首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The larvae of the pine processionary moth (PPM), Thaumetopoea pityocampa, feed on the needles of pine and cedar. The urticating hairs of older instars pose a threat to human and animal health. Strains of the entomopathogenic fungi, Metarhizium brunneum (V275, ARSEF 4556) and Beauveria bassiana (KTU-24), were assayed against first to fourth instar T. pityocampa using doses ranging from 1?×?105 to 1?×?108 conidia mL?1. The three strains differed slightly in their virulence but caused 100% mortality of all instars at the highest dose. The newly emerged or first instar larvae were extremely susceptible with 100% mortality being achieved 2–4 days post inoculation with V275 at all but the lowest dose. The fourth instar larvae appeared to be less susceptible than earlier instars. There was good horizontal transmission of conidia from treated to un-inoculated larvae. However, mortality was higher in third and fourth instars and where the ratio of inoculated versus untreated larvae was high. This we presume is due to spores being more readily trapped by the urticating hairs found on third and older instar larvae. Injection of the nests offers a simple and environmentally friendly way of controlling the pest with reduced risk to operators.  相似文献   

2.
We are using patterns of cuticle specialization in Drosophila larvae as models to investigate the molecular, genetic, and developmental bases of morphological evolution. Members of the virilis species group differ markedly from one another in the distribution of hairs on the dorsal surface of first instar larvae. In particular, characteristic bands of hairs cover about 20% of each trunk segment in some species but about 70% in others. These major types do not correlate with recently proposed phylogenetic relationships, suggesting that similar phenotypes have arisen independently in different lineages. The patterns of expression of several genes that control or reflect intrasegmental patterning are indistinguishable in species with very different cuticle morphologies. We conclude that, in this case, morphology probably has evolved via altered response to a conserved molecular prepattern.  相似文献   

3.
Abstract

Larvae of the New Zealand culicid species Opifex fuscus and Aedes australis have previously been reported to show dimorphism in the structure of their labral brushes, some larvae having pectinate bristles and others only simple hairs. In the scanning electron microscope all larvae showed some degree of pectination of hairs in these brushes. There is also a gradation in the pectination. Some bristles are only sparsely pectinate; because the dimensions of their teeth are close to the limit of resolution by the compound microscope, the pectination had previously gone undetected. The mouthparts of both species are intermediate in character between those typical of filter-feeding larvae and those typical of browsing larvae. The SEM appearance of maxillary sensoria and bristles on the ventral surfaces of the mandibular brushes is described; the latter bristles comb food particles out of the labral brushes and towards the mouth. Features of the mouthparts are illustrated with scanning electron micrographs.  相似文献   

4.
Caterpillars of Buckleria spp. (Lepidoptera: Pterophoridae) have a unique feeding habit of eating trap leaves of carnivorous sundew plants (Drosera spp.). We observed the foraging behavior of Buckleria paludum on trap leaves of Drosera spp. and discussed how the moth species avoided being caught by trap leaves. In 81.5% (66/81) of encounters with glandular hairs on adaxial surfaces of Drosera trap leaves, B. paludum larvae licked mucilage and crawled on the processed hairs. The frequency of licking mucilage was significantly higher than the frequency of other behaviors such as eating glandular hairs, chewing bases of them without eating and ignoring when encountering secreted mucilage. Licking mucilage enables the caterpillars to move safely on trap leaves and prevents bending of glandular hairs.  相似文献   

5.
The body surface of insects usually carries cuticular hairs. Commonly, important functions of these structures are to prevent drowning and to defend against predators. Here, we report on our studies on hairs at the surface of larvae of the ant species Camponotus floridanus and Camponotus sericeiventris. First, we present data supporting the hypothesis that anti-drowning properties of the surface might rely on cuticular hairs. Second, we show that especially in young larvae body hairs serve as attachment and interlocking devices mediating clumping of larvae facilitating transport by workers. Based on our observations, we speculate that clumping also enhances larval perceptibility. Taken together, larval cuticular hairs seem to have at least two important functions augmenting chances of larval survival. Obviously, despite their immobility, young Camponotus larvae support childcare in the ant colony providing an arsenal of cuticular hairs on their body surface.  相似文献   

6.
This study examines the response of tuber moth, Phthorimaea operculella (Zeller) (Lepidoptera: Gelechiidae), during the initial stages of attack, to variability in trichome density and composition on foliage of Solanum berthaultii (Hawkes) and Solanum tarijense (Hawkes) (Solanaceae). Solanum berthaultii bears two types of glandular trichome (type A and type B) that together reduced oviposition by the moth. Females were often completely deterred from ovipositing on foliage with >300 trichomes per cm2. In contrast, neonate establishment on S. berthaultii was generally positively related to trichome densities, indicating that trichomes may be a poor defense against P. operculella when the moth oviposits in soil and neonate larvae select the host plant. Solanum tarijense has only one type of glandular trichome (type A) and eglandular hairs. Most eggs were deposited on the adaxial leaf surfaces that had lower trichome densities. Although the density of type A trichomes was negatively related to oviposition, high densities of hairs on the abaxial and adaxial leaf surfaces appeared to stimulate oviposition, leading to stronger positive relations between hair densities and oviposition. Larvae generally established on the abaxial surface where hair densities were greatest. Relationships between the abaxial densities of leaf hairs and neonate establishment on S. tarijense were positive. The results indicate that the responses by P. operculella to the types and density of trichomes are complex. Whereas type A and type B trichomes may act synergistically to reduce oviposition by the moth, leaf hairs do not defend against oviposition and neither leaf hairs nor type A and B trichomes reduce neonate establishment by this herbivore species.  相似文献   

7.
The “balloon hairs” of L1 caterpillars of Lymantria dispar (Lep., Lymantriidae) are jointed, hollow and filled with a fluid. Detection of nicotine in the balloon hairs as well as feeding-deterrent effects of whole larvae and nicotine on ants indicate that these setae serve for defense against predatory arthropods and parasitoids but not for soaring of the larvae. Titers of nicotine and other components were determined for several developmental stages of L. dispar and compared.  相似文献   

8.
The bag‐shelter moth, Ochrogaster lunifer Herrich‐Schaffer (Lepidoptera: Notodontidae), is associated with a condition called equine amnionitis and fetal loss (EAFL) on horse farms in Australia. Setal fragments from O. lunifer larvae have been identified in the placentas of experimentally aborted fetuses and their dams, and in clinical abortions. The gregarious larvae build silken nests in which large numbers cohabit over spring, summer and autumn. The final instars disperse to pupation sites in the ground where they overwinter. Field‐collected O. lunifer larvae, their nests and nearby soil were examined using light and electron microscopy to identify setae likely to cause EAFL and to determine where and how many were present. Microtrichia, barbed hairs and true setae were found on the exoskeletons of the larvae. True setae matching the majority of setal fragments described from equine tissue were found on third to eighth instar larvae or exuviae. The number of true setae increased with the age of the larva; eighth instars carried around 2.0–2.5 million true setae. The exuvia of the pre‐pupal instar was incorporated into the pupal chamber. The major sources of setae are likely to be nests, dispersing pre‐pupal larvae and their exuviae, and pupal chambers.  相似文献   

9.
The oviposition patterns of adults and the movement and feeding patterns of larvae of Epilachna cucurbitae on two species of cucurbits, Cucurbita maxima cv Queensland Blue and C. pepo cv Blackjack, were studied in the field and laboratory. The physical and nutritional characteristics of host plant leaves of different ages were described. Younger leaves had higher nitrogen contents but were less abundant, smaller and had higher trichome densities than older leaves. The development of first instar larvae was delayed by the leaf hairs on young and mature pumpkin leaves which prevented larvae from reaching the leaf surface to feed First instal larvae developed more quickly on leaves rich in nitrogen. Neither the total developmental time of larvae nor the size of pupae was affected by leafage because larvae on poor quality leaves compensated by eating more. Female beetles oviposited on all but the youngest and oldest leaves of the host plant. The trichomes on young leaves prevented females from attaching eggs to the leaf surface. First instar larvae remained where they hatched, but older larvae were more mobile, Changing feeding sites frequently and moving progressively to younger, more nutritious leaves. Final instar larvae moved onto adjacent vegetation to pupate. The adaptive significance of these patterns is discussed in relation to the nutritional value, hairiness and abundance of host plant leaves of different ages and the physical limitations of different larval instars.  相似文献   

10.
The structure of the parasitoid community on phytophagous insects can be affected by host plant properties, such as chemical compounds, trichomes, and glandular hairs. To clarify effects of host plants on herbivores and the parasitoid community, I examined the structure and dynamics of the parasitoid community associated with two species of Caloptilia moths (Lepidoptera: Gracillariidae) that feed on different Rhododendron species (Ericaceae) for 3 years in a temperate secondary forest in central Japan. Caloptilia azaleella had overlapping generations in summer and overwintered as larvae on leaves of R. macrosepalum. Caloptilia leucothoes also had overlapping generations in summer, but it did not overwinter on the deciduous shrub R. reticulatum. The parasitoid community of C. azaleella larvae and pupae was composed of 18 species, whereas that of C. leucothoes was composed of seven species. Five species of parasitoids attacked both Caloptilia species. The most abundant parasitoid, Apanteles cf. xanthostigma (Hymenoptera: Braconidae), more frequently attacked C. azaleella than C. leucothoes larvae. In contrast, another abundant parasitoid, Acrysocharoides sp. (Hymenoptera: Eulophidae), more frequently attacked C. leucothoes than C. azaleella larvae. This differential parasitism by the most abundant parasitoid species may be responsible for the differential structure and dynamics of the parasitoid community between the Caloptilia species. The host plant of C. azaleella, R. macrosepalum, more frequently trapped and killed parasitoids (of similar size to Acrysocharoides sp.) on the glandular hairs of leaves than did R. reticulatum. The differential effect of host plants on abundant parasitoids may be related to the differential parasitism by the two abundant parasitoids shared by the herbivore hosts.  相似文献   

11.
The hairs of seven representatives ofPlantago L. subg.Psyllium were studied. Three types of headless hairs and three types of headed hairs were observed. Clavate hairs and hairs with several-celled stalk and unicellular head are characteristic of subg.Psyllium and provide evidence for the distinctness of this taxon. Based on our studies it can be assumed thatRahn's idea of enlarging subg.Psyllium by six sections from subg.Plantago sensuPilger is incorrect.  相似文献   

12.
Ma  Zhong  Walk  Thomas C.  Marcus  Andrew  Lynch  Jonathan P. 《Plant and Soil》2001,236(2):221-235
Low phosphorus availability regulates root hair growth in Arabidopsis by (1) increasing root hair length, (2) increasing root hair density, (3) decreasing the distance between the root tip and the point at which root hairs begin to emerge, and (4) increasing the number of epidermal cell files that bear hairs (trichoblasts). The coordinated regulation of these traits by phosphorus availability prompted us to speculate that they are synergistic, that is, that they have greater adaptive value in combination than they do in isolation. In this study, we explored this concept using a geometric model to evaluate the effect of varying root hair length (short, medium, and long), density (0, 24, 48, 72, 96, and 120 root hairs per mm of root length), tip to first root hair distance (0.5, 1, 2, and 4 mm), and number of trichoblast files (8 vs. 12) on phosphorus acquisition efficiency (PAE) in Arabidopsis. SimRoot, a dynamic three-dimensional geometric model of root growth and architecture, was used to simulate the growth of Arabidopsis roots with contrasting root hair parameters at three values of phosphorus diffusion coefficient (D e=1×10–7, 1×10–8, and 1×10–9 cm2 s–1) over time (20, 40, and 60 h). Depzone, a program that dynamically models nutrient diffusion to roots, was employed to estimate PAE and competition among root hairs. As D e decreased from 1×10–7 to 1×10–9 cm2 s–1, roots with longer root hairs and higher root hair densities had greater PAE than those with shorter and less dense root hairs. At D e=1×10–9 cm2 s–1, the PAE of root hairs at any given density was in the order of long hairs > medium length hairs > short hairs, and the maximum PAE occurred at density = 96 hairs mm–1 for both long and medium length hairs. This was due to greater competition among root hairs when they were short and dense. Competition over time decreased differences in PAE due to density, but the effect of length was maintained, as there was less competition among long hairs than short hairs. At high D e(1×10–7 cm2 s–1), competition among root hairs was greatest among long hairs and lowest among short hairs, and competition increased with increasing root hair densities. This led to a decrease in PAE as root hair length and density increased. PAE was also affected by the tip to first root hair distance. At low D e values, decreasing tip to first root hair distance increased PAE of long hairs more than that of short hairs, whereas at high D e values, decreasing tip to first root hair distance increased PAE of root hairs at low density but decreased PAE of long hairs at very high density. Our models confirmed the benefits of increasing root hair density by increasing the number of trichoblast files rather than decreasing the trichoblast length. The combined effects of all four root hair traits on phosphorus acquisition was 371% greater than their additive effects, demonstrating substantial morphological synergy. In conclusion, our data support the hypothesis that the responses of root hairs to low phosphorus availability are synergistic, which may account for their coordinated regulation.  相似文献   

13.
Phylogenetic analysis indicates that Lycastinae should be incorporated into a more broadly defined Maxillariinae. This is supported by several anatomical features, including the presence of sunken, glandular trichomes in both Lycastinae and Maxillariinae s.s. Until recently, these were known only from vegetative organs, but have since been reported from flowers of Maxillaria dichroma. One character currently used to distinguish between Lycaste and Sudamerlycaste is the distribution of floral trichomes. In this article, we test the reliability of this character, describe the floral micromorphology of Lycaste and Sudamerlycaste and investigate whether their flowers bear sunken hairs. Their floral micromorphology is compared with that of other genera currently assigned to Maxillariinae s.l. Flowers of Lycaste and Sudamerlycaste bear conical or obpyriform papillae and unbranched and unequally branched multicellular trichomes. Contrary to previous reports that trichomes are confined to the column in Sudamerlycaste, they also occur in the tepal axils. Labellar trichomes, although often present in Lycaste, are lacking in Sudamerlycaste. In Lycaste sections Lycaste and Aromaticae, floral trichomes tend to be unbranched, whereas section Intermediae has both unbranched and branched hairs. Branched hairs are more common in Sudamerlycaste. Some hairs are tracheoidal, pitted and lignified. These mainly occur in section Lycaste and, to a degree, in section Intermediae, but are absent from section Aromaticae and most species of Sudamerlycaste. Branched column hairs, present in Sudamerlycaste, are absent from all sections of Lycaste, and tracheoidal column hairs occur only in Sudamerlycaste. Sunken floral hairs are absent from both genera. Trichome structure and distribution may prove useful in distinguishing between these taxa and in elucidating the intergeneric relationships of Maxillariinae s.l.© 2010 The Linnean Society of London, Botanical Journal of the Linnean Society, 2010, 164 , 409–421.  相似文献   

14.
The hair density of adult Eurasian otters Lutra lutra (Linnaeus, 1758) and sea otters Enhydra lutris (Linnaeus, 1758) was analysed using skin samples taken from frozen carcasses. Lutra lutra exhibited a mean hair density of about 70 000 hairs/cm2 (whole body, appendages excepted), the mean individual density ranging from about 60 000 to 80 000 hairs/cm2. The dominant hair type were secondary hairs (wool hairs), the hair coat comprising only 1.26% of primary hairs (PH). Secondary hair (SH) density remained constant over the body (appendages excepted), whereas a few variations in PH density were observed. Neither an influence of the sex, nor a seasonal variation of the hair coat was found, moulting seems to be continuous. Enhydra lutris had a hair density between 120 000 and 140 000 hairs/cm2, the primary hairs representing less than 1% within the hair coat. Hair density remained quite constant over the regions of the trunk but was lower at the head (about 60 000 hairs/cm2 on the cheek). The hair follicles were arranged in specific groups with different bundles of varying size, normally comprising dominant numbers of wool hair (SH) follicles. Invariably there was always a large central primary hair follicle and numerous sebaceous glands between the bundles and principally around the PH follicles. The results are discussed related to possible ecological influences on hair coat density.  相似文献   

15.
化学通讯是蜘蛛最基础和最普遍的种内及种间通讯方式之一,蜘蛛体表的味觉毛能够接触性地或者近距离地感知环境中的化学物质,但味觉毛的相关研究仅在少数几种蜘蛛中有过报道。我们通过扫描电镜分别对幽灵蛛科(Pholcidae)、弱蛛科(Leptonetidae)、泰莱蛛科(Telemidae)、蟹蛛科(Thomisidae)和球蛛科(Theridiidae)共5科32种蜘蛛味觉毛的形态、数量及分布进行了观察。结果显示:蜘蛛味觉毛一般呈"S"形或弧形;毛根部与体表形成较大角度,末端开口。一般分布在步足的跗节和后跗节,一些种类在步足胫节亦有味觉毛分布。所观察的蜘蛛中绝大部分种类在触肢上未发现味觉毛,仅有2种蟹蛛即角红蟹蛛(Thomisus labefactus)和膨胀微蟹蛛(Lysiteles inflatus)以及1种球蛛即鼬形微姬蛛(Phycosomamustelinum)在触肢上有味觉毛。味觉毛的数量在不同蜘蛛种类中有较大差异,从十几根到上百根不等。蜘蛛味觉毛的形态、数量和分布等特征除了与遗传相关外,亦有可能与其生境和生活方式等有关。  相似文献   

16.
The flagella in Cryptomonas ovata Ehrenberg and two other un-named strains of Cryptomonas both bear stiff hairs with fine distal filaments of the same type as those found in the Xanthophyceae, the Chrysophyceae sensu stricto, the Phaeophyceae, the Bacillariophyceae, the Eustigmatophyceae and the Oomycetes. On the longer of the two flagella the hairs are 2·5 µm long and in two opposite rows whereas on the shorter flagellum they measure only 1 µm, are arranged in a single row and are more closely spaced. The long flagellum also bears a characteristic lateral swelling with a tuft of hairs of the same type as on the remainder of the flagellum, at approximately the level at which it emerges from the gullet. The hairs on the flagella of Hemiselmis rufescens Parke are distributed in a similar manner to those in Cryptomonas but they are more flexible and the swelling and tuft of hairs appear to be absent from the long flagellum. Hairs are apparently absent from the short flagellum of Chroomonas sp. The periplast in Cryptomonas ovata shows a hexagonal pattern in surface view and in sections of all three Cryptomonas strains appears as a typical plasmalemma underlain by a discontinuous layer of electron-dense material with variable substructure. The distribution of flagellar hairs and the structure of the periplast appear to be characters unique to the Cryptophyceae and these features emphasise the isolated position of this class of algae.  相似文献   

17.
18.
The leopard seal is a top-order predator in the Southern Ocean ecosystem and preys on a wide variety of vertebrate species including seals and penguins. We assessed the use of hairs found in leopard seal scats to identify the species of pinniped consumed. A reference collection of hairs was obtained from four potential leopard seal prey species including crabeater, Weddell, Ross, and Southern elephant seals. Discrimination techniques applied to terrestrial mammals did not allow for identification of the seal hairs. Instead, a 2-dimensional (2-D) and 6-dimensional (6-D) analysis technique utilising Mahalanobis distances (D 2) was used. The smallest Mahalanobis distance together with the largest value of p(F) positively identified hairs from each species. The 6-D analysis was more accurate and applied to hairs found in the leopard seal scats. The majority of prey species were identified as crabeater seals, which are a known prey item of the leopard seal.  相似文献   

19.
Abstract

A turbulent channel flow apparatus was used to determine the adhesion strength of the three perimetamorphic stages of the asteroid Asterina gibbosa, i.e. the brachiolaria larvae, the metamorphic individuals and the juveniles. The mean critical wall shear stresses (wall shear stress required to dislodge 50% of the attached individuals) necessary to detach larvae attached by the brachiolar arms (1.2 Pa) and juveniles attached by the tube feet (7.1 Pa) were one order of magnitude lower than the stress required to dislodge metamorphic individuals attached by the adhesive disc (41 Pa). This variability in adhesion strength reflects differences in the functioning of the adhesive organs for these different life stages of sea stars. Brachiolar arms and tube feet function as temporary adhesion organs, allowing repetitive cycles of attachment to and detachment from the substratum, whereas the adhesive disc is used only once, at the onset of metamorphosis, and is responsible for the strong attachment of the metamorphic individual, which can be described as permanent adhesion. The results confirm that the turbulent water channel apparatus is a powerful tool to investigate the adhesion mechanisms of minute organisms.  相似文献   

20.
The flagellar hair ultrastructure of 16 strains of species of the prasinophycean genera Mantoniella, Mamiella, Pseudoscourfieldia, Nephroselmis, Tetraselmis, Scherffelia, Pterosperma, and Pyraminonas was examined in detail by whole-mount electron microscopy. The flagellar hairs of all genera displayed a high degree of ultrastructural complexity that was completely conserved within each strain. In all strains, flagellar hairs occurred on the sides of the flagella (lateral hairs); in several strains, special flagellar hairs also were found on the flagellar tips (tip hairs; absent in the Chlorodendrales and in Nephroselmis). Two groups of lateral hairs were distinguished: 1) T-hairs (“Tetraselmis-type” flagellar hairs), characterized by a smooth, tubular shaft of ca. 15 nm diameter and an overall length of 0.5–1.3 μm, and 2) Pt-hairs (“Pterosperma-type lateral flagellar hairs”), which were considerably longer (ca. 1.5–5.4 μm), characterized by a thick shaft of ca. 30 nm diameter, which was covered with a layer of regularly spaced small particles of ca. 10 nm diameter. In both groups of flagellar hairs, a strain-specific number of subunits (1–101) in linear arrangement was attached to the distal end of the shaft. Tip hairs were either structurally related to T-hairs (Mamiellales, Pseudoscourfieldia) or represented a separate group, Pt-hairs (“Pterosperma-type flagellar tip hairs”; Pterosperma, Pyramimonas). In four genera (Mantoniella, Mamiella, Pseudoscourfieldia, Nephroselmis), both groups of lateral hairs occurred together on the same cell. Interestingly in these taxa the Pt-hairs were exclusively attached to the shorter immature flagella (no. 2), but, in contrast, in Mantoniella and Pseudoscourfieldia the tip hairs were restricted to the longer mature flagellum (no. 1). Thus, flagella of different developmental status differ in their hair-scale complement. The occurrence, distribution, and ultrastructure of flagellar hairs can be used to identify and classify prasinophytes at all taxonomic levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号