首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In brain perfusion experiments conducted with blood containing [U-14C]glucose the relative specific activity (RSA) of blood glucose carbon incorporated in brain intermediate metabolites was measured. It was demonstrated that the so-called metabolic pattern of Geiger is not constant, but it bears a close relation to the function of the brain. The results of the study may be summarized briefly as follows. (1) In a group (A) of cats with a high level of brain function, the RSA of lactic acid was 75 per cent; that of glutamic acid 80 per cent; aspartic acid 75 per cent; glutamine 61 per cent; GABA 43 per cent; and respiratory CO2 55 per cent. It was observed that the major part of the carbon of amino acids, such as glutamic acid and aspartic acid, which are directly associated with the tricarboxylic acid cycle are derived from blood glucose. (2) In a group (B) showing a low level of brain function, the RSA of each amino acid was considerably lowered. The RSA of glutamic acid and aspartic acid was about 50 per cent and that of respiratory CO2 was 27 per cent. (3) In a group (C) with a still lower level of brain function, each amino acid as well as the respiratory CO2 had still lower RSA values. (4) The metabolic pattern of Geiger corresponds to values obtained during low functional activity of the brain in our experiment.  相似文献   

3.
4.
The experiment was performed on rats to which a single injection of [U-14C]glucose had been administered. Results were observed from the 7th to the 281st day following contamination. At 280 days only the lipids in the brain contained radioactivity, the highest degree of specific activity being found in the cerebrosides.  相似文献   

5.
6.
7.
8.
  • 1.1. After injection of a mixture of [G-3H]glutamate and [U-14C]glucose to rats, the highest amount of 14C was found in an unidentified compound (glycopeptide?) of the acid soluble extract of the liver at 2 min.
  • 2.2. With increasing time after the injection the specific radioactivity of [3H]glutamate decreased and that of [3H]glutamine increased in the liver.
  • 3.3. The labelling of the liver protein with 14C was due to [14C]glutamate and [14C]aspartate, and that with 3H was exclusively due to [3H]glutamate.
  相似文献   

9.
10.
11.
Female rats were injected i.v. with comparable trace amounts of [U-14C] glycerol, [2-3H] glycerol, [U-14C] glucose, or [1-14C] palmitate, and killed 30 min afterwards. The radioactivity remaining in plasma at that time was maximal in animals receiving [U-14C] glucose while the appearance of radioactive lipids was higher in the [U-14C] glycerol animals than in other groups receiving hydrosoluble substrates. The carcass, more than the liver, was the tissue where the greatest proportion of radioactivity was recovered, while the greatest percentage of radioactivity appeared in the liver in the form of lipids. The values of total radioactivity found in different tissues were very similar when using either labelled glucose or glycerol but the amount recovered as lipids was much greater in the latter. The maximal proportion of radioactive lipids appeared in the fatty-acid form in the liver, carcass, and lumbar fat pads when using [U-14C] glycerol as a hydrosoluble substrate, and the highest lipidic fraction appeared in adipose tissue as labelled, esterified fatty acids. In the spleen, heart, and kidney, most of the lipidic radioactivity from any of the hydrosoluble substrates appeared as glyceride glycerol. The highest proportion of radioactivity from [1-14C] palmitate appeared in the esterified fatty acid in adipose tissue, being followed in decreasing proportion by the heart, carcass, liver, kidney, and spleen. Thus at least in part, both labelled glucose and glycerol are used throughout different routes for their conversion in vivo to lipids. A certain proportion of glycerol is directly utilized by adipose tissue. The fatty acids esterification ability differs among the tissues and does not correspond directly with the reported activities of glycerokinase, suggesting that the alpha-glycerophosphate for esterification comes mainly from glucose and not from glycerol.  相似文献   

12.
13.
—In order to study changes of the glycolytic-respiratory system and amino acid metabolism associated with blood flow disturbance, the cat brain perfusion was conducted with artificial blood containing [U-14C]glucose and the results were compared with those of standard perfusion keeping the cerebral blood flow at constant rate. The findings of the present study are briefly summarized: (1) In blood flow disturbance there was observed an accumulation of lactate just as seen in the low functional state observable in the standard perfusion. However the increase in relative specific activity of lactate was not so marked as the rise in cerebral lactate content, and this indicates that there is an increase of lactate production from substrates other than glucose as well as an increase of net flow of glucose carbon to lactate. (2) In blood flow disturbance relative specific activities of glutamate, aspartate, glutamine and respiratory CO2 were decreased as compared with those in the brain of high functional state. The relative specific activity of GABA in the reduced blood flow brain was at the same level as that of the brain at high functional state and it was higher than the relative specific activity of glutamate. (3) The relative specific activity and content of alanine were increased in the low function brain with standard perfusion.  相似文献   

14.
The metabolism of fructose was investigated in the bivascularly and hemoglobin-free perfused rat liver. Anterograde and retrograde perfusions were performed. In anterograde perfusion, fructose was infused at identical rates (19 mumols min-1 g-1) via the portal vein (all liver cells) or the hepatic artery (predominantly perivenous cells); in retrograde perfusion fructose was infused via the hepatic vein (all liver cells) or the hepatic artery (only periportal cells). The cellular water spaces accessible via the hepatic artery were measured by means of the multiple-indicator dilution technique. The following results were obtained. (i) Fructose was metabolized to glucose, lactate and pyruvate even when this substrate was infused via the hepatic artery in retrograde perfusion; oxygen consumption was also increased. (ii) When referred to the water spaces accessible to fructose via the hepatic artery in each perfusion mode, the rate of glycolysis was 0.99 +/- 0.14 mumols min-1 ml-1 in the retrograde mode; and, 2.05 +/- 0.19 mumols min-1 ml-1 in the anterograde mode (P = 0.002). (iii) The extra oxygen uptake due to fructose infusion via the hepatic artery was 1.09 +/- 0.16 mumols min-1 ml-1 in the retrograde mode; and, 0.51 +/- 0.08 mumols min-1 ml-1 in the anterograde mode (P = 0.005). (iv) Glucose production from fructose via the hepatic artery was 2.18 +/- 0.18 mumols min-1 ml-1 in the retrograde mode; and, 1.83 +/- 0.16 mumols min-1 ml-1 in the anterograde mode (P = 0.18). (v) Glucose production and extra oxygen uptake due to fructose infusion did not correlate by a single factor in all perfusion modes. It was concluded that: (a) rates of glycolysis are lower in the periportal area, confirming previous views; (b) extra oxygen uptake due to fructose infusion is higher in the periportal area; (c) a predominance of glucose production in the periportal area could not be demonstrated; and (d) extra oxygen uptake due to fructose infusion is not a precise indicator for glucose synthesis.  相似文献   

15.
16.
The degradation of RNA in the cyclically perfused rat liver was determined from the release of labeled cytidine from RNA that had been previously labeled with [6-14C]orotic acid in vivo. Because cytidine is not appreciably degraded in rat liver (its deamination to uridine is virtually nil) or produced in significant amounts from free 5'-nucleotides, its release will directly reflect net RNA breakdown. This conclusion was substantiated by the fact that the specific radioactivity of released cytidine equaled that of CMP in RNA and remained unchanged for 180 min of perfusion. The initial rate of [14C]cytidine accumulation was slow, but after 10-20 min it increased abruptly by more than 4-fold and remained virtually constant. The addition of 0.5 mM unlabeled cytidine effectively prevented the reutilization of label and increased the rate of labeled cytidine release by an amount representing 13% of the maximal rate of cytidine accumulation. Rates of RNA degradation, measured between 20 and 60 min in the presence of 0.5 mM unlabeled cytidine, averaged 1.00 +/- 0.05 mg h-1 liver-1 (100-g rat), the equivalent of 65% of total RNA per day. This accelerated value, which was about 4-fold larger than the initial rate, is believed to be the direct consequence of amino acid deprivation since, in separate experiments, the increase was completely suppressed by the addition of plasma amino acids (Lardeux, B. R., and Mortimore, G. E. (1987) J. Biol. Chem. 262, 14514-14519). These findings demonstrate the potential value of cytidine as a marker for following moment-to-moment regulatory alterations in RNA degradation in the isolated liver or hepatocyte preparation.  相似文献   

17.
The hormonal control of [14C]glucose synthesis from [U-14C-A1dihydroxyacetone was studied in hepatocytes from fed and starved rats. In cells from fed rats, glucagon lowered the concentration of substrate giving half-half-maximal rates of incorporation while it had little or no effect on the maximal rate. Inhibitors of gluconeogenesis from pyruvate had no effect on the ability of the hormone to stimulate the synthesis of [14C]glucose from dihydroxyacetone. The concentrations of glucagon and epinephrine giving half-maximal stimulation from dihydroxacetone were 0.3 to 0.4 mM and 0.3 to 0.5 muM, respectively. The meaximal catecholamine stimulation was much less than the maximal stimulation by glucagon and was mediated largely by the alpha receptor. Insulin had no effect on the basal rate of [14C]clucose synthesis but inhibited the effect of submaximal concentration of glucagon or of any concentration of catecholamine. Glucagon had no effect on the uptake of dihydroxyacetone but suppressed its conversion to lactate and pyruvate. This suppression accounted for most of the increase in glucose synthesis. In cells from gasted rats, where lactate production is greatly reduced and the rate of glucose synthesis is elevated, glucagon did not stimulate gluconeogenesis from dihydroxyacetone. Findings with glycerol as substrate were similar to those with dihyroxyacetone. Ethanol also stimulated glucose production from dihydroxyacetone while reducing proportionately the production of lactate. Ethanol is known to generate reducing equivalents fro clyceraldehyde-3-phosphate dehydrogenase and presumably thereby inhibits carbon flux to lactate at this site. Its effect was additive with that of glucagon. Estimates of the steady state levels of intermediary metabolites and flux rates suggested that glucagon activated conversion of fructose diphosphate to fructose 6-phosphate and suppressed conversion of phosphoenolpyruvate to pyruvate. More direct evidence for an inhibition of pyruvate kinase was the observation that brief exposure of cells to glucagon caused up to 70% inhibition of the enzyme activity in homogenates of these cells. The inhibition was not seen when the enzyme was assayed with 20 muM fructose diphosphate. The effect of glucagon to lower fructose diphosphate levels in intact cells may promote the inhibition of pyruvate kinase. The inhibition of pyruvate kinase may reduce recycling in the pathway of gluconeogenesis from major physiological substrates and probably accounts fromsome but not all the stimulatory effect of glucagon.  相似文献   

18.
1. The oxidation of [U-14C]hexadecanedionoyl-mono-CoA was stimulated by CoA, by carnitine in the absence of CoA and by the presence of an NAD(+)-regenerating system. 2. Substrate inhibition was observed with respect to [U-14C]hexadecanedionoyl-mono-CoA at concentrations greater than 35 microM. 3. Acetyl-CoA and the dicarboxyl-CoA esters of chain length C6-16 were detected by HPLC under standard incubation conditions. 4. In the absence of the NAD(+)-regenerating system, 2-enoyl-CoA and 3-hydroxacyl-CoA esters were detected. 5. In general, the peroxisomal beta-oxidation of dicarboxylates is very similar to that of monocarboxylates [Bartlett, K., Hovik, R., Eaton, S., Watmough, N. J. & Osmundsen, H. (1990) Biochem. J. 270, 175-180] except that chain shortening does not proceed beyond C6. 6. We conclude that the peroxisomal beta-oxidation of dicarboxylates is regulated by the redox state of the peroxisomal matrix and CoA availability.  相似文献   

19.
It is shown that more than 90% of the labelled substance D-[1-14C] calcium homopantotenate is rapidly removed from the organism with urea; 6-8% are products of its transformation, among them GABA is identified. An insignificant transformation of D-[1-14C] calcium homopantotenate up to 14CO2 is observed. After the preparation administration only unchanged D-[1-14C] calcium homopantotenate was found in the tissues, except of the liver where, as in urea, there is a nonidentified product with small Rf. [1-14C] GABA is rapidly transformed to 14CO2 and only its insignificant part is removed with urea, chiefly as products of transformation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号