首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Transforming growth factor-beta (TGF-beta) is a secreted polypeptide that signals via receptor serine/threonine kinases and intracellular Smad effectors. TGF-beta inhibits proliferation and induces apoptosis in various cell types, and accumulation of loss-of-function mutations in the TGF-beta receptor or Smad genes classify the pathway as a tumor suppressor in humans. In addition, various oncogenic pathways directly inactivate the TGF-beta receptor-Smad pathway, thus favoring tumor growth. On the other hand, all human tumors overproduce TGF-beta whose autocrine and paracrine actions promote tumor cell invasiveness and metastasis. Accordingly, TGF-beta induces epithelial-mesenchymal transition, a differentiation switch that is required for transitory invasiveness of carcinoma cells. Tumor-derived TGF-beta acting on stromal fibroblasts remodels the tumor matrix and induces expression of mitogenic signals towards the carcinoma cells, and upon acting on endothelial cells and pericytes, TGF-beta regulates angiogenesis. Finally, TGF-beta suppresses proliferation and differentiation of lymphocytes including cytolytic T cells, natural killer cells and macrophages, thus preventing immune surveillance of the developing tumor. Current clinical approaches aim at establishing novel cancer drugs whose mechanisms target the TGF-beta pathway. In conclusion, TGF-beta signaling is intimately implicated in tumor development and contributes to all cardinal features of tumor cell biology.  相似文献   

5.
Members of the transforming growth factor-beta (TGF-beta) superfamily are critical regulators for epithelial growth and can alter the differentiation of keratinocytes. Transduction of TGF-beta signaling depends on the phosphorylation and activation of Smad proteins by heteromeric complexes of ligand-specific type I and II receptors. To understand the function of TGF-beta and activin-specific Smad, we generated transgenic mice that overexpress Smad2 in epidermis under the control of keratin 14 promoter. Overexpression of Smad2 increases endogenous Smad4 and TGF-beta 1 expression while heterozygous loss of Smad2 reduces their expression levels, suggesting a concerted action of Smad2 and -4 in regulating TGF-beta signaling during skin development. These transgenic mice have delayed hair growth, underdeveloped ears, and shorter tails. In their skin, there is severe thickening of the epidermis with disorganized epidermal architecture, indistinguishable basement membrane, and dermal fibrosis. These abnormal phenotypes are due to increased proliferation of the basal epidermal cells and abnormalities in the program of keratinocyte differentiation. The ectodermally derived enamel structure is also abnormal. Collectively, our study presents the first in vivo evidence that, by providing an auto-feedback in TGF-beta signaling, Smad2 plays a pivotal role in regulating TGF-beta-mediated epidermal homeostasis.  相似文献   

6.
Lens epithelial cells undergo epithelial-mesenchymal transition (EMT) after injury as in cataract extraction, leading to fibrosis of the lens capsule. We have previously shown that EMT of primary lens epithelial cells in vitro depends on TGF-beta expression and more specifically, on signaling via Smad3. In this report, we suggest phosphatidylinositol 3-OH kinase (PI3K)/Akt signaling is also necessary for TGF-beta-induced EMT in lens epithelial cells by showing that LY294002, an inhibitor of the p110 catalytic subunit of PI3K, blocked the expression of alpha-smooth muscle actin (alpha-SMA) and morphological changes. We also identify Snail as an effector of TGF-beta-induced EMT. Snail has been shown to be a mediator of EMT during metastasis of cancer. We show that Snail is an immediate-early response gene for TGF-beta and the proximal Snail promoter is activated by TGF-beta through the action of Smad2, 3, and 4. We show that antisense inhibition of Snail expression blocks TGF-beta-induced EMT and furthermore Akt activation. All of these findings suggest that Snail participates in TGF-beta-induced EMT by acting upstream of Akt activation.  相似文献   

7.
TGF-beta inhibits adipocyte differentiation, yet is expressed by adipocytes. The function of TGF-beta in adipogenesis, and its mechanism of action, is unknown. To address the role of TGF-beta signaling in adipocyte differentiation, we characterized the expression of the TGF-beta receptors, and the Smads which transmit or inhibit TGF-beta signals, during adipogenesis in 3T3-F442A cells. We found that the cell-surface availability of TGF-beta receptors strongly decreased as adipogenesis proceeds. Whereas mRNA levels for Smads 2, 3, and 4 were unchanged during differentiation, mRNA levels for Smads 6 and 7, which are known to inhibit TGF-beta responses, decreased severely. Dominant negative interference with TGF-beta receptor signaling, by stably expressing a truncated type II TGF-beta receptor, enhanced differentiation and decreased growth. Stable overexpression of Smad2 or Smad3 inhibited differentiation and dominant negative inhibition of Smad3 function, but not Smad2 function, enhanced adipogenesis. Increased Smad6 and Smad7 levels blocked differentiation and enhanced TGF-beta-induced responses. The inhibitory effect of Smad7 on adipocyte differentiation and its cooperation with TGF-beta was associated with the C-domain of Smad7. Our results indicate that endogenous TGF-beta signaling regulates the rate of adipogenesis, and that Smad2 and Smad3 have distinct functions in this endogenous control of differentiation. Smad6 and Smad7 act as negative regulators of adipogenesis and, even though known to inhibit TGF-beta responses, enhance the effects of TGF-beta on these cells.  相似文献   

8.
Epithelial to mesenchymal transition (EMT) promotes cellular motility, invasiveness and metastasis during embryonic development and tumorigenesis. Transforming growth factor-β (TGF-β) signaling pathway is a key regulator of EMT. A lot of evidences suggest that this process is Smad3-dependent. Herein we showed that exposure of aspc-1 and panc-1 pancreatic cancer cells to TGF-β1 resulted in characteristic morphological alterations of EMT, and enhancement of cell motility and gemcitabine (Gem) resistance along with an up-regulation of EMT markers genes such as vimentin, N-cadherin, MMP2 and MMP9. Naringenin (Nar) down-regulated EMT markers expression in both mRNA and protein levels by inhibiting TGF-β1/Smad3 signal pathway in the pancreatic cancer cells. Consequently, Nar suppressed the cells migration and invasion and reversed their resistance to Gem.  相似文献   

9.
10.
11.
12.
Although hypoxia and transforming growth factor-beta (TGF-beta) inhibit differentiation of adipocytes from preadipocytes and bone marrow-derived cells in several species, the relationship between hypoxia and TGF-beta signaling in adipocytogenesis is unknown. In this study, we evaluated the mechanisms of inhibition of adipocyte differentiation by hypoxia and TGF-beta in human and murine marrow stromal cells (MSCs) and the role of TGF-beta/Smad signaling in the inhibition of adipocytogenesis by hypoxia. Both hypoxia-mimetic deferoxamine mesylate (DFO) and TGF-beta1 inhibited adipocyte differentiation (1.0% versus the control at 15 microm DFO and 1.4% versus the control at 1 ng/ml TGF-beta1) and adipocyte gene expression (peroxisome proliferator-activated receptor-gamma2 and lipoprotein lipase) in human MSCs after 21 days of treatment. Hypoxia (2% O(2)) and DFO (but not TGF-beta1) increased hypoxia-inducible factor-1alpha as shown by Western blotting. Macroarrays and Western and Northern blot analyses showed that hypoxia activated the TGF-beta/Smad signaling pathway and that both hypoxia and TGF-beta1 modulated adipocyte differentiation pathways such as the insulin-, peroxisome proliferator-activated receptor-gamma-, phosphatidylinositol 3-kinase-, and MAPK-associated signaling pathways. Studies with mouse marrow stromal cell lines derived from Smad3(+/+) or Smad3(-/-) mice revealed that the TGF-beta type I receptor (ALK-5) and its intracellular signaling molecule Smad3 were necessary for the inhibition of adipocyte differentiation by both TGF-beta and hypoxia-mimetic DFO. Thus, the TGF-beta/Smad signaling pathway is required for hypoxia-mediated inhibition of adipocyte differentiation in MSCs.  相似文献   

13.
14.
Transforming growth factors beta (TGF-betas) inhibit growth of epithelial cells and induce differentiation changes, such as epithelial-mesenchymal transition (EMT). On the other hand, bone morphogenetic proteins (BMPs) weakly affect epithelial cell growth and do not induce EMT. Smad4 transmits signals from both TGF-beta and BMP pathways. Stimulation of Smad4-deficient epithelial cells with TGF-beta 1 or BMP-7 in the absence or presence of exogenous Smad4, followed by cDNA microarray analysis, revealed 173 mostly Smad4-dependent, TGF-beta-, or BMP-responsive genes. Among 25 genes coregulated by both factors, inhibitors of differentiation Id2 and Id3 showed long-term repression by TGF-beta and sustained induction by BMP. The opposing regulation of Id genes is critical for proliferative and differentiation responses. Hence, ectopic Id2 or Id3 expression renders epithelial cells refractory to growth inhibition and EMT induced by TGF-beta, phenocopying the BMP response. Knockdown of endogenous Id2 or Id3 sensitizes epithelial cells to BMP, leading to robust growth inhibition and induction of transdifferentiation. Thus, Id genes sense Smad signals and create a permissive or refractory nuclear environment that defines decisions of cell fate and proliferation.  相似文献   

15.
The transforming growth factor beta (TGF-beta) is a vital regulator of placental development and functions. TGF-beta exerts several modulatory effects on trophoblast cells, such as inhibition of proliferation and invasiveness, and stimulation of differentiation by inducing multinucleated cell formation. In this study, we determine the expression patterns of TGF-beta signaling molecules in normal trophoblast, various hydatidiform mole types and choriocarcinoma. A total of 132 cases, including 51 normal placenta (20 first trimester, 11 second trimester, and 20 third trimester) and 81 gestational trophoblastic diseases (17 choriocarcinoma, and 64 hydatidiform moles: 39 complete, 6 partial, and 19 invasive) were immunohistochemically analyzed with anti-TGF beta1/2, TGF-beta receptor type I (TbetaRI), TbetaRII, Smad 2/3, and Smad 4 antibodies on paraffin blocks. In the case of normal placenta, maximal levels of all TGF-beta signaling molecules were observed in villous trophoblast in the first trimester, which decreased with gestational age. Expression of all the TGF-beta signaling proteins except Smad2/3, was significantly enhanced in various moles, relative to normal trophoblast. Moreover, TGF-beta signaling molecules were significantly downregulated in choriocarcinoma, compared to moles. In particular, TbetaRI and Smad2/3 levels were lower in choriocarcinoma than normal villous trophoblast (TbetaRI: p<0.025, Smad2/3: p<0.001). In conclusion, the TGF-beta signaling pathway plays an important role in the pathogenesis and progression of gestational trophoblastic disease, and may thus be employed as a potential therapeutic target and a diagnostic biomarker.  相似文献   

16.
17.
TGF-beta signaling: a tale of two responses   总被引:10,自引:0,他引:10  
  相似文献   

18.
19.
20.
Transforming growth factors beta (TGF-beta) are known negative regulators of lung development, and excessive TGF-beta production has been noted in pulmonary hypoplasia associated with lung fibrosis. Inhibitory Smad7 was recently identified to antagonize TGF-beta family signaling by interfering with the activation of TGF-beta signal-transducing Smad complexes. To investigate whether Smad7 can regulate TGF-beta-induced inhibition of lung morphogenesis, ectopic overexpression of Smad7 was introduced into embryonic mouse lungs in culture using a recombinant adenovirus containing Smad7 cDNA. Although exogenous TGF-beta efficiently reduced epithelial lung branching morphogenesis in control virus-infected lung culture, TGF-beta-induced branching inhibition was abolished after epithelial transfer of the Smad7 gene into lungs in culture. Smad7 also prevented TGF-beta-mediated down-regulation of surfactant protein C gene expression, a marker of bronchial epithelial differentiation, in cultured embryonic lungs. Moreover, we found that Smad7 transgene expression blocked Smad2 phosphorylation induced by exogenous TGF-beta ligand in lung culture, indicating that Smad7 exerts its inhibitory effect on both lung growth and epithelial cell differentiation through modulation of TGF-beta pathway-restricted Smad activity. However, the above anti-TGF-beta signal transduction effects were not observed in cultured embryonic lungs with Smad6 adenoviral gene transfer, suggesting that Smad7 and Smad6 differentially regulate TGF-beta signaling in developing lungs. Our data therefore provide direct evidence that Smad7, but not Smad6, prevents TGF-beta-mediated inhibition of both lung branching morphogenesis and cytodifferentiation, establishing the mechanistic basis for Smad7 as a novel target to ameliorate aberrant TGF-beta signaling during lung development, injury, and repair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号