首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Calcium-activated phosphoenolpyruvate carboxykinase fromEscheria coli is not inactivated by a number of sulfhydryl-directed reagents [5,5-dithiobis(2-nitrobenzoate), iodoacetate, N-ethylmaleimide, N-(1-pyrenyl)maleimide or N-(iodoacetyl)-N-(5-sulfo-l-naphthylethylenediamine)], unlike phosphoenolpyruvate carboxykinase from other organisms. On the other hand, the enzyme is rapidly inactivated by the arginyl-directed reagents 2,3-butanedione and 1-pyrenylglyoxal. The substrates, ADP plus PEP in the presence of Mn2+, protect the enzyme against inactivation by the diones. Quantitation of pyrenylglyoxal incorporation indicates that complete inactivation correlates with the binding of one inactivator molecule per mole of enzyme. Chemical modification by pyridoxal 5-phosphate also produces inactivation of the enzyme, and the labeled protein shows a difference spectrum with a peak at 325 nm, characteristic of a pyridoxyl derivative of lysine. The inactivation by this reagent is also prevented by the substrates. Binding stoichiometries of 1.25 and 0.30mol of reagent incorporated per mole of enzyme were found in the absence and presence of substrates, respectively. The results suggest the presence of functional arginyl and lysyl residues in or near the active site of the enzyme, and indicate lack of reactive functional sulfhydryl groups.Abbreviations used: DTNB, 5,5-dithiobis(2-nitrobenzoate); Hepes, N-(2-hydroxyethyl)piperazine-N-2-ethanesulfonic acid; 1,5-IAEDANS, N-(iodoacetyl)-N-(5-sulfo-1-naphthyl) ethylenediamine; EPE, phosphoenolpyruvate; PEPCK, phosphoenolpyruvate carboxykinase; PG, 1-pyrenylglyoxal; PLP, pyridoxal 5-phosphate.  相似文献   

2.
Saccharomyces cerevisiae phosphoenolpyruvate carboxykinase (ATP:oxaloacetate carboxy-lyase (transphosphorylating), EC 4.1.1.49) is inactivated by several thiol- and vicinal dithiol-specific reagents. Titration experiments of the enzyme with 5,5'-dithiobis(2-nitrobenzoate) (DTNB) show the presence of reactive monothiol and vicinal dithiol groups, whose modifications lead to enzyme inactivation. The enzyme is also inactivated by N-(1-pyrenyl)iodoacetamide (PyrIAM), with a binding stoichiometry of approx. 2 mol per mol of enzyme subunit. A high level of pyrene excimer fluorescence is detected on the labeled enzyme, thus implying the reaction of the reagent with two spatially close sulfhydryl groups in the protein. The carboxykinase is not completely inactivated by different vicinal dithiol-specific reagents, thus implying a catalytically non-essential character for these groups. From substrate protection experiments of the enzyme inactivation by DTNB, PyrIAM and vicinal dithiol-specific reagents, it is concluded that the loss of enzyme activity is caused by the modification of both thiol and vicinal dithiol groups in the substrate binding region.  相似文献   

3.
Saccharomyces cerevisiae phosphoenolpyruvate carboxykinase [ATP:oxaloacetate carboxy-lyase (transphosphorylating), EC 4.1.1.49] is completely inactivated by the 2',3'-dialdehyde derivative of ATP (oATP) in the presence of Mn2+. The dependence of the pseudo-first-order rate constant on reagent concentration indicates the formation of a reversible complex with the enzyme (Kd = 60 +/- 17 microM) prior to covalent modification. The maximum inactivation rate constant at pH 7.5 and 30 degrees C is 0.200 +/- 0.045 min-1. ATP or ADP plus phosphoenolpyruvate effectively protect the enzyme against inactivation. oATP is a competitive inhibitor toward ADP, suggesting that oATP interacts with the enzyme at the substrate binding site. The partially inactivated enzyme shows an unaltered Km but a decreased V as compared with native phosphoenolpyruvate carboxykinase. Analysis of the inactivation rate at different H+ concentrations allowed estimation of a pKa of 8.1 for the reactive amino acid residue in the enzyme. Complete inactivation of the carboxykinase can be correlated with the incorporation of about one mole of [8-14C]oATP per mole of enzyme subunit. The results indicate that oATP can be used as an affinity label for yeast phosphoenolpyruvate carboxykinase.  相似文献   

4.
Rat liver cytosolic phosphoenolpyruvate carboxykinase is inactivated by incubation with 0.84 mM 5′-p-fluorosulfonylbenzoyl guanosine, but is not appreciably affected by the adenosine analogue, 5′-p-fluorosulfonylbenzoyl adenosine, in correspondance with the known nucleotide specificity of this enzyme. Marked protection against inactivation by 5′-p-fluorosulfonylbenzoyl guanosine is provided (either in the presence or absence of divalent metal cation) by GTP or GDP but not by ATP or phosphoenolpyruvate. The inactivation appears to be due to covalent reaction since radioactive reagent remains associated with the enzyme after extensive dialysis and gel filtration on Sephadex G-25. These results are consistent with affinity labeling of the nucleotide binding site of phosphoenolpyruvate carboxykinase by the guanosine nucleotide analogue 5′-p-fluorosulfonylbenzoyl guanosine.  相似文献   

5.
Reaction of rat liver phosphoenolpyruvate carboxykinase (GTP: oxaloacetate carboxy-lyase (transphosphorylating), EC 4.1.1.32) with the alkylating fluorescent probe N-(iodoacetylaminoethyl)-5-naphthylamine-1-sulfonic acid (1,5-I-AEDANS), results in complete loss of enzymatic activity. One mole of the fluorescent reagent is incorporated per mole of the inactivated enzyme. When the modification is carried out in the presence of GDPMn, the enzyme retains 97% of its activity with almost no incorporation of label. The specificity of the reaction is further supported by the detection of a unique fluorescent peptide from the trypsin-treated modified enzyme. Fluorescence emission of enzyme-bound AEDANS shows a broad band centered at 470 nm and presents a monoexponential decay with a lifetime of 19 ns. These data indicate that the probe-binding site is considerably less polar than water and similar in polarity to ethanol. Anisotropy determinations give evidence for restricted rotational freedom for AEDANS bound to the rat carboxykinase, while acrylamide quenching studies reveal limited accessibility to the probe site. The results are consistent with specific labeling of rat liver phosphoenolpyruvate carboxykinase at or near the GDP site. The characteristics of the nucleotide-binding sites of rat liver and yeast (ATP) phosphoenolpyruvate carboxykinase are compared.  相似文献   

6.
P F Guidinger  T Nowak 《Biochemistry》1991,30(36):8851-8861
The participation of lysine in the catalysis by avian liver phosphoenolpyruvate carboxykinase was studied by chemical modification and by a characterization of the modified enzyme. The rate of inactivation by 2,4-pentanedione is pseudo-first-order and linearly dependent on reagent concentration with a second-order rate constant of 0.36 +/- 0.025 M-1 min-1. Inactivation by pyridoxal 5'-phosphate of the reversible reaction catalyzed by phosphoenolpyruvate carboxykinase follows bimolecular kinetics with a second-order rate constant of 7700 +/- 860 M-1 min-1. A second-order rate constant of inactivation for the irreversible reaction catalyzed by the enzyme is 1434 +/- 110 M-1 min-1. Treatment of the enzyme with pyridoxal 5'-phosphate gives incorporation of 1 mol of pyridoxal 5'-phosphate per mole of enzyme or one lysine residue modified concomitant with 100% loss in activity. A stoichiometry of 1:1 is observed when either the reversible or the irreversible reactions catalyzed by the enzyme are monitored. A study of kobs vs pH suggests this active-site lysine has a pKa of 8.1 and a pH-independent rate constant of inactivation of 47,700 M-1 min-1. The phosphate-containing substrates IDP, ITP, and phosphoenolpyruvate offer almost complete protection against inactivation by pyridoxal 5'-phosphate. Modified, inactive enzyme exhibits little change in Mn2+ binding as shown by EPR. Proton relaxation rate measurements suggest that pyridoxal 5'-phosphate modification alters binding of the phosphate-containing substrates. 31P NMR relaxation rate measurements show altered binding of the substrates in the ternary enzyme.Mn2+.substrate complex. Circular dichroism studies show little change in secondary structure of pyridoxal 5'-phosphate modified phosphoenolpyruvate carboxykinase. These results indicate that avian liver phosphoenolpyruvate carboxykinase has one reactive lysine at the active site and it is involved in the binding and activation of the phosphate-containing substrates.  相似文献   

7.
Saccharomyces cerevisiae phosphoenolpyruvate carboxykinase (ATP:oxaloacetate carboxy-lyase (transphosphorylating), EC 4.1.1.49) is completely inactivated by phenylglyoxal and 2,3-butanedione in borate buffer at pH 8.4, with pseudo-first-order kinetics and a second-order rate constant of 144 min-1 X M-1 and 21.6 min-1 X M-1, respectively. Phosphoenolpyruvate, ADP and Mn2+ (alone or in combination) protect the enzyme against inactivation, suggesting that the modification occurs at or near to the substrate-binding site. Almost complete restoration of activity was obtained when a sample of 2,3-butanedione-inactivated enzyme was freed of excess modifier and borate ions, suggesting that only arginyl groups are modified. The changes in the rate of inactivation in the presence of substrates and Mn2+ were used to determine the dissociation constants for enzyme-ligand complexes, and values of 23 +/- 3 microM, 168 +/- 44 microM and 244 +/- 54 microM were found for the dissociation constants for the enzyme-Mn2+, enzyme-ADP and enzyme-phosphoenolpyruvate complexes, respectively. Based on kinetic data, it is shown that 1 mol of reagent must combine per enzyme active unit in order to inactivate the enzyme. Complete inactivation of the carboxykinase can be correlated with the incorporation of 3-4 mol [7-14C]phenylglyoxal per mol of enzyme subunit. Assuming a stoichiometry of 1:1 between phenylglyoxal incorporation and arginine modification, our results suggest that the modification of only two of the three to four reactive arginine residues per phosphoenolpyruvate carboxykinase subunit is responsible for inactivation.  相似文献   

8.
Saccharomyces cerevisiae phosphoenolpyruvate carboxykinase [ATP:oxaloacetate carboxy-lyase (transphosphorylating), EC 4.1.1.49] is inactivated by the fluorescent sulfhydryl reagent N-(iodoacetyl-N'-(5-sulfo-1-naphthyl)ethylenediamine (1,5-IAEDANS). The inactivation reaction follows pseudo-first-order kinetics with respect to active enzyme to less than 10% remaining enzyme activity, with a second-order inactivation rate constant of 2.6 min-1 mM-1 at pH 7.5 and 30 degrees C. A stoichiometry of 1.05 mol of reagent incorporated per mole of enzyme subunit was found for the completely inactivated enzyme. Almost complete protection of the enzyme activity and of dansyl label incorporation are afforded by MnADP or MnATP, thus suggesting that 1,5-IAEDANS interacts with an enzyme sulfhydryl group at the nucleotide binding site. The fluorescence decay of the AEDANS attached to the protein shows a single-exponential behavior with a lifetime of 18 ns. A comparison of the fluorescence band position and the fluorescence decay with those of the adduct AEDANS-acetylcysteine indicates a reduced polarity for the microenvironment of the substrate binding site. The quenching of the AEDANS moiety in the protein can be described in terms of a collisional and a static component. The rate constant for the collisional component is much lower than that obtained for the adduct in a medium of reduced polarity. These last results indicate that the AEDANS moiety is considerably shielded from the solvent when it is covalently attached to PEPCK.  相似文献   

9.
Chicken liver mevalonate 5-diphosphate decar☐ylase (ATP:(R)-5-diphosphomevalonate car☐y-lyase (dehydrating), EC 4.1.1.33) is inactivated by methylmethanethiosulfonate and 5,5′-dithiobis(2-nitrobenzoate). The presence of the substrates ATP or mevalonate 5-diphosphate protect very effectively against inactivation. The inactivation is second order with respect to methylmethanethiosulfonate, with an inactivation rate constant of (7.6 ± 0.1) · 10−5 μM−2 ·s−1, implying that the modifier may be reacting with more than one thiol in the enzyme. The enzyme is also inactivated by a number of dithiol-specific reagents, suggesting the presence of a functional dithiol. The determined pKapp values for enzyme modification by methyl methanethiosulfonate and phenylarsine oxide are 7.3 ± 0.1 and 7.6 ± 0.3, respectively. From the data presented, it is concluded that the enzyme posseses a functional dithiol that is important for substrate binding.  相似文献   

10.
Phosphoenolpyruvate carboxykinase from the cytosol of rat liver has 13 cysteines, at least one of which is known to be very reactive and essential for catalytic activity (Carlson, G. M., Colombo, G., and Lardy, H. A. (1978) Biochemistry 17, 5329-5338). In order to identify the essential cysteine, this enzyme was modified with the fluorescent sulfhydryl reagent N-(7-dimethylamino-4-methyl-3-coumarinyl)maleimide. Incubation of phosphoenolpyruvate carboxykinase with a 10% molar excess of this maleimide at 0 degrees C results in the rapid and nearly complete loss of catalytic activity. Under these conditions, 1 mol of the maleimide is incorporated per mol inactivated enzyme. The substrate GDP provides almost complete protection against inactivation and modification, while phosphoenolpyruvate protects against the rate, but not the extent, of modification. The pH dependence of the rate of enzyme inactivation suggests that the modified residue has a pK alpha of approximately 7.0. Purification and sequencing of the labeled peptide identifies the hyperreactive essential cysteine as Cys-288. This cysteine lies between two putative phosphoryl-binding domains and within a hydrophobic sequence.  相似文献   

11.
The acetoacetyl-CoA-thiolase, a product of the acetoacetate degradation operon (ato) was purified to homogeneity as judged by polyacrylamide-gel electrophoresis at pH 4.5, 7.0, and 8.3. The enzyme has a molecular weight of 166,000 and is composed of four identical subunits. The subunit molecular weight is 41,500. Histidine was the sole N-terminal amino acid detected by dansylation. The thiolase contains eight free sulhydryl residues and four intrachain disulfide bonds per mole. The ato thiolase catalyzes the CoA- dependent cleavage of acetoacetyl-CoA and the acetylation of acetyl-CoA to form acetoacetyl-CoA. The maximal velocity in the direction of acetoacetyl-CoA cleavage was 840 nmol min? (enzyme unit)?1 and the maximal velocity in the direction of acetoacetyl CoA formation was 38 nmol min?1 (enzyme unit)?1. Like other thiolases, the ato thiolase was inactivated by sulfhydryl reagents. The enzyme was protected from inactivation by sulfhydryl reagents in the presence of the acyl-CoA substrates, acetyl-CoA and acetoacetyl-CoA; however, no protection was obtained when the enzyme was incubated with the acetyl-CoA analog, acetylaminodesthio-CoA. Consistent with these results was the demonstration of an acetyl-enzyme compound when the thiolase was incubated with [1-14C]acetyl-CoA. The sensitivity of the acetyl-enzyme bond to borohydride reduction and the protection afforded by acyl-CoA substrates against enzyme inactivation by sulfhydryl reagents indicated that acetyl groups are bound to the enzyme by a thiolester bond.  相似文献   

12.
beta-Glucoside transport by phosphoenolpyruvate-hexose phosphotransferase system in Escherichia coli is inactivated in vivo by thiol reagents. This inactivation is strongly enhanced by the presence of transported substrates. In a system reconstituted from soluble and membrane-bound components, only the particulate component, the membrane-bound enzyme IIbgl appeared as the target of N-ethylmaleimide inaction. The same feature was found in the case of methyl-alpha-D-glucoside uptake via enzyme IIglc. It is shown that the sensitizing effect of substrates is specific and not generalized, methyl-alpha-D-glucoside only sensitizes enzyme IIglc and p-nitrophenyl-beta-D-glucoside only sensitizes enzyme IIbgl towards N-ethylmaleimide inactivation. The inactivation of enzyme IIbgl by thiol reagents is also promoted in vivo by fluoride inhibition of phosphoenolpyruvate synthesis. In toluene-treated bacteria, the presence of phosphoenolpyruvate protects against inactivation by thiol reagents of p-nitrophenyl-beta-D-glucoside phosphorylation. Both results suggest that the inactivator resistent form of enzyme IIbgl is an energized form of the enzyme.  相似文献   

13.
The sensitivities of three enzymes of the β-ketoadipate pathway to inactivation by N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) were determined in vivo and in vitro under conditions compatible with mutagenesis.One enzyme, β-ketoadipate enol-lactone hydrolase, is very sensitive to inactivation by low concentrations of MNNG. This enzyme is also sensitive to inactivation by N-ethylmaleimide and mercurial reagents. The free sulfhydryl content of native enol-lactone hydrolase was determined to be two moles free sulfhydryl per mole of enzyme. A 95% inactivation of enol-lactone hydrolase by MNNG results in a masking of slightly more than one mole sulfhydryl per mole enzyme.Muconate lactonizing enzyme is moderately sensitive to inactivation by low concentrations of MNNG, but is not inactivated by sulfhydryl reagents. Muconolactone isomerase is resistant to inactivation by low concentrations of MNNG and is not inactivated by sulfhydryl reagents. Upon exposure to high concentrations of MNNG, muconolactone isomerase is rapidly inactivated. Spectrophotometric evidence indicates the lysine residues are nitroguanidinated proportionally with a loss in the enzymatic activity.These data indicate that the exposure of cells to low concentrations of MNNG should affect the activity of enzymes with essential sulfhydryl groups.  相似文献   

14.
Purified maize leaf phosphoenolpyruvate carboxylase (EC 4.1.1.31) was completely inactivated by several thiol-modifying reagents, including, CuCl2, CdCl2 and N-ethylmaleimide. The inactivation by CuCl2 could be reversed by dithiothreitol, suggesting the involvement of vicinal dithiols in the inactivation process.Complete inactivation of phosphoenolpyruvate carboxylase was correlated with the incorporation of two mol (3H)N-ethylmaleimide per 100-kilodalton subunit. The total protection of the enzyme against N-ethylmaleimide inactivation afforded by the substrate, phosphoenolpyruvate, was correlated with the protection of one mol (3H)N-ethylmaleimide reactive residue per mol subunit.The complete inactivation of phosphoenolpyruvate carboxylase by N-ethylmaleimide and the protection afforded by phosphoenolpyruvate against modification suggest the presence of an essential cysteine residue in the catalytic site of the C4 leaf enzyme.Abbreviations PEP, phosphoenolpyruvate - Mops, 4-morpholinepropanesulphonic acid (Consejo Nacional de Investigaciones Científicas y Técnicas, Fundación M. Lillo y U.N. de Rosario).  相似文献   

15.
The acetyl-CoA:acetoacetate CoA-transferase of Escherichia coli was reversibly inactivated by pyridoxal 5′-phosphate. The residual activity of the enzyme was dependent on the concentration of the modifying reagent to a concentration of 5 mm. The maximum level of inactivation was 89%. Kinetic and equilibrium analyses of inactivation were consistent with a two-step process (Chen and Engel, 1975, Biochem. J.149, 619) in which the extent of inactivation was limited by the ratio of first-order rate constants for the reversible formation of an inactive Schiff base of pyridoxal 5′-phosphate and the enzyme from a noncovalent, dissociable complex of the enzyme and modifier. The calculated minimum residual activity was in close agreement with the experimentally determined value. The conclusion that the loss of catalytic activity resulted from modification of a lysine residue at the active site was based on the following data, (a) After incubation with 5 mm pyridoxal 5′-phosphate, 3.95 mol of the reagent was incorporated per mole of free enzyme with 89% loss of activity, while 2.75 mol of pyridoxal 5′-phosphate was incorporated into the enzyme-CoA intermediate with a loss of 10% of catalytic activity; the intermediate was formed in the presence of acetoacetyl-CoA; (b) acid hydrolysis of the modified, reduced enzyme-CoA intermediate yielded a single fluorescent compound that was identified as N6-pyridoxyllysine by chromatography in two solvent systems; (c) the enzyme was also protected from inactivation by saturating concentrations of free CoA and ADP but not by adenosine. The results suggested that a lysine residue is involved in the electrostatic binding of the pyrophosphate group of CoA. Carboxylic acid substrate did not protect the enzyme from inactivation.  相似文献   

16.
Chemical modification of purified d-glucosaminate dehydratase (GADH) apoenzyme by N-ethyl-maleimide (NEM) and by 7-chloro-4-aminobenzo-2-oxa-1,3-diazole (NBDC1) resulted in the time- and concentration-dependent inactivation of the enzyme in each case. The inactivation followed pseudo-first-order kinetics and a double-logarithmic plot of the observed pseudo-first-order rate constant against reagent concentration proved evidence for an approximately first-order reaction, suggesting that the modification of a single cysteine residue per mole of enzyme resulted in inactivation. Amino acid analysis of the NEM-inactivated enzyme showed that three moles of cysteine residues among six moles per mole of subunit were modified under these conditions, therefore one of the three cysteine residues modified by NEM may be essential for activity. Pyridoxal 5′-phosphate (PLP) and D-glucosaminate (GlcNA) protected the enzyme against inactivation by NEM and NBDCI. The apoenzyme was inactivated by EDTA and activity of enzyme was restored by incubation with Mn2+ in the presence of PLP. Incubation of the EDTA-treated enzyme with NEM inhibited the restoration of activity. These results suggest that one of the cysteine residues of GADH may be chelated to a Mn2+ at or near the active site of GADH, contributing to formation of the active enzyme.  相似文献   

17.
Maize leaf phosphoenolpyruvate carboxylase was completely and irreversibly inactivated by treatment with micromolar concentrations of Woodward's reagentK (WRK) for about 1 min. The inactivation followed pseudo-first-order reaction kinetics. The order of reaction with respect to WRK showed that the reagent causes formation of reversible enzyme inhibitor complex before resulting in irreversible inactivation. The loss of activity was correlated to the modification of a single carboxyl group per subunit, even though the reagent reacted with 2 carboxyl groups per protomer. Substrate PEP and PEP + Mg2+ offered substantial protection against inactivation by WRK. The modified enzyme showed a characteristic absorbance at 346 nm due to carboxyl group modification. The modified enzyme exhibited altered surface charge as seen from the elution profile on FPLC Mono Q anion exchange column. The modified enzyme was desensitized to positive and negative effectors like glucose-6-phosphate and malate. Pretreatment of PEP carboxylase with diethylpyrocarbonate prevented WRK incorporation into the enzyme, suggesting that both histidine and carboxyl groups may be closely physically related. The carboxyl groups might be involved in metal binding during catalysis by the enzyme.  相似文献   

18.
β-Glucoside transport by phosphoenolpyruvate-hexose phosphotransferase system in Escherichia coli is inactivated in vivo by thiol reagents. This inactivation is strongly enhanced by the presence of transported substrates. In a system reconstituted from soluble and membrane-bound components, only the particulate component, the membrane-bound enzyme IIbgl appeared as the target of N-ethylmaleimide inactivation. The same feature was found in the case of methyl-α-d-glucoside uptake via enzyme IIglc.It is shown that the sensitizing effect of substrates is specific and not generalized, methyl-α-d-glucoside only sensitizes enzyme IIbglc and p-nitrophenyl-β-d-glucoside only sensitizes enzyme IIbgl towards N-ethylmaleimide inactivation.The inactivation of enzyme IIbgl by thiol reagents is also promoted in vivo by fluoride inhibition of phosphoenolpyruvate synthesis. In toluene-treated bacteria, the presence of phosphoenolpyruvate protects against inactivation by thiol reagents of p-nitrophenyl-β-d-glucoside phosphorylation. Both results suggest that the inactivator resistent form of enzyme IIbgl is an energized form of the enzyme.  相似文献   

19.
γ-Aminobutyric acid-α-ketoglutarate transaminase from pig brain is irreversibly inactivated by 4-amino-5-halopentanoic acids. Protection from inactivation by the natural substrates, the pH dependence of inactivation and the incorporation of 1.7 moles of radioactive inhibitor per mole of enzyme from (S)-[U-14C]-4-amino-5-chloropentanoic acid suggest a covalent adduct at the active site of the enzyme. A mechanism-based inactivation is proposed.  相似文献   

20.
Phosphoribosylpyrophosphate synthetase from Salmonella typhimurium contains nine lysine residues per subunit and can be inactivated by reagents specific for this amino acid. Pyridoxal-P reversibly inhibited the enzyme by about 70% by forming a Schiff base derivative with lysine. Reduction with NaBH4 made this inactivation irreversible. Kinetic experiments indicated that the failure to inactivate the enzyme completely in a single treatment with pyridoxal-P reflects a reversible equilibrium between inactive Schiff base and a noncovalent complex. Modification of one lysine residue per subunit correlated with apparently total loss of activity. The rate of inactivation of the enzyme was decreased fourfold by saturating concentrations of ATP and was decreased at least 20-fold by formation of a quaternary complex of the enzyme with Mg2+, α,β-methylene ATP, and ribose-5-P. Trinitrobenzenesulfonate also irreversibly inactivated the enzyme, but this reagent was less specific in that the loss of activity corresponded to the modification of four to five lysine residues. These results suggest that an essential lysine is near the active site of Phosphoribosylpyrophosphate synthetase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号