首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There is a growing concern about excessive nitrogen (N) and water use in agricultural systems in North China due to the reduced resource use efficiency and increased groundwater pollution. A two-year experiment with two soil moisture by four N treatments was conducted to investigate the effects of N application rates and soil moisture on soil N dynamics, crop yield, N uptake and use efficiency in an intensive wheat–maize double cropping system (wheat–maize rotation) in the North China Plain. Under the experimental conditions, crop yield of both wheat and maize did␣not␣increase significantly at N rates above 200 kg N ha−1. Nitrogen application rates affected little on ammonium-N (NH4-N) content in the 0–100 cm soil profiles. Excess nitrate-N (NO3-N), ranging from 221 kg N ha−1 to 620 kg N ha−1, accumulated in the 0–100 cm soil profile at the end of second rotation in the treatments with N rates of 200 kg N ha−1 and 300 kg N ha−1. In general, maize crop has higher N use efficiency than wheat crop. Higher NO3-N leaching occurred in maize season than in wheat season due to more water leakage caused by the concentrated summer rainfall. The results of this study indicate that the optimum N rate may be much lower than that used in many areas in the North China Plain given the high level of N already in the soil, and there is great potential for reducing N inputs to increase N use efficiency and to mitigate N leaching into the groundwater. Avoiding excess water leakage through controlled irrigation and matching N application to crop N demand is the key to reduce NO3-N leaching and maintain crop yield. Such management requires knowledge of crop water and N demand and soil N dynamics as they change with variable climate temporally and spatially. Simulation modeling can capture those interactions and is considered as a powerful tool to assist in␣the␣future optimization of N and irrigation managements. Section Editor: L. Wade  相似文献   

2.
秸秆还田和施氮对农田土壤呼吸的影响   总被引:43,自引:2,他引:43  
2003年10月至2004年9月期间在华北平原冬小麦-玉米轮作的高产粮区开展了土壤温度、秸秆还田和施氮对农田土壤呼吸影响的研究。土壤类型是砂姜黑土。试验共设6个处理,分别是N 1、N 1 W、N 2 W、N 3 W N 1 W O和N 2 W M,其中N 1、N 2和N 3表示3个施氮水平(纯N计,下同),分别是200 kg hm-2、400 kg hm-2和600 kg hm-2,W表示小麦秸秆还田,M表示玉米秸秆的1/3还田,O表示施用有机肥(每年施用鸡粪30 m3hm-2)。土壤呼吸采用碱液吸收法测定,每个处理6次重复,结果表明:(1)土壤呼吸季节动态明显,夏季高冬季低,土壤呼吸排放速率与5cm深度地温线性拟合最好(R2=0.63~0.74,p<0.001),而与地表温度线性拟合最差。各处理土壤呼吸的年通量在5650~7061 kg.hm-2(纯C计,下同),随着秸秆还田量的增加,土壤呼吸通量显著增加(p=0.05),随着施氮量的增加土壤呼吸通量也增加,但只有施氮量相差400 kg hm-2时,土壤呼吸通量差异显著(p=0.05),施用有机肥的处理土壤呼吸通量最高,有机肥施用后1~2个月,有机肥快速分解,表现为高的土壤呼吸通量。由土壤呼吸与5cm深度地温指数拟合方程求得的Q10值在1.86~2.26之间。  相似文献   

3.
应用DSSAT模型中的CERES-Maize作物模型和Century土壤模型,分析了作物管理参数、施肥量、土壤初始氮含量和作物桔杆还田对吉林省黑土地区玉米生长、氮循环以及有机碳氮生态平衡的影响.结果表明:在玉米目标产量为12000~15000kg.hm-2条件下,最佳施氮肥量为200~240kgN.hm-2.在该氮肥用量下,玉米地上氮吸收量为250~290kgN.hm-2,其中,120~140kgN.hm-2来自土壤,130~150kgN.hm-2来自肥料;提高氮肥用量(250~420kgN.hm-2)将导致土壤残留氮明显增加(63~183kgN.hm-2);延迟追肥时间同样导致土壤残留氮增加;当玉米秸杆还田量超过6000kg.hm-2时,模拟的土壤活性有机碳、氮可以维持当年的供需平衡.建议在吉林省中部地区黑土玉米带,化肥施氮量控制在200~240kgN.hm-2,适时追肥,秸杆还田量在6000kg.hm-2以上,以确保高产和维持土壤养分生态平衡.  相似文献   

4.
《Biological Wastes》1989,27(1):15-27
The effects of chopped (6–9 cm) and unchopped (long) crop residues of wheat (Triticum aestivum L.) and rice (Oryza sativa L.) in corn (Zea mays L.)— wheat and rice-wheat rotations on grain yield and soil properties were investigated in 27 field experiments during 9 years. Experiments on chopped wheat residue involved the treatments of two main plots with residue incorporation at 0 and 4 t/ha before sowing of corn and wheat and having subplots with 0, 40, 80 and 120 kg N/ha. The results obtained for 4 years showed that the incorporation of wheat residue not only improved the soil physicochemical properties but also increased the grain and stover yields of corn significantly. The yield obtained with 80 kg N in conjunction with 4 t/ha chopped wheat residue was identical to that with 120 kg N/ha alone. But the wheat yield was depressed significantly upon the incorporation of wheat residue before the sowing of wheat in all the years of investigation.The experiments on the management of unchopped wheat residue in corn-wheat rotation and of unchopped wheat (6 t/ha) and rice (12 t/ha) residues in rice-wheat rotation, involved three main treatments: physical removal, in-situ incorporation and in-situ burning of residues. Main treatments were tested at 60, 120 and 180 kg N/ha level over 5 years. Irrespective of N application, the residue management treatments had non-significant effects on the succeeding crop yield in all the years. Burning of residue improved the yield by about 0·2 t/ha, whereas residue incorporation did not affect the yield either of corn or rice. On the other hand, the wheat yield was depressed by 0·1–0·2 t/ha in both the rotations.The effect of applied N irrespective of residue management was significant in some years up to the level of 120 kg and in others, 180 kg N/ha.  相似文献   

5.
Conservation tillage in its version of permanent bed planting under zero-tillage with crop residue retention has been proposed as an alternative wheat production system for northwest Mexico. However, little is known about the dynamics of C and N in soils under wheat/maize on permanent beds (PB) where straw was burned, removed, partly removed or retained, as opposed to conventionally tilled beds (CTB) where straw was incorporated. We investigated the dynamics of soil C and N and normalized difference vegetative index (NDVI) crop values in zero-tilled PB and CTB after 26 successive maize and wheat crops. Organic C and total N were respectively, 1.15 and 1.17 times greater in PB with straw partly removed and with straw retained on the surface, than in CTB with straw incorporated. Organic C and total N were 1.10 times greater in soils with 300 kg N ha−1 added than in unfertilized soil. Cumulative production of CO2 was lower under CTB with straw incorporated than under PB treatments, and CO2 production increased with increments in inorganic fertilizer. The N-mineralization rate was 1.18 times greater than in unamended soils when 150 kg inorganic N ha−1 was applied, and 1.48 times greater when 300 kg inorganic N ha−1 was added. The N-mineralization rate was significantly (1.66 times) greater in PB where the straw was burned or retained on the surface than in CTB where the straw was incorporated, but significantly (1.25 times) lower than in PB with straw partly removed. The NDVI values reached a maximum 56 days after planting and decreased thereafter. The NDVI for unfertilized soil were similar for CTB with straw incorporated, PB with straw partly removed, and PB with straw retained on the surface, but significantly lower for PB with straw burned and PB with straw removed. In soils to which 150 or 300 kg N ha−1 was added, NDVI was significantly lower for PB with straw burned than for other treatments. Among other things, this suggests the utility of rotating maize or wheat with crops whose residues have lower C–N ratios, thus avoiding immobilization of large amounts of N for extended periods. PB with residue burning, however, is an unsustainable practice leading to low crop performance and soil and environmental degradation.  相似文献   

6.
Soil microbiological and chemical aspects were evaluated to determine the effects of conservation tillage and crop rotation on soil fertility over a 16-year period. A field trial was established to compare two cropping systems (continuous soybean and maize/soybean, soybean/maize rotation). In addition, maize (Zea mays L.) and soybean (Glycine max L., Merr) were grown in two different tillage systems: no tillage and reduced tillage. Soil populations of Trichoderma spp., Gliocladium spp. and total fungi were more abundant when maize or soybean were under conservation tillage and in the maize/soybean and soybean/maize rotation, than in continuous soybean. Furthermore, higher levels of microbial respiration and fluorescein diacetate hydrolysis (FDA), were recorded under no tillage systems. However, soil counts of Actinomycetes and Pythium spp., and Pythium diversity together with soil microbial biomass were not affected by the field treatments. To establish a correlation with soil biological factors, soil chemical parameters, such as pH, organic matter content, total N, electrical conductivity, N–NO3 and P were also quantified, most of the correlations being significantly positive. Under no tillage there was a clear increase of the amount of crop residues and the C and N soil content due to the presence of residues. Also the distribution of crop residues in surface soil due to zero tillage and the quality of these residues, depending on the crop rotation employed, improved on soil biological and chemical characteristics. Crop yield was also enhanced by zero tillage through the management of residues. Although yield values were not directly associated with the development of microorganisms, both yield and microorganisms were influenced by crop management. These results suggest that measuring soil properties over a long period helps to define effective management strategies in order to preserve soil conditions.  相似文献   

7.
Densely populated, intensively cropped highland areas in the subtropics are prone to erosion and declining soil fertility, making agriculture unsustainable. Permanent raised bed planting systems, as a form of conservation agriculture, have been developed to reduce production costs while conserving resources and sustaining the environment. In 2004, a new experiment with long term focus was started under rain fed conditions at El Batán (Mexico; 2,240 m a.s.l.; 19.31N, 98.50W; Cumulic Phaeozem), which aims at understanding the effects of (1) tillage (conventionally tilled or permanent raised beds), (2) residue management (retention or removal) and (3) N fertilizer application (0 or 120 kg N/ha) on N availability in a yearly maize/wheat rotation system. Incubation experiments were conducted to establish how the different treatments affect C and N dynamics in the soil. Tillage increases the availability of soil organic matter by soil aggregate disruption, enhancing C and N mineralization. Conventionally tilled raised beds with incorporation of crop residues increased the CO2 production rate. In both tillage systems, retention of maize or wheat residue without N fertilizer application led to N immobilization. In permanent raised beds, however, the immobilization due to residue retention could be compensated by application of N fertilizer, while conventionally tilled raised beds appeared to use the applied N fertilizer less efficiently.  相似文献   

8.
Source of the soybean N credit in maize production   总被引:2,自引:0,他引:2  
Gentry  L.E.  Below  F.E.  David  M.B.  Bergerou  J.A. 《Plant and Soil》2001,236(2):175-184
Nitrogen response trials throughout the United States Corn Belt show that economic optimum rates of N fertilization are usually less for maize (Zea mays L.) following soybean (Glycine max L.) than for maize following maize; however, the cause of this rotation effect is not fully understood. The objective of this study was to investigate the source of the apparent N contribution from soybean to maize (soybean N credit) by comparing soil N mineralization rates in field plots of unfertilized maize that had either nodulated soybean, non-nodulated soybean, or maize as the previous crop. Crop yields, plant N accumulation, soil inorganic N, and net soil mineralization were measured. Both grain yield (6.3 vs. 2.8 Mg ha–1) and above-ground N accumulation (97 vs. 71 kg ha–1) were greatly increased when maize followed nodulated soybean compared with maize following maize. A partial benefit to yield and N accumulation was also observed for maize following non-nodulated soybean. Cumulative net soil N mineralization following nodulated soybean, non-nodulated soybean, and maize was 112, 92 and 79 kg N ha–1, respectively. Net mineralization of soil N appeared to be influenced by both quality (C:N ratio) and quantity of residue from the previous crop. In addition to an increase in plant available N from mineralization, the amount of soil inorganic N (especially in soil 5 cm from the row) was greater following nodulated soybean than non-nodulated soybean or maize. Based on these data, the soybean N credit appears to result from a combination of a decrease in net soil mineralization in continuous maize production and an increase in residual soil N from symbiotic fixation.  相似文献   

9.
A long-term fertilized paddy field under rice/rape rotation in the Taihu Lake Region was selected to investigate the dynamics of soil weed seed diversity. Four fertilizer treatments were performed, including non-fertilizer (NF), chemical fertilizer only (CF), chemical fertilizer combined with pig manure (CMF) and chemical fertilizer plus crop stalk (CSF). We recorded the seed numbers and crop yields, estimated the weed seed bank density and identified the kinds of weed seeds in the topsoil (0–15 cm) in the study area using a stereomicroscope. Based on the records, we analyzed the effect of long-term fertilization on soil weed seed bank diversity and the relationship between weed seed diversity and crop yields. Comparing the four treatments, it was found that in the cultivating seasons of both rice and rape, the density of soil weed seed bank was the lowest with the treatment of chemical fertilizer plus crop stalk. Whereas, the total number of species and the weed seed bank diversity was the highest. Furthermore, the crop yields were at maximum and kept constant with this treatment. There was a definite correlation between fertilizer treatment and soil weed seed bank diversity and crop yields. It was concluded that balancing the fertilizer management was helpful in maintaining soil weed seed bank diversity, increasing crop yields and alleviating crop yield fluctuation. Therefore, among the four fertilizer treatments, chemical fertilizer plus rice crop stalk treatment was the best one to stimulate the productivity of agricultural ecosystems and simultaneously protect biodiversity. __________ Translated from Biodiversity Science, 2006, 14(6): 461–469 [译自:生物多样性]  相似文献   

10.
长期施肥对土壤微生物量及土壤酶活性的影响   总被引:80,自引:0,他引:80       下载免费PDF全文
 该文以北京国家褐潮土土壤肥力与肥料效益长期监测基地的长期肥料定位试验为平台,研究了长期不同施肥制度对土壤的生物学特性及其土壤酶的影响。主要研究结果:长期撂荒土壤(15年)的有机质和全氮(TN)的含量、微生物量碳(SMB-C)和氮(SMB-N)、土壤的蔗糖酶、磷酸酶和脲酶活性以及SMB-C/SOC(土壤有机碳)和SMB-N/TN比值都高于种植作物的农田土壤;而其代谢商和容重值低于农田土壤。长期施肥的农田(NPK、NPKM 、NPKS和NPKF),其土壤养分含量、微生物量碳和氮以及土壤蔗糖酶、磷酸酶和脲酶活性均高于不施肥的农田(CK);而小麦(Triticum aestivum)-玉米(Zea mays)→小麦-大豆(Glycine max)复种轮作(NPKF)的农田又高于长期复种连作(NPK)的农田;在施肥处理中(NPK、NPKM、NPKS和NPKF),长期化肥与有机肥配合施用的处理(NPKM )的土壤上述指标高于其它施肥处理(NPK、NPKS和NPKF),但其土壤的代谢商、pH值和容重值较低。  相似文献   

11.
Permanent raised bed planting with crop residue retention is a form of conservation agriculture that has been proposed as an alternative to conventional tillage for wheat production systems in the Central Highlands of Mexico. A field experiment comparing permanent and tilled raised beds with different residue management under rainfed conditions was started at El Batán (State of Mexico, Mexico) in 1999. The percentage of small and large macroaggregates and mean weight diameter (MWD) was significantly larger in permanent raised beds compared to conventionally tilled raised beds both with full crop residue retention (average for maize and wheat), while the percentages free microaggregates was lower. The percentages of small and large macroaggregates and mean weight diameter (MWD) was significantly larger in permanent raised beds with residue retention compared to permanent raised beds with removal of the residue (average for maize and wheat), while the percentages free microaggregates and silt and clay fraction was lower. Cultivation of maize significantly reduced the large macroaggregates, while wheat reduced the silt and clay fraction (average over all systems). Cultivation of maize reduced the C and N content of the free microaggregates compared to soil cultivated with wheat, while removal of plant residue reduced the C and N content of the silt and clay fraction compared to soil where residue was retained. The C and N content of the coarse particulate organic matter (cPOM) and microaggregates within the macroaggregates was significantly larger in permanent raised beds compared to conventionally tilled raised beds both with full residue retention, while C and N content of the cPOM was significantly lower when residue was removed or partially removed compared to the soil where the residue was retained. The δ 13C ‰ signatures of the macroaggregates, microaggregates, the silt and clay fraction, cPOM and microaggregates within the macroaggregates were not affected by tillage or residue management when wheat was the last crop, but removal of residue reduced the δ 13C ‰ signatures of the macro-, microaggregates and microaggregates within the macroaggregates significantly compared to soil where the residue was retained. Retaining only 30–50% of the organic residue still improved the soil structure considerably compared to plots where it was removed completely. Permanent raised beds without residue retention, however, is a practice leading to soil degradation. Kelly Lichter and Bram Govaerts contributed equally to this publication.  相似文献   

12.
The impacts of crop rotation and inorganic nitrogen fertilization on soil microbial biomass C (SMBC) and N (SMBN) and water-soluble organic C (WSOC) were studied in a Guinea savanna Alfisol of Nigeria. In 2001, fields of grain legumes (soybean and cowpea), herbaceous legume (Centrosema pascuorum) and a natural fallow were established. In 2002, maize was planted with N fertilizer rates of 0, 20, 40 and 60 kg N ha−1 in a split-plot arrangement fitted to a randomized complete block design with legumes and fallow as main plots and N fertilizer levels as subplots. Surface soil samples were taken at 4 weeks after planting and tasselling stage of the maize. Inorganic N fertilization had no significant (P>0.05) effect on SMBC, SMBN and WSOC, while crop rotation significantly (P<0.0001) affected both SMBC and WSOC. These results demonstrate that crop rotation do not necessarily influence the gross soil microbial biomass, but may affect physiologically distinct subcomponent of the microbial biomass. The soils under the various rotations had a predominance of fungi community as indicated by their wide biomass C/N ratio ranging from 9.2 to 20.9 suggesting fungi to be mainly responsible for decomposition in these soils. Soil microbial biomass and WSOC showed significant (P<0.05) correlation with both soil pH and organic carbon but no relationship with total N. Based on these results, it appears that the soil pH and organic carbon determined the flux of the soil microbial biomass and amount of WSOC in these soils.  相似文献   

13.
Optimising the use efficiency of nitrogen (N) derived from different quality organic resources and mineral fertilizers on sandy soils with <100 g clay kg−1 is a major challenge for smallholder farmers in Southern Africa. The dominant sandy soils have a poor capacity to store and supply crop nutrients due to low organic matter contents and inherent infertility. A study was conducted in Zimbabwe to determine the differential N supply effects of different quality and quantities of organic nutrient sources on maize productivity. Crotalaria juncea L., Calliandra calothyrsus Meissn., cattle manure, maize (Zea mays L.) stover and Pinus patula Schiede & Schltdl. & Cham. sawdust which represented high to low quality materials respectively, were each incorporated into soil at 1.2 and 4 t C ha−1 at Makoholi Experiment Station (rainfall: 450–650 mm yr−1) and tested against a sole mineral N fertilizer and control treatments. In a separate experiment conducted in farmers’ fields under different rainfall zones of Zimuto (450–650 mm yr−1), Chinyika (650–750 mm yr−1) and Chikwaka (>750 mm yr−1), commonly available organic materials, including manure and composted miombo leaf litter, applied in varying amounts by farmers were evaluated. Nitrogen release patterns were consistent with differences in resource quality. At 3 weeks after incorporation into soil at the onset of the rains, C. juncea and C. calothyrsus had released as high as 24% and 13% of added N respectively, compared with no more than 5–6% for the rest of the amended treatments. Most of the N released was lost through leaching as evidenced by progressive movement of NO3-N bulges beyond maize rooting depth following major rainfall events. Maize yields were significantly related to the size of profile mineral N fluxes, with the best linear relationship (R2 = 0.86) obtained with N available in the top 30 cm of soil at maize flowering. High grain yields of ~3 t ha−1 were only achieved with C. juncea applied at 4 t C ha−1, which also had highest NO3-N leaching losses. Conversely, the same application rate increased N immobilization by 30% and 42% under maize stover and sawdust, respectively, relative to the control. Results from farmers’ fields showed that organic resources traditionally used on smallholder farms are invariably of low quality relative to C. juncea and C. calothyrsus. However, they exhibited shorter N immobilization effects than was shown for maize stover and sawdust at Makoholi, suggesting that pre-application treatments, such as composting, employed by farmers enhance seasonal N benefits from these materials. Maize yields increased linearly with total N added in these resources in combination with N fertilizer, justifying the high organic matter loading strategy (e.g. >20 t ha−1 for manure, fresh litter and composted litter) used by farmers who often achieve high crop yields on such coarse sandy soils in Zimbabwe.  相似文献   

14.
It is generally thought that grain legume residues make a substantial net N contribution to soil fertility in crop rotation systems. However, most studies focus on effects of residues on crops immediately sown after the legume crop while in fact in many tropical countries with a prolonged dry season there is a large gap before planting the next crop with potential for nutrient losses. Thus the objectives of this study were* to improve the efficiency of groundnut (Arachis hypogaea L.) stover-N (100 kg N ha –1) recycling by evaluating the effect of dry season stover management, i.e. surface application and immediate incorporation after the legume crop or storage of residues until next cropping in the rainy season. N dynamics (litterbags, mineral N, microbial biomass N, N 2O emissions) were monitored and 15N labelled residues were applied to assess the fate of residue N in the plant–soil (0–100 cm) system during two subsequent maize crops. Recycling groundnut stover improved yield of the subsequent maize (Zea mays L.) crop compared to treatment without stover. A higher N recycling efficiency was observed when residues were incorporated (i.e. 55% total 15N recovery after second maize crop) than when surface applied (43% recovery) at the beginning of the dry season. This was despite the faster nitrogen release of incorporated residues, which led to more mineral N movement to lower soil layers. It appears that a proportion of groundnut stover N released during the dry season was effectively captured by the natural weed population (54–70 kg N ha –1) and subsequently recycled particularly in the incorporation treatment. Despite the presence of weeds major leaching losses occurred during the onset of the rainy season while N 2O emissions were relatively small. There was a good correlation between soil microbial biomass N and first crop maize yield. Incorporation of groundnut residues led to small increases in economic yield, i.e., 3120 versus 3528 kg ha –1 over two cropping cycles in the surface versus incorporation treatments respectively, with corresponding residue 15N uptakes of 4 and 8%, while 15N recovery in water stable aggregates (9–15%) was not significantly different. In contrast, when stover was removed and applied before the first crop, yield benefits were highest with cumulative maize yields of 4350 kg ha –1 and residue utilization of 12%. However, N recycling efficiency was not higher than in the early incorporation treatment due to an asynchrony of N release and maize N demand during the first crop.  相似文献   

15.
蚯蚓对秸秆还田土壤细菌生理菌群数量和酶活性的影响   总被引:7,自引:0,他引:7  
在连续7a稻麦轮作系统中,通过测定作物收获后表层土壤(0-20cm)中4种细菌生理菌群数量和4种酶活性的变化,研究接种蚯蚓(Metaphire guillelmi)对秸秆(表施或混施)还田土壤的细菌生理菌群数量和酶活性的影响。试验设5个处理:对照、秸秆表施、秸秆混施、秸秆表施且接种蚯蚓、秸秆混施且接种蚯蚓。结果表明,单独秸秆还田促进了土壤氨化细菌、固氮菌、纤维素分解菌和无机磷分解菌数量增加,且土壤酶活性显著地增强;在秸秆表施方式下,接种蚯蚓使得上述4种细菌生理菌群微生物的数量增加;秸秆混施方式下,接种蚯蚓增加氨化细菌和无机磷分解菌数量,且土壤蛋白酶和蔗糖酶活性显著地增强(P0.05)。另外,蚓粪中4种细菌生理菌群微生物数量和水解酶活性都远远高于其周围土壤。在秸秆还田的作物轮作系统中,蚯蚓活动进一步增加土壤微生物数量和酶活性,对改善农田土壤肥力有着重要意义。  相似文献   

16.
A study was made over 3 years to find out an optimum rate of Zn application for the maize–mungbean–rice cropping system in a calcareous soil of Bangladesh. Zinc application was made at 0, 2 and 4 kg ha−1 for maize (cv. Pacific 984, Thai hybrid) and at 0, 1 and 2 kg ha−1 for rice (cv. BRRI dhan33), with no Zn application for mungbean (cv. BARI mung5). Effect of Zn was evaluated in terms of yield and mineral nutrients contents (N, P, S and Zn). All the three crops responded significantly to Zn application. The optimum rate of Zn for the maize–mungbean–rice cropping system was found to be 4–0–2 kg ha−1 for the first year and 2–0–2 kg ha−1 for subsequent years particularly when mungbean residue was removed, and such rates for mungbean residue incorporation being 4–0–1 and 2–0–1 kg ha−1, respectively. For all crops, the Zn and N concentrations of grain were significantly increased with Zn application. For the case of grain-S, the concentration was significantly increased for maize and mungbean, but it remained unchanged for rice. The grain-P concentration on the other hand tended to decrease with Zn application. For maize, the grain-Zn concentration increased to 27.0 μg g−1 due to 2 kg Zn ha−1 treatment from 16.5 μg g−1 for Zn control and at higher Zn rate (4 kg Zn ha−1) the increment was very minimum. Another field experiment was performed over 3 years on the same soil to screen out maize varieties for Zn efficiency. Of the eight varieties tested, the BARI maize 6 and BARI hybrid maize 3 were found Zn in-responsive (Zn efficient) and the others Zn responsive (Zn-inefficient).  相似文献   

17.

Background and aims

Conservation agriculture, the combination of minimal soil movement (zero or reduced tillage), crop residue retention and crop rotation, might have the potential to increase soil organic C content and reduce emissions of CO2.

Methods

Three management factors were analyzed: (1) tillage (zero tillage (ZT) or conventional tillage (CT)), (2) crop rotation (wheat monoculture (W), maize monoculture (M) and maize-wheat rotation (R)), and (3) residue management (with (+r), or without (?r) crop residues). Samples were taken from the 0–5 and 5–10?cm soil layers and separated in micro-aggregates (< 0.25?mm), small macro-aggregates (0.25 to 1?mm) and large macro-aggregates (1 to 8?mm). The carbon content of each aggregate fraction was determined.

Results

Zero tillage combined with crop rotation and crop residues retention resulted in a higher proportion of macro-aggregates. In the 0–5?cm layer, plots with a crop rotation and monoculture of maize and wheat in ZT+r had the greatest proportion of large stable macro-aggregates (40%) and highest mean weighted diameter (MWD) (1.7?mm). The plots with CT had the largest proportion of micro-aggregates (27%). In the 5–10?cm layer, plots with residue retention in both CT and ZT (maize 1?mm and wheat 1.5?mm) or with monoculture of wheat in plots under ZT without residues (1.4?mm) had the greatest MWD. The 0–10?cm soil layer had a greater proportion of small macroaggregates compared to large macro-aggregates and micro-aggregates. In the 0–10?cm layer of soil with residues retention and maize or wheat, the greatest C content was found in the small and large macro-aggregates. The small macro-aggregates contributed most C to the organic C of the sample. For soil cultivated with maize, the CT treatments had significantly higher CO2 emissions than the ZT treatments. For soil cultivated with wheat, CTR-r had significantly higher CO2 emissions than all other treatments.

Conclusion

Reduction in soil disturbance combined with residue retention increased the C retained in the small and large macro-aggregates of the top soil due to greater aggregate stability and reduced the emissions of CO2 compared with conventional tillage without residues retention and maize monoculture (a cultivation system normally used in the central highlands of Mexico).  相似文献   

18.
Soil organic matter (SOM) has been proposed as an index of N supply in paddy soils although field validations are few. We evaluated the relationship between the indigenous N supply (N i ) of the soil-floodwater system and soil organic carbon (SOC) or total N (N t ) in surface soil of long-term fertility experiments (LTFEs) at 11 sites, in 42 farmer's fiels with similar soil type, and in the same field in ten consecutive rice (Oryza sativa L.) crops. The N i was estimated by crop N uptake from plots without applied N (N o plots) under otherwise favorable growth conditions. There was a tight linear correlation between yields and N uptake in N o plots and tremendous variation in both parameters among LTFE sites, farmer's fields, and in the same field over time. Correlation between N i and SOC or N t explained little of this variation. Factors likely to contribute to the poor correlation were: (1) inputs of N from sources other than N mineralization of SOM in surface soil, (2) degree of congruence between soil N supply and crop demand, which is sensitive to soil drying, length of fallow, crop rotation, and residue management, and (3) differences in SOM quality related to intensive cropping in submerged soil. Better understanding of the processes governing the N i of tropical lowland rice systems would contribute to the development of crop management practices that optimize utilization of indigenous N resources.  相似文献   

19.
Aims Nitrogen (N) fertilization and lime addition may affect soil microbial and nematode communities and ecosystem functions through changing environmental conditions, such as soil pH and soil organic carbon. The objectives of this experiment were to examine the impact of N input and liming on soil microbial and nematode communities and to identify the key environmental determinant of community composition in a century-old fertilization and crop rotation experiment.Methods The field experiment consisting of a 3-year crop rotation regime was established in 1911 in southeastern USA. Four treatments, (i) no-input control, (ii) NPK with winter legume, (iii) PK with legume and lime and (iv) NPK with legume and lime, were included in this study. Soil samples collected at the 0–5cm depth were used to determine the bacterial growth rate by the 3 H-thymidine incorporation technique. Incorporation of 13 C into neutral lipids, glycolipids and phospholipid fatty acids (PLFAs) was measured after incubation of soil with 13 C-labeled acetate for 24h. Free-living nematodes in fresh soil were extracted using a density sucrose centrifugal flotation method and identified to trophic group level.Important findings Liming resulted in a 10-fold increase in bacterial growth rates compared with the no-input control, whereas N fertilization had no significant effect. Multivariate analysis of PLFA profiles showed that soil microbial community composition was different among the four treatments; the difference was primarily driven by soil pH. PLFAs indicative of Gram-negative bacteria covaried with soil pH, but not those of fungi and actinobacteria. Liming enhanced 13 C incorporation into neutral lipids, glycolipids and phospholipids by 2–15 times. In addition, 13 C incorporation into 16:0, 16:1ω9, 18:1ω9, 18:1ω7 and 18:2ω6 were greater than other PLFAs, suggesting that Gram-negative bacteria and fungi were more active and sensitive to simple C input. Bacterivorous nematodes were the dominant trophic group in the soil, but no significant differences in nematode communities were found among the treatments. Our results suggest that soil pH had a greater impact than N fertilization on soil microbial community composition and activity in a crop rotation system including legumes.  相似文献   

20.
A field experiment was conducted for 5 years to examine the effects of non-flooded mulching cultivation on crop yield, internal nutrient efficiency and soil properties in rice–wheat (R–W) rotations of the Chengdu Plain, southwest China. Compared with traditional flooding (TF), non-flooded plastic film mulching (PM) resulted in 12 and 11% higher average rice (Oryza sativa L.) yield and system productivity (combined rice and wheat yields), and the trends in rice and wheat (Triticum aestivum L.) yields under PM were stable over time. However, non-flooded wheat straw mulching (SM) decreased average rice yield by 11% compared with TF, although no significant difference in system productivity was found between SM and TF. Uptakes of N and K by rice under PM were higher than those under TF and SM, but internal nutrient efficiency was significantly lower (N) or similar (K) under PM compared to SM and TF. This implies that more N and K accumulated in rice straw under PM. After 5-year rice–wheat rotation, apparent P balances (112–160 kg ha−1) were positive under all three cultivation systems. However, the K balances were negative under PM (−419 kg ha−1) and TF (−90 kg ha−1) compared with SM (45 kg ha−1). This suggests that higher K inputs from fertilizer, straw or manure may be necessary, especially under PM. After five rice seasons and four wheat seasons, non-flooded mulching cultivation led to similar (PM) or higher (SM) soil organic carbon (SOC), total N (TN) and alkali hydrolyzable N (AH-N) in the top 0–5 and 5–12 cm layers compared with TF. SOC, TN, AH-N and Olsen-P (OP) in the sub-surface layer (12–24 cm) were significantly higher under PM or SM than under TF, indicating that rice under non-flooded mulching conditions may fail to make use of nutrients from the subsoil. Thus, the risk of decline in soil fertility under non-flooded mulching cultivation could be very low if input levels match crop requirements. Our data indicate that PM and SM may be alternative options for farmers using R–W rotations for enhancement or maintenance of system productivity and soil fertility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号