首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Two bivalent thrombin inhibitors were synthesized, which consist of a benzamidine-based active-site-blocking segment, a fibrinogen recognition exosite inhibitor and a peptidic linker connecting these fragments. BZA-1 hirulog contains an Nalpha-(2-naphthylsulfonyl)-S-3-amidinophenylalanyl-is onipecotic acid residue connected via the carboxyl group to the linker segment. The active-site-directed moiety of BZA-2 hirulog [Nalpha-(2-naphthylsulfonyl-glutamyl)-R-4-amidinophenylal anyl-piperid ide] was coupled to the linker via the side chain of the glutamic acid. Both BZA-hirulogs contain almost identical linker-exo site inhibitor parts, except for the substitution of a glycine as the first linker residue in BZA-1 hirulog by a gamma-amino butyric acid in BZA-2 hirulog, thus increasing flexibility and linker length by two additional atoms. BZA-1 hirulog showed moderate potency (Ki = 0. 50 +/- 0.14 nM), while BZA-2 hirulog was characterized as a slow, tight binding inhibitor of thrombin (Ki = 0.29 +/- 0.08 pM). The stability in human plasma of both analogs was strongly improved compared with hirulog-1. For BZA-2 hirulog a significantly reduced plasma clearance was observed after intravenous injection in rats compared with BZA-1 hirulog and hirulog-1. The X-ray structure of the BZA-2 hirulog in complex with human alpha-thrombin was solved and confirmed the expected bivalent binding mode.  相似文献   

2.
The inhibition of thrombin is one of the important treatments of pathological blood clot formation. Variegin, isolated from the tropical bont tick, is a novel molecule exhibiting a unique ‘two-modes’ inhibitory property on thrombin active site (competitive before cleavage, noncompetitive after cleavage). For the better understanding of its function, we have determined the crystal structure of the human α-thrombin:synthetic-variegin complex at 2.4 Å resolution. The structure reveals a new mechanism of thrombin inhibition by disrupting the charge relay system. Based on the structure, we have designed 17 variegin variants, differing in potency, kinetics and mechanism of inhibition. The most active variant is about 70 times more potent than the FDA-approved peptidic thrombin inhibitor, hirulog-1/bivalirudin. In vivo antithrombotic effects of the variegin variants correlate well with their in vitro affinities for thrombin. Our results encourage that variegin and the variants show strong potential for the development of tunable anticoagulants.  相似文献   

3.
The mode of binding of four active-site directed inhibitors to human thrombin has been determined by x-ray crystallographic analysis. The inhibitors studied are benzamidine, PPACK, NAPAP, and MD-805, of which the last three are compounds evolved specifically to inhibit thrombin. Crystal structures were determined in the presence of both the inhibitor and the undecapeptide [des-amino Asp55]hirudin(55-65) which binds distant from the active site. Despite having significantly different chemical structures, NAPAP and MD-805 bind to thrombin in a very similar "inhibitor binding mode" which is not that expected by direct analogy with the binding of substrate. Both inhibitors bind to thrombin in a similar way as to trypsin, but thrombin has an extra loop, the "Tyr-Pro-Pro-Trp loop," not present in trypsin, which gives further binding interactions and is seen to move somewhat to accommodate binding of the different inhibitors. The fact that NAPAP and MD-805 require different stereochemistry for potent inhibition is demonstrated, and its structural basis clarified. The wealth of data on analogs and variants of these lead compounds is shown to be compatible with this inhibitor binding mode.  相似文献   

4.
Using hirudin as a model, a novel class of bivalent thrombin inhibitors has been designed and characterized (Maraganore et al. (1990) Biochemistry 29, 7095-7101). These peptides, designated 'hirulogs', interact with both thrombin's catalytic center and its anion-binding exosite for fibrinogen recognition. In order to investigate structure-activity relationships in hirulog peptides, a number of peptide and peptidomimetic derivatives with alterations in catalytic-site binding and anion-binding exosite binding moieties were prepared. Replacements or modifications in the catalytic site and exosite binding moieties were achieved with the consequences of maintaining or improving antithrombin activity. In addition to showing improved affinity for thrombin, some derivatives with Ki's in the sub-nanomolar range showed increased anticoagulant activities. These findings highlight the versatility of hirulog peptides in their bivalent interactions with thrombin.  相似文献   

5.
Variegin is a 32‐amino acid long thrombin inhibitory peptide isolated from the salivary gland extract of tropical bont tick Amblyomma variegatum. It was identified to be O‐glycosylated on its Thr‐14 side chain, and this glycosylated form was 14‐fold more potent than that of its non‐glycosylated form. However, as the identity of this glycosylation remained elusive, the mechanistic details underlying its functional impact are not yet known. In this report, we synthesized four different O‐glycosylated analogs of variegin bearing physiologically relevant sugars on its Thr‐14. Functional characterization of these analogs by enzyme inhibitory kinetics and surface plasmon resonance methods showed that all the synthesized glycopeptides are strong thrombin inhibitors. Structural studies by macromolecular docking identified that the sugar moiety of these peptides can potentially mediate favorable interactions with amino acids at the base of thrombin's autolysis loop. This report, for the first time, describes the impact of differential glycosylation on the function of a thrombin inhibitory peptide and tries to provide structural insights into the relevance of peptide glycosylation in thrombin inhibition. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

6.
Abstract

For use as an antithrombotic agent, a thrombin inhibitor must be potent and specific, i.e., it should not significantly inhibit the proteases of the anticoagulation (activated protein C) and fibrinolytic systems (plasminogen activator and plasmin). Previous evaluation of potency and specificity has been based on inhibition constants (Ki values). However, consideration of the kinetic parameters for natural plasma serine protease inhibitors indicates that a low Ki value with thrombin is not sufficient; the inhibited complex must also form rapidly. Moreover, potent inhibition of activated protein C and plasmin could be tolerated providing the inhibited complex only forms slowly. An ideal profile of kinetic parameters with thrombin, activated protein C and plasmin is formulated and discussed in relation to various classes of thrombin inhibitors. Examination of kinetic data for thrombin inhibitors currently in clinical trials (hirudin and hirulog) indicates that they possess this ideal profile of kinetic parameters.  相似文献   

7.
Heparin cofactor II (HCII) is a highly specific serine proteinase inhibitor, which complexes covalently with thrombin in a reaction catalyzed by heparin and other polyanions. The molecular basis for the thrombin specificity may be explained by the identification here of a segment of HCII including residues 54-75 that binds to thrombin. A synthetic peptide, HCII(54-75), based on this segment of HCII, Gly-Glu-Glu-Asp-Asp-Asp-Tyr-Leu-Asp-Leu-Glu- Lys-Ile-Phe-Ala-Glu-Asp-Asp-Asp-Tyr-Ile-Asp inhibited thrombin's cleavage of fibrinogen. Clotting activity of thrombin was inhibited 50% at a concentration of 28 microM. Polyacrylamide gel electrophoresis showed that HCII(54-75) inhibited thrombin's cleavage of both the A alpha and B beta polypeptides in fibrinogen. However, the peptide did not block thrombin's active site, as hydrolysis of chromogenic substrates was not inhibited. HCII(54-75) probably binds to the same site on thrombin as do carboxyl-terminal residues of hirudins, thrombin inhibitors of leeches. HCII(54-75) inhibited binding of thrombin to a synthetic peptide corresponding to residues 54-66 of hirudin PA, but the hirudin peptide was about 30-fold more potent in binding and clotting assays. Both synthetic peptides, as a result of their polyanionic character, might be expected to stimulate the reaction of HCII with thrombin. However, the hirudin-related peptide inhibited this reaction, suggesting that it blocked a site on thrombin required for interaction with HCII. HCII(54-75) had a net stimulatory effect on the thrombin-HCII reaction as a consequence of its lower affinity for thrombin and greater negative charge relative to the hirudin-related peptide. These studies suggest that residues 54-75 of HCII interact with a noncatalytic binding site on thrombin and that this interaction contributes to efficient inhibition of thrombin by HCII.  相似文献   

8.
The X-ray crystallographic structure of the human alpha-thrombin complex with hirulog 3 (a potent, noncleavable hirudin-based peptide of the "hirulog" class containing a beta-homoarginine at the scissile bond), which is isomorphous with that of the hirugen-thrombin crystal structure, was solved at 2.3-A resolution by starting with a model for thrombin derived from the hirugen-thrombin complex and was refined by restrained least squares methods (R = 0.132). Residues of hirulog 3 were well-defined in the electron density, which included most of the pentaglycine linker and the C-terminal helical turn that was disordered in a related structure of thrombin with hirulog 1. The interactions of D-Phe1'-Pro2'-beta-homoArg3' with the active site of thrombin were essentially identical to those of related structures of PPACK- (D-Phe-Pro-Arg chloromethyl ketone) and hirulog 1-thrombin, with the guanidinium function of the arginyl P1 residue forming a hydrogen-bonding ion pair with Asp189 of the S1 site. A noticeable shift in the CA atom of beta-homoArg3' due to the methylene insertion displaces the scissile bond from attack by Ser195, thus imparting proteolytic stability to the beta-homoArg hirulog derivative. Resolution of the pentaglycine spacer, linking N- and C-terminal functional domains into a single oligopeptide bivalent inhibitor, permitted delineation of corresponding S' subsites of thrombin. The position of Gly4' (P1') is stabilized by three hydrogen bonds with His57, Lys60F, and Ser195, while the conformational angles maintained in a strained, nonallowed configuration for non-glycyl amino acids.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Structure of the hirugen and hirulog 1 complexes of alpha-thrombin   总被引:13,自引:0,他引:13  
The isomorphous structures of the hirugen (N-acetylhirudin 53'-64' with sulfato-Tyr63') and hirulog 1 (D-Phe-Pro-Arg-Pro-(Gly)4 desulfato-Tyr63'-hirugen) complexes of human alpha-thrombin have been determined and refined at 2.2 A resolution to crystallographic R-factors of 0.167 and 0.163, respectively. The binding of hirugen to thrombin is similar to that of the binding of the C-terminal dodecapeptide of hirudin, including that of the terminal 3(10) helical turn. The sulfato Tyr63', which, as a result of sulfation, increases the binding affinity by an order of magnitude, is involved in an extended hydrogen bonding network utilizing all three sulfato oxygen atoms. The hirugen-thrombin complex is the first thrombin structure determined to have an unobstructed active site; this site is practically identical in positioning of catalytic residues and in its hydrogen bonding pattern with that of other serine proteinases. Hirulog 1, which is a poor thrombin substrate, is cleaved at the Arg3'-Pro4' bond in the crystal structure. The Arg3' of hirulog 1 occupies the specificity site, the D-Phe-Pro-Arg tripeptide is positioned like that of D-Phe-Pro-Arg chloromethylketone in the active site and the Pro4'(Gly)4 spacer to hirugen is disordered in the structure, as is the 3(10) turn of hirugen. The latter must be related to the simultaneous absence both of sulfation and of the last residue of hirudin (Gln65'). In addition, the autolysis loop of thrombin (Lys145-Gly150) is disordered in both structures. Changes in circular dichroism upon hirugen binding are therefore most likely the result of the flexibility associated with this loop.  相似文献   

10.
A morpholinone structural motif derived from D(+)- and L(-)-malic acid has been used as a mimic of D-Phe-Pro in the thrombin inhibiting tripeptide D-Phe-Pro-Arg. In place of Arg the more rigid P1 truncated p-amidinobenzylamine (Pab) or 2-amino-5-aminomethyl-3-methyl-pyridine have been utilized. The synthetic strategy developed readily delivers these novel thrombin inhibitors used to probe the alpha-thrombin inhibitor binding site. The best candidate in this series of thrombin inhibitors exhibits an in vitro IC(50) of 720 nM. The X-ray crystal structure of this candidate co-crystallized with alpha-thrombin is discussed.  相似文献   

11.
Trypsin and trypsin-like enzymes cleave C-terminal bonds of the basic amino acids Arg and Lys. Inhibitors of these enzymes have been found not only among Arg and Lys derivatives but also with structurally related benzamidines. Especially cyclic amides of 4-amidinophenylalanine were found to be inhibitors of thrombin. The most potent selective thrombin inhibitor of these type is N alpha-(beta-naphthylsulfonylglycyl)-4-amidinophenylalanine piperidine. From the X-ray crystal structures of thrombin and trypsin-inhibitor complexes the thrombin complexes formed with inhibitors derived from amidinophenylalanine have been modeled. These models allow valuable predictions to design inhibitors of improved selection and binding properties. Most recently, also the X-ray crystal structures of complexes of inhibitors with bovine thrombin have been solved.  相似文献   

12.
Hirudin, isolated from the European leech Hirudo medicinalis, is a potent inhibitor of thrombin, forming an almost irreversible thrombin-hirudin complex. Previously, we have shown that the carboxyl terminus of hirudin (residues 45-65) inhibits clotting activity and without binding to the catalytic site of thrombin. In the present study, a series of peptides corresponding to this carboxyl-terminal region of hirudin have been synthesized, and their anticoagulant activity and binding properties to thrombin were examined. Binding was assessed by their ability to displace 125I-hirudin 45-65 from Sepharose-immobilized thrombin and by isolation of peptide-thrombin complexes. We show that the carboxyl-terminal 10 amino acid residues 56-65 (Phe-Glu-Glu-Ile-Pro-Glu-Glu-Tyr-Leu-Gln) are minimally required for binding to thrombin and inhibition of clotting. Phe-56 was critical for maintaining anticoagulant activity as demonstrated by the loss of activity when Phe-56 was substituted with D-Phe, Glu, or Leu. In addition, we found that the binding of the carboxyl-terminal peptide of hirudin with thrombin was associated with a significant conformational change of thrombin as judged by circular dichroism. This conformational change might be responsible for the loss of clotting activity of thrombin.  相似文献   

13.
A new class of divalent thrombin inhibitors is described that contains an α-keto-amide transition-state mimetic linking an active site binding group and a group that binds to the fibrinogen-binding exosite. The X-ray crystallographic structure of the most potent member of this new class, CVS995, shows many features in common with other divalent thrombin inhibitors and clearly defines the transition-state-like binding of the α-keto-amide group. The structure of the active site part of the inhibitor shows a network of water molecules connecting both the side-chain and backbone atoms of thrombin and the inhibitor. Direct peptide analogues of the new transition-state-containing divalent thrombin inhibitors were compared using in vitro assays of thrombin inhibition. There was no direct correlation between the binding constants of the peptides and their α-keto-amide counterparts. The most potent cv-keto-amide inhibitor, CVS995, with a Ki = 1 pM, did not correspond to the most potent divalent peptide and contained a single amino acid deletion in the exosite binding region with respect to the equivalent region of the natural thrombin inhibitor hirudin. The interaction energies of the active site, transition state, and exosite binding regions of these new divalent thrombin inhibitors are not additive.  相似文献   

14.
Successful design of potent and selective protein inhibitors, in terms of structure-based drug design, strongly relies on the correct understanding of the molecular features determining the ligand binding to the target protein. We present a case study of serine protease inhibitors with a bis(phenyl)methane moiety binding into the S3 pocket. These inhibitors bind with remarkable potency to the active site of thrombin, the blood coagulation factor IIa. A combination of X-ray crystallography and isothermal titration calorimetry provides conclusive insights into the driving forces responsible for the surprisingly high potency of these inhibitors. Analysis of six well-resolved crystal structures (resolution 1.58-2.25 Å) along with the thermodynamic data allows an explanation of the tight binding of the bis(phenyl)methane inhibitors. Interestingly, the two phenyl rings contribute to binding affinity for very different reasons — a fact that can only be elucidated by a structure-based approach. The first phenyl moiety occupies the hydrophobic S3 pocket, resulting in a mainly entropic advantage of binding. This observation is based on the displacement of structural water molecules from the S3 pocket that are observed in complexes with inhibitors that do not bind in the S3 pocket. The same classic hydrophobic effect cannot explain the enhanced binding affinity resulting from the attachment of the second, more solvent-exposed phenyl ring. For the bis(phenyl)methane inhibitors, an observed adaptive rotation of a glutamate residue adjacent to the S3 binding pocket attracted our attention. The rotation of this glutamate into salt-bridging distance with a lysine moiety correlates with an enhanced enthalpic contribution to binding for these highly potent thrombin binders. This explanation for the magnitude of the attractive force is confirmed by data retrieved by a Relibase search of several thrombin-inhibitor complexes deposited in the Protein Data Bank exhibiting similar molecular features.Special attention was attributed to putative changes in the protonation states of the interaction partners. For this purpose, two analogous inhibitors differing mainly in their potential to change the protonation state of a hydrogen-bond donor functionality were compared. Buffer dependencies of the binding enthalpy associated with complex formation could be traced by isothermal titration calorimetry, which revealed, along with analysis of the crystal structures (resolution 1.60 and 1.75 Å), that a virtually compensating proton interchange between enzyme, inhibitor and buffer is responsible for the observed buffer-independent thermodynamic signatures.  相似文献   

15.
The C terminus of the catalytic gamma subunit of phosphorylase kinase contains two autoinhibitory calmodulin binding domains designated PhK13 and PhK5. These peptides inhibit truncated gamma(1-300). Previous data show that PhK13 (residues 302-326) is a competitive inhibitor with respect to phosphorylase b, with a K(i) of 1.8 microm. This result suggests that PhK13 may bind to the active site of truncated gamma(1-300). Variants of PhK13 were prepared to localize the determinants for interaction with the catalytic fragment gamma(1-300). PhK13-1, containing residues 302-312, was found to be a competitive inhibitor with respect to phosphorylase b with a K(i) of 6.0 microm. PhK13 has been proposed to function as a pseudosubstrate inhibitor with Cys-308 occupying the site that normally accommodates the phosphorylatable serine in phosphorylase b. A PhK13-1 variant, C308S, was synthesized. Kinetic characterization of this peptide reveals that it does not serve as a substrate but is a competitive inhibitor. Additional variants were designed based on previous knowledge of phosphorylase kinase substrate determinants. Variants were analyzed as substrates and as inhibitors for truncated gamma(1-300). Although PhK13-1 does not appear to function as a pseudosubstrate, several specificity determinants employed in the recognition of phosphorylase b as substrate are utilized in the recognition of PhK13-1 as an inhibitor.  相似文献   

16.
Thrombin is a serine protease that plays a central role in blood coagulation. It is inhibited by hirudin, a polypeptide of 65 amino acids, through the formation of a tight, noncovalent complex. Tetragonal crystals of the complex formed between human alpha-thrombin and recombinant hirudin (variant 1) have been grown and the crystal structure of this complex has been determined to a resolution of 2.95 A. This structure shows that hirudin inhibits thrombin by a previously unobserved mechanism. In contrast to other inhibitors of serine proteases, the specificity of hirudin is not due to interaction with the primary specificity pocket of thrombin, but rather through binding at sites both close to and distant from the active site. The carboxyl tail of hirudin (residues 48-65) wraps around thrombin along the putative fibrinogen secondary binding site. This long groove extends from the active site cleft and is flanked by the thrombin loops 35-39 and 70-80. Hirudin makes a number of ionic and hydrophobic interactions with thrombin in this area. Furthermore hirudin binds with its N-terminal three residues Val, Val, Tyr to the thrombin active site cleft. Val1 occupies the position P2 and Tyr3 approximately the position P3 of the synthetic inhibitor D-Phe-Pro-ArgCH2Cl. Thus the hirudin polypeptide chain runs in a direction opposite to that expected for fibrinogen and that observed for the substrate-like inhibitor D-Phe-Pro-ArgCH2Cl.  相似文献   

17.
J Y Chang 《Biochemistry》1991,30(27):6656-6661
The C-terminal peptide of a hirudin acts as an anticoagulant by binding specifically to a noncatalytic (fibrinogen recognition) site of thrombin. This binding has been shown to shield five spatially distant lysines of the thrombin B-chain (Lys21, Lys65, Lys77, Lys106, and Lys107). It was also demonstrated that modification of the sequence of the hirudin C-terminal peptide invariably diminished its anticoagulant activity. The major object of this study is to investigate how the decreased activity of the modified hirudin C-terminal peptide is reflected by the change of its binding properties to these five lysines of thrombin. A synthetic peptide representing the last 12 C-terminal amino acids of hirudin (Hir54-65) was (1) truncated from both its N-terminal and its C-terminal ends, or (2) substituted with Gly along residues 57-62, or (3) chemically modified to add (sulfation at Tyr63) or abolish (Asp and Glu modification with carbodiimide/glycinamide) its negatively charged side chains. The binding characteristics of these peptides to thrombin were investigated by chemical methods, and their corresponding anticoagulant activities were studied. Our results demonstrated the following: (1) the anticoagulant activities of hirudin C-terminal peptides were quantitatively related to their abilities to shield the five identified lysines of thrombin. The most potent peptide was sulfated Hir54-65 (S-Hir54-65) with an average binding affinity to the five lysines of 120 nM. A heptapeptide (Hir54-60) also displayed anticoagulant activity and thrombin binding ability at micromolar concentrations. (2) All active hirudin C-terminal peptides regardless of their sizes and potencies were shown to be capable of shielding the five lysines of thrombin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
A thrombin receptor has recently been cloned and the sequence deduced. The sequence reveals a thrombin cleavage site that accounts for receptor activation. The receptor also has an acidic region with some similarities to the carboxyl-terminal region of the leech thrombin inhibitor, hirudin. Synthetic peptides corresponding to the receptor cleavage site (residues 38-45), the hirudin-like domain (residues 52-69), and the covalently associated domains (residues 38-64) were evaluated for their ability to bind to thrombin. Peptides 38-45 and 38-64 were competitive inhibitors of thrombin's chromogenic substrate activity (Ki = 0.96 mM and 0.6 microM, respectively. Residues 52-69 altered the chromogenic substrate specificity, resulting in accelerated cleavage of some substrates and inhibited cleavage of others. The same peptide binds to thrombin and alters the fluorescence emission intensity of 5-dimethylaminonaphthalene-1-sulfonyl (dansyl)-thrombin in which the dansyl is attached directly to the active site serine (Kd = 32 +/- 7 microM). Residues 52-69 displace the carboxyl-terminal peptide of hirudin, indicating that they share a common binding site in the anion exosite of thrombin. These data suggest that the thrombin receptor has high affinity for thrombin due to the presence of the hirudin-like domain and that this domain alters the specificity of thrombin. This change in specificity may account for the ability of the receptor to serve as an excellent thrombin substrate despite the presence of an Asp residue in the P3 site, which is normally inhibitory to thrombin activity.  相似文献   

19.
A novel series of 1,2-disubstituted indole, azaindole and benzimidazole derivatives possessing an amine moiety was identified as thrombin inhibitors. An indole with basic diamine moieties (12a) was the most potent thrombin inhibitor in the series with Kass= 197 x 10(6) L/mol.  相似文献   

20.
The concept of bivalent polypeptides with controllable flexible linkers is demonstrated through the design of a new generation of 'antidote'-reversible inhibitors of thrombin. These molecules contain two binding moieties, each of which in isolation has only a moderate affinity of binding, which are linked together by a flexible peptide bridge. We show that activities of the potent bivalent inhibitors of thrombin can be reversed by the specific, but much weaker, binding of the linker moiety to protein 'antidotes'.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号