首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new computer-aided molecular modeling approach based on the concept of three-dimensional (3D) molecular hydrophobicity potential has been developed to calculate the spatial organization of intramembrane domains in proteins. The method has been tested by calculating the arrangement of membrane-spanning segments in the photoreaction center ofRhodopseudomonas viridis and comparing the results obtained with those derived from the X-ray data. We have applied this computational procedure to the analysis of interhelical packing in membrane moiety of Na+, K+-ATPase. The work consists of three parts. In Part I, 3D distributions of electrostatic and molecular hydrophobicity potentials on the surfaces of transmembrane helical peptides were computed and visualized. The hydrophobic and electrostatic properties of helices are discussed from the point of view of their possible arrangement within the protein molecule. Interlocation of helical segments connected with short extramembrane loops found by means of optimization of their hydrophobic/hydrophilic contacts is considered in Part II. The most probable 3D model of packing of helical peptides in the membrane domain of Na+, K+-ATPase is discussed in the final part of the work.  相似文献   

2.
A new computer-aided molecular modeling approach based on the concept of three-dimensional (3D) molecular hydrophobicity potential has been developed to calculate the spatial organization of intramembrane domains in proteins. The method has been tested by calculating the arrangement of membrane-spanning segments in the photoreaction center ofRhodopseudomonas viridis and comparing the results obtained with those derived from the X-ray data. We have applied this computational procedure to the analysis of interhelical packing in membrane moiety of Na+, K+-ATPase. The work consists of three parts. In Part I, 3D distributions of electrostatic and molecular hydrophobicity potentials on the surfaces of transmembrane helical peptides were computed and visualized. The hydrophobic and electrostatic properties of helices are discussed from the point of view of their possible arrangement within the protein molecule. Interlocation of helical segments connected with short extramembrane loops found by means of optimization of their hydrophobic/hydrophilic contacts is considered in Part II. The most probable 3D model of packing of helical peptides in the membrane domain of Na+, K+-ATPase is discussed in the final part of the work.  相似文献   

3.
The Na,K-ATPase is an ion-translocating transmembrane protein that actively maintains the electrochemical gradients for Na+ and K+ across the plasma membrane. The functional protein is a heterodimer comprising a catalytic α-subunit (four isoforms) and an ancillary β-subunit (three isoforms). Mutations in the α2-subunit have recently been implicated in familial hemiplegic migraine type 2, but almost no thorough studies of the functional consequences of these mutations have been provided. We investigated the functional properties of the mutations L764P and W887R in the human Na,K-ATPase α2-subunit upon heterologous expression in Xenopus oocytes. No Na,K-ATPase-specific pump currents could be detected in cells expressing these mutants. The binding of radiolabelled [3H]ouabain to intact cells suggested that this could be due to a lack of plasma membrane expression. However, plasma membrane isolation showed that the mutated pumps are well expressed at the plasma membrane. 86Rb+-flux and ATPase activity measurements demonstrated that the mutants are inactive. Therefore, the primary disease-causing mechanism is loss-of-function of the Na,K-ATPase α2-isoform.  相似文献   

4.
The orientation of amino groups in the membrane in the α- and β-subunits of (Na+ + K+)-ATPase was examined by labeling with Boldon-Hunter reagent, N-succinimidyl 3-(4-hydroxy,5-[125I]iodophenyl)propionate), in right-side-out vesicles or in open membrane fragments from the thick ascending limbs of the Henles loop of pig kidney. Sealed right-side-out vesicles of basolateral membranes were separated from open membrane fragments by centrifugation in a linear metrizamide density gradient. After labeling, (Na+ + K+)-ATPase was purified using a micro-scale version of the ATP-SDS procedure. Distribution of label was analyzed after SDS-gel electrophoresis of α-subunit, β-subunit and proteolytic fragments of α-subunit. Both the α- and the β-subunit of (Na+ + K+)-ATPase are uniformly labeled, but the distribution of labeled residues on the two membrane surfaces differs markedly. All the labeled residues in the β-subunit are located on the extracellular surface. In the α-subunit, 65–80% of modified groups are localized to the cytoplasmic surface and 20–35% to the extracellular membrane surface. Proteolytic cleavage provides evidence for the random distribution of 125I-labeling within the α-subunit. The preservation of (Na+ + K+)-ATPase activity and the observation of distinct proteolytic cleavage patterns of the E1- and E2-forms of the α-subunit show that the native enzyme structure is unaffected by labeling with Bolton-Hunter reagent. Bolton-Hunter reagent was shown not to permeate into sheep erythrocytes under the conditions of the labeling experiment. The data therefore allow the conclusion that the mass distribution is asymmetric, with all the labeled amino groups in the β-subunit being on the extracellular surface, while the α-subunit exposes 2.6-fold more amino groups on the cytoplasmic than on the extracellular surface.  相似文献   

5.
Abstract

A method of in vitro translation scanning was applied to a variety of polytopic integral membrane proteins, a transition metal P type ATPase from Helicobacter pylori, the SERCA 2 ATPase, the gastric H+,K+ ATPase, the CCK-A receptor and the human ileal bile acid transporter. This method used vectors containing the N terminal region of the gastric H+,K+ ATPase or the N terminal region of the CCK-A receptor, coupled via a linker region to the last 177 amino acids of the β-subunit of the gastric H+,K+ ATPase. The latter contains 5 potential N-linked glycosylation sites. Translation of vectors containing the cDNA encoding one, two or more putative transmembrane domains in the absence or presence of microsomes allowed determination of signal anchor or stop transfer properties of the putative transmembrane domains by the molecular weight shift on SDS PAGE. The P type ATPase from Helicobacter pylori showed the presence of 8 transmembrane segments with this method. The SERCA 2 Ca2+ ATPase with this method had 9 transmembrane co-translational insertion domains and coupled with other evidence these data resulted in a 11 transmembrane segment model. Translation of segments of the gastric H+,K+ ATPase provided evidence for only 7 transmembrane segments but coupled with other data established a 10 membrane segment model. The G7 protein, the CCK-A receptor showed the presence of 6 of the 7 transmembrane segments postulated for this protein. Translation of segments of the human ileal bile acid transporter showed the presence of 8 membrane insertion domains. However, translation of the intact protein provided evidence for an odd number of transmembrane segments, resulting in a tentative model containing 7 or 9 transmembrane segments. Neither G7 type protein appeared to have an arrangement of sequential topogenic signals consistent with the final assembled protein. This method provides a useful addition to methods of determining membrane domains of integral membrane proteins but must in general be utilized with other methods to establish the number of transmembrane α-helices.  相似文献   

6.
The ATP4A encodes α subunit of H+, K+-ATPase that contains catalytic sites of the enzyme forming pores through cell membrane which allows the ion transport. H+, K+-ATPase is a membrane bound P-type ATPase enzyme which is found on the surface of parietal cells and uses the energy derived from each cycle of ATP hydrolysis that can help in exchanging ions (H+, K+ and Cl?) across the cell membrane secreting acid into the gastric lumen. The 3-D model of α-subunit of H+, K+-ATPase was generated by homology modeling. It was evaluated and validated on the basis of free energies and amino acid residues. The inhibitor binding amino acid active pockets were identified in the 3-D model by molecular docking. The two drugs Omeprazole and Rabeprazole were found more potent interactions with generated model of α-subunit of H+, K+-ATPase on the basis of their affinity between drug–protein interactions. We have generated ATP4A gene regulatory networks for interactions with other proteins which involved in regulation that can help in fine-tuning of proton pump and ion channels. These findings provide a new dimension for discovery and development of proton pump inhibitors and gene regulation of the ATPase. It can be helpful in better understanding of human physiology and also using synthetic biology strategy for reprogramming of parietal cells for control of gastric ulcers.  相似文献   

7.
The slack (slo2.2) gene codes for a potassium-channel α-subunit of the 6TM voltage-gated channel family. Expression of slack results in Na+-activated potassium channel activity in various cell types. We describe the purification and reconstitution of Slack protein and show that the Slack α-subunit alone is sufficient for potassium channel activity activated by sodium ions as assayed in planar bilayer membranes and in membrane vesicles.  相似文献   

8.
Previous studies have shown that cytoplasmic K+ release and the associated E2 → E1 conformational change of the Na+,K+-ATPase is a major rate-determining step of the enzyme's ion pumping cycle and hence a prime site of acute regulatory intervention. From the ionic strength dependence of the enzyme's distribution between the E2 and E1 states, it has also been found that E2 is stabilized by an electrostatic attraction. Any disruption of this electrostatic attraction would, thus, have profound effects on the rate of ion pumping. The aim of this paper is to identify the location of this interaction. Using enhanced-sampling molecular dynamics simulations with a predicted N-terminal structure added to the X-ray crystal structure of the Na+,K+-ATPase, a previously postulated salt bridge between Lys32 and Glu233 (rat sequence numbering) of the enzyme's α-subunit can be excluded. The residues never approach closely enough to form a salt bridge. In contrast, strong interactions with anionic lipid head groups were seen. To investigate the possibility of a protein-lipid interaction experimentally, the surface charge density of Na+,K+-ATPase-containing membrane fragments was estimated from zeta potential measurements to be 0.019 (± 0.001) C m−2. This is in good agreement with the charge density previously determined to be responsible for stabilization of the E2 state of 0.023 (± 0.009) C m−2 and the membrane charge density estimated here from published electron-microscopic images of 0.018C m−2. The results are, therefore, consistent with an interaction of the Na+,K+-ATPase α-subunit N-terminus with negatively-charged lipid head groups of the neighbouring cytoplasmic membrane surface as the origin of the electrostatic interaction stabilising the E2 state.  相似文献   

9.
I. I. Krivoi 《Biophysics》2016,61(5):721-732
The published data and the results of the author’s own research in the field of the molecular and functional diversity of Na,K-ATPases are reviewed. Na,K-ATPase is an integral membrane protein that maintains the concentration gradients of Na+ and K+ that are essential for electrogenesis, excitability, and several other processes of cellular transport. Most of the Na,K-ATPase of vertebrates is found in the skeletal muscle tissue, which co-expresses the α1 and α2 isoforms of the catalytic and transport α-subunit of Na,KATPase. The activity of Na,K-ATPase is crucial for the contractile function and prolonged activity of skeletal muscle. The data that have accumulated indicate that the α1 isoform of Na,K-ATPase fulfills the major pumping function. The α2 isoform fulfills additional functions related to the specific membrane localization of the protein, the functional interactions with the proteins and lipids of the environment, and fine-tuned regulation by a variety of factors, including motor activity.  相似文献   

10.
When Na+,K+-ATPase was reacted with Cu2+ and o-phenanthroline under conditions where the formation of a cross-linked dimer of the catalytic subunit (α,α-dimer) is dependent on the prior phosphorylation of the enzyme by ATP, it was found that (a) only half of the α-subunit content is phosphorylated, and only half is cross-linked; and (b) a phosphorylated α-subunit is cross-linked to an unphosphorylated α-subunit. It is suggested that the functional unit of the membrane-bound enzyme contains at least four α-subunits, and that ligand-induced half-of-the-sites reactivity may be exerted across two different intersubunit domains of the tetramer.  相似文献   

11.
Large-conductance Ca2+-activated K+ channel is formed by a tetramer of the pore-forming α-subunit and distinct accessory β-subunits (β1–β4) which contribute to BKCa channel molecular diversity. Accumulative evidences indicate that not only α-subunit alone but also the α + β subunit complex and/or β-subunit might play an important role in modulating various physiological functions in most mammalian cells. To evaluate the detailed pharmacological and biophysical properties of α + β1 subunit complex or β1-subunit in BKCa channel, we established an expression system that reliably coexpress hSloα + β1 subunit complex in HEK293 cells. The coexpression of hSloα + β1 subunit complex was evaluated by western blotting and immunolocalization, and then the single-channel kinetics and pharmacological properties of expressed hSloα + β1 subunit complex were investigated by cell-attached and outside-out patches, respectively. The results in this study showed that the expressed hSloα + β1 subunit complex demonstrated to be fully functional for its typical single-channel traces, Ca2+-sensitivity, voltage-dependency, high conductance (151 ± 7 pS), and its pharmacological activation and inhibition.  相似文献   

12.
Detergent-solubilization of hog gastric microsomal membrane proteins followed by affinity chromatography using wheat germ agglutinin or Ricinus communis I agglutinin resulted in the isolation of five glycoproteins with the apparent molecular masses on sodium dodecyl sulfate polyacrylamide gels of (in kDa): 60–80 (two glycoproteins sharing this molecular mass); 125–150; and 190–210. In the nonionic detergent Nonidet P-40 (NP-40), the 94 kDa H+/K+-ATPase was recovered exclusively in the lectin-binding fraction; however, in the cationic detergent dodecyltrimethylammonium bromide, most of the ATPase was recovered in the nonbinding fraction. Detection of glycoproteins either by periodic acid-dansyl hydrazine staining of carbohydrate in polyacrylamide gels or by Western blots probed with lectins indicated that the majority of the ATPase molecules are not glycosylated. In addition, in the absence of microsomal glycoproteins, the NP-40-solubilized ATPase does not bind to a lectin column. Taken together, these results suggest that the recovery of NP-40-solubilized ATPase in the lectin-binding fraction is due to its noncovalent interaction with a gastric microsomal glycoprotein. Immunoprecipitation of the ATPase from NP-40-solubilized microsomal membrane proteins resulted in the co-precipitation of a single 60–80 kDa glycoprotein. Characterization of the 60–80 kDa glycoprotein associated with the ATPase revealed that: it is a transmembrane protein; it has an apparent core molecular mass of 32 kDa; and, it has five asparagine-linked oligosaccharide chains. Given its similarity to the glycosylated β-subunit of the Na+/K+-ATPase, this 60–80 kDa gastric microsomal glycoprotein is suggested to be a β-subunit of the H+/K+-ATPase.  相似文献   

13.
Large conductance calcium activated potassium channels (BKCa) are fundamental in the control of cellular excitability. Thus, compounds that activate BKCa channels could provide potential therapies in the treatment of pathologies of the cardiovascular and central nervous system. A series of novel N-arylbenzamide compounds, and the reference compound NS1619, were evaluated for BKCa channel opener properties in Human Embryonic Kidney (HEK293) cells expressing the human BKCa channel α-subunit alone or α + β1-subunit complex.Channel activity was determined using a non-radioactive Rb+ efflux assay to construct concentration effect curves for each compound. All N-arylbenzamide compounds and NS1619 evoked significant (p <0.05) concentration related increases in Rb+ efflux both in cells expressing α-subunit alone or α + β1-subunits. Co-expression of the β1-subunit modified the Rb+ efflux responses, relative to that obtained in cells expressing the α-subunit alone, for most of the N-arylbenzamide compounds, in contrast to NS1619. The EC40 values of NS1619, BKMe1 and BKOEt1 were not significantly affected by the co-expression of the BKCa channel α + β1-subunits. In contrast, 5 other N-arylbenzamides (BKPr2, BKPr3, BKPr4, BKH1 and BKVV) showed a significant (p <0.05) 2- to 10-fold increase in EC40 values when tested on the BKCa α + β1-subunit expressing cells compared to BKCa α-subunit expressing cells. Further, the Emax values for BKPr4, BKVV and BKH1 were lower in the BKCa channel α + β1-subunit expressing cells.In conclusion, the N-arylbenzamides studied, like NS1619, were able to activate BKCa channels formed of the α-subunit only. The co-expression of the β1-subunit, however, modified the ability of certain compounds to active the channel leading to differentiated pharmacodynamic profiles.  相似文献   

14.
Purified dog kidney (Na+ + K+)-ATPase (EC 3.6.1.3) was inactivated with high concentrations of 2-mercaptoethanol at 50–55°C. The inactivation was prevented by NaCl or KCl, with KCl being more effective than NaCl (the former ion being about one order more efficient under a typical set of experimental conditions). A disulfide bond in the β-subunit of the enzyme protein was prevented from reductive cleavage by NaCl or KCl in accordance with protection of the enzyme activity. Choline chloride did not exert a significant protective effect over a similar concentration range. (Na+ + K+)-ATPase was also inactivated with high concentrations of 2-mercaptoethanol in the presence of low concentrations of dodecyl sulfate. This inactivation was also prevented by NaCl or KCl, with the latter being again more efficient than the former. These results indicate that Na+ and K+ bound to their respective ion-binding sites on the α-subunit exert a protective effect on a disulfide bond on the β-subunit. This suggests some sort of interaction between the α- and the β-subunits.  相似文献   

15.
The study of protein-protein interactions (PPI) has proven fundamental for the understanding of the most relevant cell processes. Any protein domain can participate in PPI, including transmembrane (TM) segments that can establish interactions with other TM domains (TMDs). However, the hydrophobic nature of TMDs and the environment they occupy complicates the study of intramembrane PPI, which demands the use of specific approaches and techniques. In this review, we will explore some of the strategies available to study intramembrane PPI in vitro, in vivo, and, in silico, focusing on those techniques that could be carried out in a standard molecular biology laboratory regarding its previous experience with membrane proteins.  相似文献   

16.
Purified kidney Na+,K+-ATPase whose α-subunit is cleaved by chymotrypsin at Leu266-Ala267, loses ATPase activity but forms the phosphoenzyme intermediate (EP) from ATP. When EP formation was correlated with extent of α-cleavage in the course of proteolysis, total EP increased with time before it declined. The magnitude of this rise indicated doubling of the number of phosphorylation sites after cleavage. Together with previous findings, these data establish that half of the α-subunits of oligomeric membrane-bound enzyme are dormant and that interaction of the N-terminal domain of α-subunit with its phosphorylation domain causes this half-site reactivity. Evidently, disruption of this interaction by proteolysis abolishes overall activity while it opens access to phosphorylation sites of all α-subunits.  相似文献   

17.
We have previously demonstrated that Na+, K+-ATPase activity is present in both differentiated plasma membranes from Electrophorus electricus (L.) electrocyte. Considering that the α subunit is responsible for the catalytic properties of the enzyme, the aim of this work was to study the presence and localization of α isoforms (α1 and α2) in the electrocyte. Dose-response curves showed that non-innervated membranes present a Na+, K+-ATPase activity 2.6-fold more sensitive to ouabain (I50=1.0±0.1 μM) than the activity of innervated membranes (I50=2.6±0.2 μM). As depicted in [3H]ouabain binding experiments, when the [3H]ouabain-enzyme complex was incubated in a medium containing unlabeled ouabain, reversal of binding occurred differently: the bound inhibitor dissociated 32% from Na+, K+-ATPase in non-innervated membrane fractions within 1 h, while about 50% of the ouabain bound to the enzyme in innervated membrane fractions was released in the same time. These data are consistent with the distribution of α1 and α2 isoforms, restricted to the innervated and non-innervated membrane faces, respectively, as demonstrated by Western blotting from membrane fractions and immunohistochemical analysis of the main electric organ. The results provide direct evidence for a distinct distribution of Na+, K+-ATPase α-subunit isoforms in the differentiated membrane faces of the electrocyte, a characteristic not yet described for any polarized cell.  相似文献   

18.
Substitutions within the cardenolide target site of several insects' Na,K-ATPase α-subunits may confer resistance against toxic cardenolides. However, to which extent these substitutions alter the Na,K-ATPase's kinetic properties and how they interact with different β-subunits is not clear. The cardenolide-adapted milkweed bug Oncopeltus fasciatus possesses three paralogs of the α-subunit (A, B, and C) that differ in number and identity of resistance-conferring substitutions. We introduced these substitutions into the α-subunit of Drosophila melanogaster and combined them with the β-subunits Nrv2.2 and Nrv3. The substitutions Q111T-N122H-F786N-T797A (A-copy mimic) and Q111T-N122H-F786N (B-copy mimic) mediated high insensitivity to ouabain, yet they drastically lowered ATPase activity. Remarkably, the identity of the β-subunit was decisive and all α-subunits were less active when combined with Nrv3 than when combined with Nrv2.2. Both the substitutions and the co-expressed β-subunit strongly affected the enyzme's affinity for Na+ and K+. Na+ affinity was considerably higher for all enzymes expressed with nrv3 while expression with nrv2.2 mostly increased K+ affinity. Our results provide the first evidence that resistance against cardenolides comes at the cost of significantly altered kinetic properties of the Na,K-ATPase. The β-subunit can strongly modulate these properties but cannot fully compensate for the effect of the substitutions.  相似文献   

19.
The N-terminus of the Na+,K+-ATPase α-subunit shows some homology to that of Shaker-B K+ channels; the latter has been shown to mediate the N-type channel inactivation in a ball-and-chain mechanism. When the Torpedo Na+,K+-ATPase is expressed in Xenopus oocytes and the pump is transformed into an ion channel with palytoxin (PTX), the channel exhibits a time-dependent inactivation gating at positive potentials. The inactivation gating is eliminated when the N-terminus is truncated by deleting the first 35 amino acids after the initial methionine. The inactivation gating is restored when a synthetic N-terminal peptide is applied to the truncated pumps at the intracellular surface. Truncated pumps generate no electrogenic current and exhibit an altered stoichiometry for active transport. Thus, the N-terminus of the α-subunit appears to act like an inactivation gate and performs a critical step in the Na+,K+-ATPase pumping function.  相似文献   

20.
The polypeptide corresponding to the signal sequence of the M13 coat protein and the five N-terminal residues of the mature protein was prepared by solid-phase peptide synthesis with a 15N isotopic label at the alanine-12 position. Multidimensional solution NMR spectroscopy and molecular modeling calculations indicate that this polypeptide assumes helical conformations between residues 5 and 20, in the presence of sodium dodecylsulfate micelles. This is in good agreement with circular dichroism spectroscopic measurement, which shows an α-helix content of approximately 42%. The α-helix comprises an uninterrupted hydrophobic stretch of ≤12 amino acids, which is generally believed to be too short for a stable transmembrane alignment in a biological bilayer. The monoexponential proton-deuterium exchange kinetics of this hydrophobic helical region is characterized by half-lives of 15–75 minutes (pH 4.2, 323 K). When the polypeptide is reconstituted into phospholipid bilayers, the broad anisotropy of the proton-decoupled 15N solid-state NMR spectroscopy indicates that the hydrophobic helix is immobilized close to the lipid bilayer surface at the time scale of 15N solid-state NMR spectroscopy (10−4 seconds). By contrast, short correlation times, immediate hydrogen-deuterium exchange as well as nuclear Overhauser effect crosspeak analysis suggest that the N and C termini of this polypeptide exhibit a mobile random coil structure. The implications of these structural findings for possible mechanisms of membrane insertion and translocation as well as for membrane protein structure prediction algorithms are discussed. © 1997 Wiley-Liss Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号