首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Employing a photoaffinity labeling procedure with 8-azido-S-adenosyl-l-[methyl-3H]methionine (8-N3-Ado[methyl-3H]Met), the binding sites for S-adenosyl-l-methionine (AdoMet) of three protein N-methyltransferases [AdoMet:myelin basic protein-arginine N-methyltransferase (EC2.1.1.23); AdoMet:histone-arginin N-methyltransferase (EC2.1.1.23); and AdoMet:cytochromec-lysine N-methyltransferase (EC2.1.1.59)] have been investigated. The incorporation of the photoaffinity label into the enzymes upon UV irradiation was highly specific. In order to define the AdoMet binding sites, the photolabeled enzymes were sequentially digested with trypsin, chymotrypsin, and endoproteinase Glu-C. After each proteolytic digestion, radiolabeled peptide from each enzyme was resolved on HPLC first by gradient elution and further purified by an isocratic elution. Retention times of the purified radiolabeled peptides from the three enzymes from the corresponding proteolysis were significantly different, indicating that their sizes and compositions were different. Amino acid composition analysis of these peptides confirmed further that the AdoMet binding sites of these protein N-methyltransferases are quite different.  相似文献   

2.
A photoaffinity analog of cyclic AMP, 8-azidoadenosine-3′,5′-monophosphate (8-N3cAMP), and a linear gradient sodium dodecyl sulfate-polyacrylamide gel system have been used to photolabel and separate possible cyclic AMP binding sites in whole cells of the sarcoma 37 line. At least four sites within the whole sarcoma 37 cell bind [32P]8-N3cAMP such that they are saturated at 1.0 μm concentration. These four binding moieties appear to have measurably different affinities for 8-N3cAMP and the number of total sites labeled per cell differs with each binding moiety. Cell fractionation allows separation of some of the photolabeled sites and gives an indication as to the geographical location of these binding sites within the whole cell. Enrichment by cell fractionation allows additional photolabeled sites to be observed.  相似文献   

3.
4.
Direct photoaffinity labeling of leukotriene binding sites   总被引:1,自引:0,他引:1  
Due to their conjugated double bonds the leukotrienes themselves are photolabile compounds and may therefore be used directly for photoaffinity labeling of leukotriene binding sites. Cryofixation eliminates unspecific labeling taking place in solution by photoisomers and photodegradation products of leukotrienes. After fixation of receptor ligand interactions by shock-freezing of the samples, irradiation-induced highly reactive excited states and/or intermediates can form covalent bonds with the respective binding site in the frozen state. After cryofixation of a solution of albumin incubated with [3H8]leukotriene E4, irradiation at 300 nm resulted in time-dependent incorporation of radioactivity into the protein. Photoaffinity labeling of rat as well as of human blood serum with [3H8]leukotriene E4 after cryofixation revealed that only one polypeptide with an Mr of 67,000 was labeled. This polypeptide was identified as albumin. Photoaffinity labeling of rat liver membrane subfractions enriched with sinusoidal membranes resulted in the labeling of a polypeptide with an apparent Mr of 48,000, whereas no polypeptide was predominantly labeled in the subfraction enriched with canalicular membranes. Photoaffinity labeling of isolated hepatocytes disclosed different leukotriene E4 binding polypeptides. In the particulate fraction of hepatocytes a polypeptide with an apparent Mr of 48,000 was labeled predominantly, whereas in the soluble fraction several polypeptides were labeled to a similar extent. One of these, with an apparent Mr of 25,000, was identified as subunit 1 of glutathione transferases by immunoprecipitation. The method of direct photoaffinity labeling in the frozen state after cryofixation using leukotrienes as photoactivatable compounds, as exemplified by leukotriene E4, may be most useful for the identification and characterization of various leukotriene binding sites, including receptors, leukotriene-metabolizing enzymes, and transport systems.  相似文献   

5.
Characterization of photoaffinity labeling of benzodiazepine binding sites   总被引:12,自引:0,他引:12  
The specific photoaffinity labeling of membrane-bound and detergent-solubilized benzodiazepine binding sites has been investigated using UV irradiated [3H] flunitrazepam as a photochemical probe. The time course and the regional and pharmacological specificity of the photolabeling reaction has been determined for "brain-specific" benzodiazepine binding sites; "peripheral-type" binding sites treated in an identical manner were not specifically labeled. Comparison of the number of sites labeled and blocked by [3H]flunitrazepam photolabeling of detergent-solubilized preparations indicated that about one site was blocked and unavailable for reversible binding for each site photolabeled. In contrast, when membrane-bound sites were photolabeled, about four sites were inactivated for each site photolabeled. Examination of photolabeled binding sites from various brain regions including cortex, striatum, and hippocampus using sodium dodecyl sulfate-polyacrylamide gel electrophoresis gave only a single labeled band of apparent Mr = 48,000.  相似文献   

6.
The fluorescent probe anilinonaphthalene-8-sulfonate binds to adipocyte lipid binding protein at a site that competes with normal physiological ligands, such as fatty acids. Binding to the protein is accompanied by a relatively large increase in fluorescent intensity. To correlate the major change in optical properties and to determine the mechanism of competitive inhibition with fatty acids, the crystal structure of the protein with the bound fluorophore has been determined. In addition, the thermodynamic contributions to the binding reaction have been studied by titration calorimetry. Because the binding site is in a relatively internal position, kinetic studies have also been carried out to determine k(on). The results indicate that binding is not accompanied by any major conformational change. However, the negatively charged sulfonate moiety is not positioned the same as the carboxylate of fatty acid ligands as determined in previous studies. Nonetheless, the binding reaction is still driven by enthalpic effects. As judged by the crystallographic structure, a significant amount of the surface of the fluorophore is no longer exposed to water in the bound state.  相似文献   

7.
L Michel  J Garin  J P Issartel  P V Vignais 《Biochemistry》1989,28(26):10022-10028
4-Azido-2-nitrophenyl pyrophosphate (azido-PPi) labeled with 32P in the alpha position was prepared and used to photolabel beef heart mitochondrial F1. Azido-PPi was hydrolyzed by yeast inorganic pyrophosphatase, but not by mitochondrial F1-ATPase. Incubation of F1 with [alpha-32P]azido-PPi in the dark under conditions of saturation resulted in the binding of the photoprobe to three sites, two of which exhibited a high affinity (Kd = 2 microM), the third one having a lower affinity (Kd = 300 microM). Mg2+ was required for binding. As with PPi [Issartel et al. (1987) J. Biol. Chem. 262, 13538-13544], the binding of 3 mol of azido-PPi/mol of F1 resulted in the release of one tightly bound nucleotide. ADP, AMP-PNP, and PPi competed with azido-PPi for binding to F1, but Pi and the phosphate analogue azidonitrophenyl phosphate did not. The binding of [32P]Pi to F1 was enhanced at low concentrations of azido-PPi, as it was in the presence of low concentrations of PPi. Sulfite, which is thought to bind to an anion-binding site on F1, inhibited competitively the binding of both ADP and azido-PPi, suggesting that the postulated anion-binding site of F1 is related to the exchangeable nucleotide-binding sites. Upon photoirradiation of F1 in the presence of [alpha-32P]azido-PPi, the photoprobe became covalently bound with concomitant inactivation of F1. The plots relating the inactivation of F1 to the covalent binding of the probe were rectilinear up to 50% inactivation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Microtubule-associated proteins (MAPs) are critical regulators of microtubule dynamics and functions, and have long been proposed to be essential for many cellular events including neuronal morphogenesis and functional maintenance. In this study, we report the characterization of a new microtubule-associated protein, we named MAP8. The protein of MAP8 is mainly restricted to the nervous system postnatally in mouse. Its expression could first be detected as early as at embryonic day 10, levels plateau during late embryonic and neonatal periods, and subsequently decrease moderately to remain constant into adulthood. In addition to its carboxyl terminal binding site, the MAP8 polyprotein also contains a functional microtubule-binding domain at its N-terminal segment. The association of the carboxyl terminal of the light chain with actin microfilaments could also be detected. Our findings define MAP8 as a novel microtubule associated protein containing two microtubule binding domains.  相似文献   

9.
Ethidium binding sites on plasmid DNA determined by photoaffinity labeling   总被引:1,自引:0,他引:1  
Photoaffinity labeling of pBR322 with ethidium monoazide (8-azido-3-amino-5-ethyl-6-phenylphenanthridinium chloride) was used to provide evidence for the sequence specificity of ethidium binding to native DNA. DNA-drug interactions were examined at concentrations of eight covalently bound ethidium drugs per molecule of pBR322 (4363 base pairs). Restriction enzyme cutting was blocked by the covalent binding of a drug molecule at (or near) the enzyme recognition sequence. This phenomenon was observed with all restriction enzymes tested and was not limited to specific regions of the pBR322 molecule. Double-digestion experiments indicated that a drug molecule may bind 2 to 3 base pairs outside the recognition sequence and still block restriction enzyme digestion. Intact plasmid was treated with [3H]ethidium monoazide and digested with restriction enzymes. The amount of covalently-linked ethidium analog was quantitated for different restriction fragments and the G-C content of each fragment was determined from the DNA sequence. In approximately half of the fragments the drug appeared to preferentially bind at a G-C base pair. However, no preference for specific sequences such as 5'-C-G-3' was detected, as had been suggested by previous modeling studies with ethidium bromide. The other fragments were located in specific map regions of the plasmid and did not bind drug with a strict dependence on GC content suggesting that binding specificity may depend on more than one structural feature of the DNA.  相似文献   

10.
Kawabata T  Go N 《Proteins》2007,68(2):516-529
One of the simplest ways to predict ligand binding sites is to identify pocket-shaped regions on the protein surface. Many programs have already been proposed to identify these pocket regions. Examination of their algorithms revealed that a pocket intrinsically has two arbitrary properties, "size" and "depth". We proposed a new definition for pockets using two explicit adjustable parameters that correspond to these two arbitrary properties. A pocket region is defined as a space into which a small probe can enter, but a large probe cannot. The radii of small and large probe spheres are the two parameters that correspond to the "size" and "depth" of the pockets, respectively. These values can be adjusted individual putative ligand molecule. To determine the optimal value of the large probe spheres radius, we generated pockets for thousands of protein structures in the database, using several size of large probe spheres, examined the correspondence of these pockets with known binding site positions. A new measure of shallowness, a minimum inaccessible radius, R(inaccess), indicated that binding sites of coenzymes are very deep, while those for adenine/guanine mononucleotide have only medium shallowness and those for short peptides and oligosaccharides are shallow. The optimal radius of large probe spheres was 3-4 A for the coenzymes, 4 A for adenine/guanine mononucleotides, and 5 A or more for peptides/oligosaccharides. Comparison of our program with two other popular pocket-finding programs showed that our program had a higher performance of detecting binding pockets, although it required more computational time.  相似文献   

11.
Carboxyl-terminal cholecystokinin octapeptide (CCK8) binding sites were studied in the human cerebellar system by autoradiography. High affinity CCK8 binding sites were demonstrated in the main cerebellar afferent nuclei, namely the inferior olivary complex and the pontine nuclei. This localization of CCK8 binding sites was partly correlated with already described CCK containing terminals. In the cerebellar cortex, high affinity CCK8 binding sites were detected with a laminar distribution. Levels were higher in the granular layer (mostly in the superficial part) and lower in the white matter and the Purkinje cell layer. The non-specific binding was homogenous and particularly low (9%) in the cerebellar cortex but a non-specific binding was selectively localized in the deep cerebellar nuclei. Those results illustrate the species variability of CCK binding sites in the cerebellum and are briefly discussed in relation with the low level of CCK immunoreactivity in this structure. The presence of CCK8 binding sites in cerebellar afferent nuclei and cortex suggests a role of CCK in human cerebellar physiology and particularly in the modulation of afferent inputs to the cerebellum.  相似文献   

12.
Specific binding sites for cholecystokinin (CCK) have been characterized in a particulate membrane fraction of rat cerebral cortex using a biologically active 125I-labeled derivative of the C-terminal octapeptide of CCK (CCK-8) prepared by reaction with the iodinated form of the imidoester (125IIE), methyl-p-hydroxybenzimidate. The time course of binding to cortical membranes was rapid, temperature dependent, and saturable. Half-maximal binding at 24 degrees C was reached in 30 min and full binding at 120 min. At 37 degrees C there was only a slight increase in 125IIE-CCK-8 bound after 15 min. The addition of a large excess of CCK-8 after 30 min of binding at 24 degrees C caused a prompt and rapid decline in radioligand bound showing that the interaction was reversible. There was a progressive decline in the amount of 125IIE-CCK-8 bound to membranes with increasing concentrations of CCK-8 and other structurally related peptides. CCK-8 displaced 50% of the radioligand at 4 nM, CCK-33 at 10 nM, and gastrin (desulfated CCK-8) at 60 nM. Secretin, a structurally unrelated peptide, was unable to displace the radioligand from cortical membranes at 1.0 microM. Finally, 125IIE-CCK-8 exposed to cortical membranes or to buffers that had previously contained such membranes for 60 min at 24 degrees C bound equally as well to fresh cortical membranes as control radioligand that had not been exposed to the same conditions. Thus the 125I-CCK-8 radioligand used in this study was highly resistant to degradative processes in rat brain tissue.  相似文献   

13.
Carbon monoxide is a useful vibrational probe of heme binding sites in proteins, because FeCO backbonding is modulated by polar interactions with protein residues, and by variations in the donor strength of the trans ligand. This modulation is sensitively monitored by the CO and FeC stretching frequencies, which are readily detectable in infrared and resonance Raman spectra. The two frequencies are anticorrelated, and the nuFeC/nuCO position along the correlation line reflects the type and strength of distal polar interactions. Changes in the trans ligand donor strength shift the correlation to higher or lower positions. Illustrative applications of the nuFeC/nuCO diagram are reviewed for proteins bearing histidine and thiolate axial ligands. Steric crowding has not been found to affect the nuFeC/nuCO correlations significantly, except in the special case of cytochrome oxidase, where the heme-bound CO may interact with the nearby CuB center.  相似文献   

14.
The measurement of infrared spectra for cyanide liganded to hemeproteins and hemins has been investigated. The hemeproteins included human methemoglobin A, lamprey methemoglobin, metchlorocruorin, horse metmyoglobin, and horseradish peroxidase. The hemins were dicyanide and monopyridine monocyanide species of deuteroporphyrin IX iron(III) and its 2,4-divinyl(proto) and 2,4-diacetyl derivatives. C-N stretch bands of low intensity detected near 2100 cm-1 exhibit changes in frequency, width, intensity, and isotope shift with changes in cyanide compound structure. Infrared band parameters are particularly sensitive to a change in oxidation state (Fe2+ versus Fe3+) and are affected to a lesser extent by changes in porphyrin ring substituent, ligand trans to the cyanide, and protein structure. Evidence of multiple conformers (i.e. multiple C-N stretch bands) was found for several hemeproteins. The cyanide infrared spectra provide direct evidence for cyanide binding as a metal cyanide (Fe--C identical to N) and against HCN being the ligand in nitrile-like bonding (Fe--N identical to C--H) in all the hemeprotein and hemin cyanides studied. With the reduced horseradish peroxidase cyanide, differences between infrared spectra for D2O and H2O solutions can result from hydrogen bonding between a protein amino acid residue and the distal atom of the cyanide (Fe--C identical to N...H+--R). The binding of cyanide to reduced iron (Fe2+) of a hemeprotein was only observed in the case of the reduced peroxidase. These findings demonstrate that cyanide infrared spectra can not only determine when cyanide is bound to a metalloprotein but can also provide information on how the cyanide is bonded to metal and on characteristics of the ligand binding site.  相似文献   

15.
Previous attempts in several laboratories, including ours, to purify oligosaccharyl-transferase have met with limited success because of the lability of the membrane-associated enzyme after solubilization with detergents. In an effort to identify the enzyme in face of this lability, we recently developed a photoaffinity reagent to label the active site [J. K. Welply, P. Shenbagamurthi, F. Naider, H. R. Park, and W. J. Lennarz (1985) J. Biol. Chem. 260, 6459-6465]. In this report, the preparations of a more sensitive selective labeling probe, 125I-labeled N alpha-3-(4-hydroxyphenylpropionyl)-Asn-Lys-(N epsilon-p-azidobenzoyl)-Thr-NH2, is described. Using this new probe, we have confirmed, independently of catalytic activity, that hen oviduct oligosaccharyltransferase is tightly associated with the endoplasmic reticulum membrane. The 125I-labeled oligosaccharyltransferase was released from the membrane by detergent and strong alkali treatments but not by sonication, high salt, or hypotonic shock. However, all procedures that released the enzyme from the membrane resulted in a dramatic loss of enzyme activity. Treatment of sealed microsomal membrane vesicles with phospholipase A resulted in nearly complete enzyme inactivation; in contrast, phospholipase C or D had moderate or little effect, respectively. Taken together, these results suggest that the hydrophobic environment of the membrane is required for oligosaccharyltransferase activity. Trypsin treatment of intact vesicles diminished enzyme activity by nearly 70%, but it had no effect on the binding affinity of the enzyme for the 125I-labeled photoaffinity probe. This result suggests that the polypeptide acceptor portion of oligosaccharyltransferase is lumenally disposed, and that a trypsin-sensitive, cytoplasmically oriented domain or another subunit binds the carbohydrate donor, dolichol-PP-oligosaccharide.  相似文献   

16.
A photoreactive analog of the cytokinin 6-benzylaminopurine was prepared by the method of Theiler et. al. (1) modified so as to include a radioactive atom in the final product, [methylene-14C] 2-azido-6-benzylaminopurine. The affinity of this doubly labeled cytokinin probe for a previously described cytokinin receptor protein (2,3) is very nearly the same as for the parent cytokinin. The cytokinin probe was covalently incorporated into the receptor protein by irradiation with ultraviolet light, and its presence there was quantitatively established by assaying for non-dialyzable 14C. The labeled protein was subjected to SDS polyacrylamide gel electrophoresis and the subunits assayed for radioactivity by fluorography. Each of the four subunits of the receptor protein was labeled with 14C to some extent. The data suggest that all four subunits of the protein either actively participate in the formation of the cytokinin binding site or exist in close proximity to it.  相似文献   

17.
Slade DJ  Chiswell B  Sodetz JM 《Biochemistry》2006,45(16):5290-5296
Human C8 is one of five components of the membrane attack complex of complement (MAC). It contains three subunits (C8alpha, C8beta, C8gamma) arranged as a disulfide-linked C8alpha-gamma dimer that is noncovalently associated with C8beta. C8alpha, C8beta, and complement components C6, C7, and C9 form the MAC family of proteins. All contain N- and C-terminal modules and an intervening 40-kDa segment referred to as the membrane attack complex/perforin (MACPF) domain. During MAC formation, C8alpha binds and mediates the self-polymerization of C9 to form a pore-like structure on target cells. The C9 binding site was previously shown to reside within a 52-kDa segment composed of the C8alpha N-terminal modules and MACPF domain (alphaMACPF). In the present study, we examined the role of the MACPF domain in binding C9. Recombinant alphaMACPF and a disulfide-linked alphaMACPF-gamma dimer were successfully produced in Escherichia coli and purified. alphaMACPF was shown to simultaneously bind C8beta, C8gamma, and C9 and form a noncovalent alphaMACPF.C8beta.C8gamma.C9 complex. Similar results were obtained for the recombinant alphaMACPF-gamma dimer. This dimer bound C8beta and C9 to form a hemolytically active (alphaMACPF-gamma).C8beta.C9 complex. These results indicate that the principal binding site for C9 lies within the MACPF domain of C8alpha. They also suggest this site and the binding sites for C8beta and C8gamma are distinct. alphaMACPF is the first human MACPF domain to be produced recombinantly and in a functional form. Such a result suggests that this segment of C8alpha and corresponding segments of the other MAC family members are independently folded domains.  相似文献   

18.
Photoreactive derivatives of imidacloprid and its nitromethylene analogue were synthesized as candidate photoaffinity probes for identifying the amino acid residues of nicotinic acetylcholine receptors (nAChRs) that interact with the neonicotinoid insecticides. When the candidate probes were injected into American cockroaches, the nerve cord neural activity initially increased, then ceased and death of the insect followed. Both the nerve cord and toxicity were enhanced by changing the photoreactive substituent from the para position to the meta position on the spacer benzyl moiety. When tested on a Drosophila SAD/chicken beta2 hybrid, recombinant nAChR expressed in Xenopus oocytes, the nitromethylene candidate probes showed agonist activity similar to that previously observed for imidacloprid.  相似文献   

19.
In the present report, we demonstrate that Tb3+ binds to protein kinase C and serves as a luminescent reporter of certain cationic metal-binding sites. Tb3+ titration of 50 nM protein kinase C results in a 20-fold enhancement of Tb3+ luminescence which is half-maximal at 12 microM Tb3+. A Kd of approximately 145 nM was determined for Tb3+ binding to the enzyme. The excitation spectrum of bound Tb3+ exhibits a peak at 280 nm characteristic of energy transfer from protein tryptophan or tyrosine residues. The luminescence of this complex can be markedly decreased by other metals, including Pb2+ (IC50 = 25 microM), La3+ (IC50 = 50 microM), Hg2+ (IC50 = 300 microM), Ca2+ (IC50 = 6 mM), and Zn2+ (IC50 greater than 10 mM), and chelation of Tb3+ by 2 mM EGTA. Tb3+ binding to protein kinase C is correlated with its inhibition of protein kinase activity (IC50 = 8 microM), r = 0.99) and phorbol ester binding (IC50 = 15 microM, r = 0.98). Tb3+ inhibition of protein kinase C activity cannot be overcome by excess Ca2+, but can be partially overcome with excess phosphatidylserine or by chelation of Tb3+ with EGTA. Tb3+ noncompetitively inhibits phorbol ester binding by decreasing the maximal extent of binding without significantly altering binding affinity. The results suggest that the Tb3(+)-binding site is at or allosterically related to the enzyme's phosphatidylserine-binding site, but is distinct from the phorbol ester-binding domain and the Ca2(+)-binding site that regulates enzyme activity.  相似文献   

20.
Tucker MJ  Oyola R  Gai F 《Biopolymers》2006,83(6):571-576
Recently, it is has been shown that the C=N stretching vibration of a non-natural amino acid, p-cyano-phenylalanine (PheCN), could be used as an infrared reporter of local environment. Here, we further showed that the fluorescence emission of PheCN is also sensitive to solvent and, therefore, could be used as a novel optical probe for protein binding and folding studies. Moreover, we found that the fluorescence quantum yield of PheCN is nearly five times larger than that of phenylalanine and, more importantly, can be selectively excited even when other aromatic amino acids are present, thus making it a more versatile fluorophore. To test the feasibility of using PheCN as a practical fluorescent probe, we studied the binding of calmodulin (CaM) to a peptide derived from the CaM-binding domain of skeletal muscle myosin light chain kinase (MLCK). The peptide (MLCK3CN) contains a single PheCN residue and has been shown to bind to CaM with high affinity. As expected, addition of CaM into a MLCK3CN solution resulted in quenching of the PheCN fluorescence. A series of stochiometric titrations further allowed us to determine the binding affinity (Kd) of this peptide to CaM. Taken together, these results indicated that the PheCN fluorescence is sensitive to environment and could be applicable to a wide variety of biological problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号