首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Endothelial cell dysfunction (ECD) is emerging as the common denominator for diverse and highly prevalent cardiovascular diseases. Recently, an increased number of procoagulant circulating endothelial microparticles (EMPs) has been identified in patients with acute myocardial ischemia, preeclampsia, and diabetes, which suggests that these particles represent a surrogate marker of ECD. Our previous studies showed procoagulant potential of endothelial microparticles and mobilization of microparticles by PAI-1. The aim of this study was to test the effects of isolated EMPs on the vascular endothelium. EMPs impaired ACh-induced vasorelaxation and nitric oxide production by aortic rings obtained from Sprague-Dawley rats in a concentration-dependent manner. This effect was accompanied by increased superoxide production by aortic rings and cultured endothelial cells that were coincubated with EMPs and was inhibited by a SOD mimetic and blunted by an endothelial nitric oxide synthase inhibitor. Superoxide was also produced by isolated EMP. In addition, p22(phox) subunit of NADPH-oxidase was detected in EMP. Our data strongly suggest that circulating EMPs directly affect the endothelium and thus not only act as a marker for ECD but also aggravate preexisting ECD.  相似文献   

2.
The objective of this study was to determine the effects and mechanisms of serum amyloid A (SAA) on coronary endothelial function. Porcine coronary arteries and human coronary arterial endothelial cells (HCAECs) were treated with SAA (0, 1, 10, or 25 microg/ml). Vasomotor reactivity was studied using a myograph tension system. SAA significantly reduced endothelium-dependent vasorelaxation of porcine coronary arteries in response to bradykinin in a concentration-dependent manner. SAA significantly decreased endothelial nitric oxide (NO) synthase (eNOS) mRNA and protein levels as well as NO bioavailability, whereas it increased ROS in both artery rings and HCAECs. In addition, the activities of internal antioxidant enzymes catalase and SOD were decreased in SAA-treated HCAECs. Bio-plex immunoassay analysis showed the activation of JNK, ERK2, and IkappaB-alpha after SAA treatment. Consequently, the antioxidants seleno-l-methionine and Mn(III) tetrakis-(4-benzoic acid)porphyrin and specific inhibitors for JNK and ERK1/2 effectively blocked the SAA-induced eNOS mRNA decrease and SAA-induced decrease in endothelium-dependent vasorelaxation in porcine coronary arteries. Thus, SAA at clinically relevant concentrations causes endothelial dysfunction in both porcine coronary arteries and HCAECs through molecular mechanisms involving eNOS downregulation, oxidative stress, and activation of JNK and ERK1/2 as well as NF-kappaB. These findings suggest that SAA may contribute to the progress of coronary artery disease.  相似文献   

3.
4.
The endogenous cannabinoid anandamide (arachidonylethanolamide) produces vasorelaxation in different vascular beds. In the present study, we found that anandamide and a metabolically stable analog, methanandamide, produced dose-dependent (10 nM-10 microM) vasorelaxation of approximately 80% in a rabbit aortic ring preparation in an endothelium-dependent manner. Non-endothelium-dependent vasorelaxation was observed to be a maximum of 20-22% at >10 microM methanandamide. The efficacious CB(1) receptor analogs desacetyllevonantradol (10 microM) and WIN55212-2 (10 microM) failed to produce vasorelaxation; however, the endothelium-dependent vasorelaxation evoked by methanandamide was partially (75%) blocked by the CB(1) receptor antagonist SR141716A. The VR(1) vanilloid receptor antagonist capsazepine or the calcitonin gene-related peptide (CGRP) antagonist CGRP-(8-37) partially attenuated (25%) the vasorelaxation in endothelium-intact preparations and greatly reduced the response in endothelium-denuded preparations. Pretreatment of aortic rings with N(G)-nitro-L-arginine methyl ester completely blocked the methanandamide-, capsaicin-, and CGRP-induced vasorelaxation. Pretreatment of aortic rings with pertussis toxin attenuated the methanandamide-induced vasorelaxation in endothelium-intact aortic rings, indicating the involvement of G(i/o) proteins in the vasorelaxation; however, pertussis toxin treatment failed to block the endothelium-independent response. Thus, in the rabbit aorta, methanandamide-induced vasorelaxation exhibits two components: 1) in endothelium-intact rings, an SR141716A-sensitive, non-CB(1) receptor component that requires pertussis toxin-sensitive G proteins and nitric oxide (NO) production; and 2) in endothelium-denuded rings, a component that is mediated by VR(1) vanilloid receptors and possibly by the subsequent release of CGRP that requires NO production but is independent of pertussis toxin-sensitive G proteins.  相似文献   

5.
The present study tested the hypothesis that ceramide, a sphingomylinase metabolite, serves as an second messenger for tumor necrosis factor-alpha (TNF-alpha) to stimulate superoxide production, thereby decreasing endothelium-dependent vasorelaxation in coronary arteries. In isolated bovine small coronary arteries, TNF-alpha (1 ng/ml) markedly attenuated vasodilator responses to bradykinin and A-23187. In the presence of N(G)-nitro-L-arginine methyl ester, TNF-alpha produced no further inhibition on the vasorelaxation induced by these vasodilators. With the use of 4,5-diaminofluorescein diacetate fluorescence imaging analysis, bradykinin was found to increase nitric oxide (NO) concentrations in the endothelium of isolated bovine small coronary arteries, which was inhibited by TNF-alpha. Pretreatment of the arteries with desipramine (10 microM), an inhibitor of acidic sphingomyelinase, tiron (1 mM), a superoxide scavenger, and polyethylene glycol-superoxide dismutase (100 U/ml) largely restored the inhibitory effect of TNF-alpha on bradykinin- and A-23187-induced vasorelaxation. In addition, TNF-alpha activated acidic sphingomyelinase and increased ceramide levels in coronary endothelial cells. We conclude that TNF-alpha inhibits NO-mediated endothelium-dependent vasorelaxation in small coronary arteries via sphingomyelinase activation and consequent superoxide production in endothelial cells.  相似文献   

6.
Our objective was to determine whether hydroxylamine is a possible intermediate in the oxidative conversion of L-arginine to nitric oxide. Vasorelaxation by hydroxylamine is known to be mediated by nitric oxide. The vasorelaxant properties of hydroxylamine were examined using rat aortic rings and an isolated rat lung perfusion model. Hydroxylamine and acetylcholine were equally effective in relaxing norepinephrine-contracted intact aortic rings, whereas only hydroxylamine relaxed aortic rings with endothelium removed. This endothelium-independent vasorelaxation by hydroxylamine indicated that the hydroxylamine-converting enzyme is not localized solely within endothelial cells. Catalase, an enzyme known to oxidize hydroxylamine to nitric oxide, was present in homogenates of intact and endothelium-denuded rings. Cyanamide, another catalase substrate and a known precursor of nitroxyl (HNO), was not a vasorelaxant of aortic rings or of isolated, hypoxia-constricted lungs. These results suggest that free nitroxyl is not an intermediate in the oxidation of hydroxylamine to nitric oxide. An overall pathway for the oxidative conversion of L-arginine through an hydroxylamine intermediate to nitric oxide is proposed.  相似文献   

7.
The role of endothelial calcium signaling in exercise-enhanced ACh-induced vasorelaxation was examined using male Wistar rats (8~10 wk old) that were divided into control and exercise groups. The exercised animals ran on a treadmill with progressive increments of speed until exhaustion. After decapitation, aortic rings were dissected and loaded with fura 2-AM. After being mounted on a tissue flow chamber, vessels were precontracted with phenylephrine, and ACh-induced endothelial calcium elevation and vasorelaxation were determined simultaneously under an epifluorescence microscope equipped with ratio imaging capability. Our results showed that 1) there was logarithmic correlation between endothelial calcium elevation and vasorelaxation; 2) acute exercise enhanced ACh-induced endothelial calcium elevation and vasorelaxation without altering their relationship; 3) pretreatment with N(omega)-nitro-L-arginine markedly reduced ACh-induced vasorelaxation in both groups but suppressed the calcium response only in the exercise group; and 4) the exercise effect on endothelial calcium elevation was abolished by Ca2+-free buffer or gadolinium. In conclusion, acute exercise increases ACh-induced vasorelaxation by increasing the endothelial calcium influx and the calcium-dependent nitric oxide release.  相似文献   

8.
9.
Wang GJ  Tseng HW  Chou CJ  Tsai TH  Chen CT  Lu MK 《Life sciences》2003,73(21):2769-2783
Antrodia camphorata, a medicinal fungus, has been used to treat cardiovascular diseases such as hypertension for many years. The purpose of this study was to examine the effects of mycelia extracts, from five Antrodia camphorata strains, on vascular tension and underlying mechanisms were explored. In isolated rat aortic rings, accession B86 caused concentration-dependent vasorelaxation with maximal relaxation of 40.34 +/- 7.53% whereas accessions 35398, 35396 and B71 had mild vasorelaxing effects. Strain B85 evoked potent vasorelaxation, partly through an endothelium-dependent mechanism that was inhibited by Nomega-nitro-L-arginine and 1H-[1,2,4]oxadiazolo[4,3-a]quinoxaline-1-one (ODQ) but not by antagonist of K+ channels, tetraethylammonium. In cultured endothelial cells, B85 stimulated nitric oxide (NO) release and augmented the level of the intracellular Ca2+ concentration. HPLC and LC-MS-MS analysis revealed the presence of adenosine. Our results suggest that B85 produced strongest vasorelaxation in aortic preparations among five test strains. B85 acts in part on endothelial cells by activating the Ca(2+)-NO-cGMP pathway to reduce smooth muscle tone. However, K+ channels had no apparent roles. Adenosine could possibly be involved in the endothelium-dependent pathway of B85-induced vasorelaxation.  相似文献   

10.
Endothelial nitric oxide (NO) synthase (eNOS) is controlled by Ca(2+)/calmodulin and caveolin-1 in caveolae. It has been recently suggested that Na(+)/Ca(2+) exchanger (NCX), also expressed in endothelial caveolae, is involved in eNOS activation. To investigate the role played by NCX in NO synthesis, we assessed the effects of Na(+) loading (induced by monensin) on rat aortic rings and cultured porcine aortic endothelial cells. Effect of monensin was evaluated by endothelium-dependent relaxation of rat aortic rings in response to acetylcholine and by real-time measurement of NO release from cultured endothelial cells stimulated by A-23187 and bradykinin. Na(+) loading shifted the acetylcholine concentration-response curve to the left. These effects were prevented by pretreatment with the NCX inhibitors benzamil and KB-R7943. Monensin potentiated Ca(2+)-dependent NO release in cultured cells, whereas benzamil and KB-R7943 totally blocked Na(+) loading-induced NO release. These findings confirm the key role of NCX in reverse mode on Ca(2+)-dependent NO production and endothelium-dependent relaxation.  相似文献   

11.
The effects of desflurane on endothelium-dependent vasodilation remain uncertain, whereas sevoflurane is known to inhibit it. Endothelium-dependent vasodilation is mainly mediated by endothelial nitric oxide synthase. The effects of desflurane on endothelium-dependent vasodilation were compared with those of sevoflurane, and inhibition mechanisms, including phosphorylation of endothelial nitric oxide synthase and the calcium pathway, were evaluated for the two anesthetics. We hypothesized that desflurane would inhibit endothelium-dependent vasodilation in a concentration-dependent manner more than sevoflurane, with inhibition of a calcium pathway.Isolated rat aortic rings were randomly assigned to treatment with desflurane or sevoflurane for measurements of the vasodilation ratio. To determine NO production with desflurane and sevoflurane, an in vitro assay was performed with cultured bovine aortic endothelial cells. These cells were also used for measurement of intracellular calcium or Western blotting.For endothelium-dependent vasodilation, the ratio of vasodilation was more significantly inhibited by 11.4% desflurane than by 4.8% sevoflurane. Inhibition did not between 5.7% desflurane and 2.4% sevoflurane. No inhibitory effect of desflurane or sevoflurane was observed in endothelium-denuded aorta. Desflurane inhibited nitric oxide production caused by stimulation of bradykinin significantly more than sevoflurane. Desflurane had a greater suppressive effect on the bradykinin-induced increase in intracellular calcium concentration than did sevoflurane. Sevoflurane, but not desflurane, inhibited phosphorylation of the serine 1177 residue by bradykinin stimulation.Desflurane inhibited endothelium-dependent vasodilation more than sevoflurane through inhibition of a calcium pathway. Sevoflurane inhibited endothelium-dependent vasodilation by inhibition of phosphorylation of the serine 1177 residue of endothelial nitric oxide synthase.  相似文献   

12.
Growth-related oncogene-alpha (GRO-alpha) is a member of the CXC chemokine family, which is involved in the inflammatory process including atherosclerosis. We hypothesized that GRO-alpha may affect endothelial functions in both porcine coronary arteries and human coronary artery endothelial cells (HCAECs). Vasomotor function was analyzed in response to thromboxane A2 analog U-46619 for contraction, bradykinin for endothelium-dependent vasorelaxation, and sodium nitroprusside (SNP) for endothelium-independent vasorelaxation. In response to 10(-6) M bradykinin, GRO-alpha (50 and 100 ng/ml) significantly reduced endothelium-dependent vasorelaxation by 34.73 and 48.8%, respectively, compared with controls (P < 0.05). There were no changes in response to U-46619 or SNP between treated and control groups. With the lucigenin-enhanced chemiluminescence assay, superoxide anion production in GRO-alpha-treated vessels (50 and 100 ng/ml) was significantly increased by 50 and 86%, respectively, compared with controls (P < 0.05). With real-time PCR analysis, endothelial nitric oxide synthase (eNOS) mRNA levels in porcine coronary arteries and HCAECs after GRO-alpha treatment were significantly decreased compared with controls (P < 0.05). The eNOS protein levels by both immunohistochemistry and Western blot analyses were also decreased in GRO-alpha-treated vessels. Antioxidant seleno-l-methionine and anti-GRO-alpha antibody effectively blocked these effects of GRO-alpha on both porcine coronary arteries and HCAECs. In addition, GRO-alpha immunoreactivity was substantially increased in the atherosclerotic regions compared with nonatherosclerotic regions in human coronary arteries. Thus GRO-alpha impairs endothelium-dependent vasorelaxation in porcine coronary arteries through a mechanism of overproduction of superoxide anion and downregulation of eNOS. GRO-alpha may contribute to human coronary artery disease.  相似文献   

13.
Glucose metabolism via sorbitol pathway has been implicated as a possible contributor to the diabetes-related vascular changes. Nitric oxide plays a major regulatory role in the vascular dilatatory and constricted response. Also it has been observed that diabetes causes vascular changes leading to a decrease in nitric oxide production. Additionally the accumulation of sorbitol is also related to decreased nitric oxide production. In the present study we investigated the effect of normal and high glucose in the presence or absence of both interleukin-1β or an aldose reductase inhibitor on nitric oxide production in rat aortic rings in vitro. Aortic rings from normal male Wistar rats were dissected and incubated for 24 to 48 hrs in the presence of glucose (5.0 mM or 20 mM) or with or without interleukin (20 ng/ml). Other rings were incubated in the above media with the addition of the aldose reductase inhibitor (WAY 121509). Interleukin-1β stimulated the 24 hr nitric oxide production and WAY 121509 decreased it under both low and high glucose culture conditions. The interleukin-1β stimulation was continued for 72 hrs. Nitric oxide production in response to interleukin-1β was greater at all time points when compared to the incubation in media without interleukin-1β. In media containing WAY 121509 the nitric oxide production was decreased. Interleukin-1β stimulated a greater increase in nitric oxide production from aortic rings when incubated in high glucose when compared to normal glucose. The inhibitory effect of aldose reductase inhibition was reversible after 24 hr inhibition under both normal and high glucose conditions. We conclude that high glucose enhances the interleukin- 1β-induced nitric oxide synthesis and the cytokine-induced nitric oxide production was inhibited by aldose reductase inhibition. Nitric oxide production may be linked to redox influences caused by the polyol pathway.  相似文献   

14.
Nitric oxide-derived oxidants such as nitrogen dioxide and peroxynitrite have been receiving increasing attention as mediators of nitric oxide toxicity. Indeed, nitrated and nitrosated compounds have been detected in biological fluids and tissues of healthy subjects and in higher yields in patients under inflammatory or infectious conditions as a consequence of nitric oxide overproduction. Among them, nitrated lipids have been detected in vivo. Here, we confirmed and extended previous studies by demonstrating that nitrolinoleate, chlolesteryl nitrolinoleate, and nitrohydroxylinoleate induce vasorelaxation in a concentration-dependent manner while releasing nitric oxide that was characterized by chemiluminescence-and EPR-based methodologies. As we first show here, diffusible nitric oxide production is likely to occur by isomerization of the nitrated lipids to the corresponding nitrite derivatives that decay through homolysis and/or metal ion/ascorbate-assisted reduction. The homolytic mechanism was supported by EPR spin-trapping studies with 3,5-dibromo-4-nitrosobenzenesulfonic acid that trapped a lipid-derived radical during nitrolinoleate decomposition. In addition to provide a mechanism to explain nitric oxide production from nitrated lipids, the results support their role as endogenous sources of nitric oxide that may play a role in endothelium-independent vasorelaxation.  相似文献   

15.
The formation of nitric oxide (NO) from L-arginine by vascular endothelial cells and its relationship to endothelium-dependent relaxation of vascular rings was studied. The release of NO, measured by bioassay or chemiluminescence, from porcine aortic endothelial cells stimulated with bradykinin was enhanced by infusions of L-, but not D-arginine. The release of 15NO, determined by high resolution mass spectrometry, from L-guanidino 15N (99%) arginine was also observed, indicating that NO is formed from the terminal guanidino nitrogen atom(s) of L-arginine. L-NG-monomethyl arginine (L-NMMA), but not D-NMMA, inhibited both the generation of NO by endothelial cells in culture and the endothelium-dependent relaxation of rabbit aortic rings. Both these effects were reversed by L-arginine. These data indicate that L-arginine is the physiological precursor for the formation of NO which mediates endothelium-dependent relaxation.  相似文献   

16.
Acrolein is a highly reactive aldehyde pollutant and an endogenous product of lipid peroxidation. Increased generation of, or exposures to, acrolein incites pulmonary and vascular injury. The effects of acrolein on the vasomotor responses of rat aortic rings were studied to understand its mechanism of action. Incubation with acrolein (10-100 microM) alone did not affect the resting tone of aortic vessels; however, a dose-dependent relaxation of phenylephrine-precontracted aortic rings was observed. Acrolein-induced relaxation was slow and time dependent and the extent of relaxation after 100 min of application was 44.7 +/- 4.1% (10 microM), 56.0 +/- 5.6% (20 microM), 61.0 +/- 7.9% (40 microM), and 96.1 +/- 2.1 (80 microM), respectively, versus 14.2 +/- 3.3% relaxation in the absence of acrolein. Acrolein-induced vasorelaxation was prevented by endothelial denudation and was abolished on pretreatment with the nitric oxide synthase inhibitor Nomega-nitro-L-arginine methyl ester, the guanylyl cyclase inhibitor 1H-[1,2,4]oxidazolo[4,3-a]quinoxaline-1-one, or the cyclooxygenase inhibitor indomethacin. Inhibition of K+ channels (by tetrabutylammonium) or Na+-K+-ATPase (by ouabain) did not significantly prevent acrolein-mediated vasorelaxation. Exposure to acrolein in the presence or absence of other compounds elicited slow wave vasomotor effect in 77% of aortic vessels versus 1.4% in control. Vasomotor responses were also studied on aortic rings prepared from rats fed 2 mg. kg-1. day-1 acrolein for 3 alternate days by oral gavage. These vessels developed a significantly lower contractile response to phenylephrine compared with controls. Together, these results indicate that acute acrolein exposure evokes delayed vasorelaxation due to a nitric oxide- and prostacyclin-dependent mechanism, whereas in vivo acrolein exposure compromises vessel contractility.  相似文献   

17.
R Busse  A Mülsch 《FEBS letters》1990,265(1-2):133-136
We investigated whether calmodulin mediates the stimulating effect of Ca2+ on nitric oxide synthase in the cytosol of porcine aortic endothelial cells. Nitric oxide was quantified by activation of a purified soluble guanylate cyclase. The Ca2(+)-sensitivity of nitric oxide synthase was lost after anion exchange chromatography of the endothelial cytosol and could only be reconstituted by addition of calmodulin or heat-denatured endothelial cytosol. The Ca2(+)-dependent activation of nitric oxide synthase in the cytosol was inhibited by the calmodulin-binding peptides/proteins melittin, mastoparan, and calcineurin (IC50 450, 350 and 60 nM, respectively), but not by the calmodulin antagonist, calmidazolium. In contrast, Ca2(+)-calmodulin-reconstituted nitric oxide synthase was inhibited with similar potency by melittin and calmidazolium. The results suggest that the Ca2(+)-dependent activation of nitric oxide synthase in endothelial cells is mediated by calmodulin.  相似文献   

18.
Thiopental inhibits nitric oxide production in rat aorta   总被引:1,自引:0,他引:1  
We studied whether thiopental affects endothelial nitric oxide dependent vasodilator responses and nitrite production (an indicator of nitric oxide production) elicited by acetylcholine, histamine, and A23187 in rat aorta (artery in which nitric oxide is the main endothelial relaxant factor). In addition, we evaluated the barbiturate effect on nitric oxide synthase (NOS) activity in both rat aorta and kidney homogenates. Thiopental (10-100 microg/mL) reversibly inhibited the endothelium-dependent relaxation elicited by acetylcholine, histamine, and A23187. On the contrary, this anesthetic did not modify the endothelium-independent but cGMP-dependent relaxation elicited by sodium nitroprusside (1 nM - 1 microM) and nitroglycerin (1 nM - 1 microM), thus excluding an effect of thiopental on guanylate cyclase of vascular smooth muscle. Thiopental (100 microg/mL) inhibited both basal (87.8+/-14.3%) and acetylcholine- or A23187-stimulated (78.6+/-3.9 and 39.7+/-5.6%, respectively) production of nitrites in aortic rings. In addition the barbiturate inhibited (100 microg/mL) the NOS (45+/-4 and 42.8+/-9%) in aortic and kidney homogenates, respectively (measured as 14C-labeled citrulline production). In conclusion, thiopental inhibition of endothelium-dependent relaxation and nitrite production in aortic rings strongly suggests an inhibitory effect on NOS. Thiopental inhibition of the NOS provides further support to this contention.  相似文献   

19.
In vitro extracellular Mg(2+) concentration ([Mg(2+)](0)) produces endothelium-dependent and endothelium-independent relaxations in rat aorta in a concentration-dependent manner. These relaxant effects of Mg(2+) on intact rat aortic rings, but not denuded rat aortic rings, were suppressed by either N(G)-monomethyl-L-arginine (L-NMMA), N(omega)-nitro-L-arginine methyl ester (L-NAME), or methylene blue. The inhibitory effects of L-NMMA and L-NAME could be reversed partly by L-arginine. [Mg(2+)](0)-induced dilatation in vivo in rat mesenteric arterioles and venules was almost completely inhibited by N(G)-nitro-L-arginine and L-NMMA. Removal of extracellular Ca(2+) concentration ([Ca(2+)](0)) or buffering intracellular Ca(2+) concentration in endothelial cells, with 10 microM 1, 2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-AM, markedly attenuated the relaxant effects of Mg(2+). Mg(2+) produced nitric oxide (NO) release from the intact aortic rings in a concentration-dependent manner. Removal of [Ca(2+)](0) diminished the increased NO release induced by elevated levels of [Mg(2+)](0). In vivo infusion of increasing doses (1-30 microM/min) of MgSO(4), directly into the femoral veins of anesthetized rats, elicited significant concentration-dependent sustained increases in serum total Mg and concomitant decreases in arterial blood pressure. Before and after employment of various doses of MgSO(4), intravenous administration of either L-NMMA (10 mg/kg) or L-NAME (10 mg/kg) increased (i.e., reversed) the MgSO(4)-lowered blood pressure markedly, and intravenous injection of L-arginine restored partially the increased blood pressure effects of both L-NMMA and L-NAME. Our results suggest that 1) small blood vessels are very dependent on NO release for Mg(2+) dilatations and 2) the endothelium-dependent relaxation induced by extracellular Mg(2+) is mediated by release of endothelium-derived relaxing factor-NO from the endothelium, and requires Ca(2+) and formation of guanosine 3',5'-cyclic monophosphate.  相似文献   

20.
Nebivolol is a highly selective beta(1)-adrenergic receptor antagonist that also possesses vasodilator properties that are attributed largely to nitric oxide (NO). The objective of the present study was to elucidate in more detail the mechanisms by which nebivolol relaxes vascular smooth muscle. In the canine species, nebivolol caused relaxation of isolated precontracted rings of coronary artery and pulmonary artery largely by endothelium-dependent, NO-dependent, and cyclic GMP-dependent mechanisms. Vasorelaxation was inhibited by N(G)-methylarginine, and this inhibition was reversed by addition of excess L-arginine. Moreover, the vasorelaxant responses to nebivolol were markedly inhibited by oxyhemoglobin, methylene blue, and 1H-[1,2,4]oxadiazolo[4,3-alpha]quinoxalin-1-one (ODQ), whereas vasorelaxation was enhanced by zaprinast. Rat aortic ring preparations, however, relaxed in response to nebivolol by both endothelium-dependent and endothelium-independent mechanisms, both involving NO, and cyclic GMP. Endothelium-dependent and endothelium-independent vasorelaxation were inhibited by oxyhemoglobin, methylene blue, and ODQ. However, only endothelium-dependent vasorelaxation in response to nebivolol was inhibited by N(G)-methylarginine. Additional experiments ruled out other endothelium-independent vasorelaxant mechanisms. In conclusion, the vasodilator responses to nebivolol involve NO and cyclic GMP in both vascular endothelial and smooth muscle cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号