native habitats donate the most alien species, the correspondence between habitats occupied by species in their native and invaded distribution ranges, and invasion success of species originating from different habitats. Results The species most likely to naturalize in Central Europe are those associated with thermophile woodland fringes in their native range (81%), cultivated areas of gardens and parks (75%) and broad‐leaved deciduous woodlands (72%). The largest proportions of invasive species recruit from those that occur on riverine terraces and eroded slopes, or grow in both deciduous woodland and riverine scrub. When the relative role of habitats in the native range is assessed as a determinant of the probability that a species will become invasive in concert with other factors (the species’ residence time, life history, region of origin), the direct effect of habitat is negligible. However, the effect of native habitats on patterns of invasions observed in central Europe is manifested by large differences in the numbers of species they supply to the invaded region. More than 50 neophytes were recruited from each of the following habitats: dry grasslands, ruderal habitats, deciduous woodland, inland cliffs, rock pavements and outcrops, and tall‐herb fringes and meadows. Main conclusions Casual species recruit from a wider range of habitats in their native range than they occupy in the invaded range; naturalized but not invasive species inhabit a comparable spectrum of habitats in both ranges, and successful invaders occupy a wider range of habitats in the invaded than in the native range. This supports the idea that the invasive phase of the process is associated with changes in biological features that allow for extension of the spectrum of habitats invaded.  相似文献   

20.
The zebra mussel, Dreissena polymorpha (Pallas), a bivalve species originally native to the Black and Caspian seas, has invaded Ireland in the last decade. Five microsatellite loci were used to investigate genetic diversity and population structure in 10 populations across Europe (Ireland, UK, the Netherlands and Romania) and the Great Lakes (Lake Ontario and Lake St Clair). Levels of allelic diversity and mean expected heterozygosity were high for all populations (mean number of alleles/locus and H(E) were 10-15.2 and 0.79-0.89, respectively). High levels of polymorphism observed in Irish populations suggest that the Irish founder population(s) were large and/or several introductions took place after foundation. Significant deficits of heterozygotes were recorded for all populations, and null alleles were the most probable factor contributing to these deficits. Pairwise comparisons using Fisher exact tests and F(ST) values revealed little genetic differentiation between Irish populations. The UK sample was not significantly differentiated from the Irish samples, most probably reflecting an English origin for Irish zebra mussels. No significant differentiation was detected between the two Great Lakes populations. Our data support a northwest rather than a central or east European source for North American zebra mussels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号