首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
Vrp1p/verprolin/End5p is a Saccharomyces cerevisiae proline-rich protein, structurally and functionally related to human Wiskott–Aldrich syndrome protein-interacting protein. Vrp1p is required for viability at 37°C, but not 24°C. Here, we show that loss of Vrp1p ( vrp1Δ ) leads to a 3–4-fold delay in cytokinesis, wide bud necks, abnormal actomyosin rings, and aberrant septa even at 24°C. Like other mutations affecting the actomyosin ring, vrp1Δ is synthetic lethal with deletion of HOF1 (or CYK2 ), which encodes a protein related to mammalian proline serine threonine phosphatase-interacting protein and Schizosaccharomyces pombe Cdc15p required for an actomyosin ring-independent pathway of cytokinesis in S. cerevisiae . At 37°C, vrp1Δ cells rapidly cease dividing and exhibit a novel terminal phenotype: a single large bud, two well-separated nuclei, and an interphase microtubule array. The arrested cells have a persistent ring containing both actin and myosin at the bud neck. Many also exhibit some polarisation of cortical actin patches to the bud neck. Vrp1p binds an SH3-domain-containing fragment of Hof1p in vitro . Vrp1p is required in vivo for Hof1p relocalisation to a single ring at the bud neck prior to cytokinesis at 37°C, but not at 24°C. Vrp1p thus acts in both actomyosin ring formation and function, as well as in Hof1p localisation during cytokinesis.  相似文献   

2.
Whereas actomyosin and septin ring organization and function in cytokinesis are thoroughly described, little is known regarding the mechanisms by which the actomyosin ring interacts with septins and associated proteins to coordinate cell division. Here we show that the protein product of YPL158C, Aim44p, undergoes septin-dependent recruitment to the site of cell division. Aim44p colocalizes with Myo1p, the type II myosin of the contractile ring, throughout most of the cell cycle. The Aim44p ring does not contract when the actomyosin ring closes. Instead, it forms a double ring that associates with septin rings on mother and daughter cells after cell separation. Deletion of AIM44 results in defects in contractile ring closure. Aim44p coimmunoprecipitates with Hof1p, a conserved F-BAR protein that binds both septins and type II myosins and promotes contractile ring closure. Deletion of AIM44 results in a delay in Hof1p phosphorylation and altered Hof1p localization. Finally, overexpression of Dbf2p, a kinase that phosphorylates Hof1p and is required for relocalization of Hof1p from septin rings to the contractile ring and for Hof1p-triggered contractile ring closure, rescues the cytokinesis defect observed in aim44∆ cells. Our studies reveal a novel role for Aim44p in regulating contractile ring closure through effects on Hof1p.  相似文献   

3.
Cytokinesis in Saccharomyces cerevisiae involves coordination between actomyosin ring contraction and septum formation and/or targeted membrane deposition. We show that Mlc1p, a light chain for Myo2p (type V myosin) and Iqg1p (IQGAP), is the essential light chain for Myo1p, the only type II myosin in S. cerevisiae. However, disruption or reduction of Mlc1p-Myo1p interaction by deleting the Mlc1p binding site on Myo1p or by a point mutation in MLC1, mlc1-93, did not cause any obvious defect in cytokinesis. In contrast, a different point mutation, mlc1-11, displayed defects in cytokinesis and in interactions with Myo2p and Iqg1p. These data suggest that the major function of the Mlc1p-Myo1p interaction is not to regulate Myo1p activity but that Mlc1p may interact with Myo1p, Iqg1p, and Myo2p to coordinate actin ring formation and targeted membrane deposition during cytokinesis. We also identify Mlc2p as the regulatory light chain for Myo1p and demonstrate its role in Myo1p ring disassembly, a function likely conserved among eukaryotes.  相似文献   

4.
In Saccharomyces cerevisiae, the mother cell and bud are connected by a narrow neck. The mechanism by which this neck is closed during cytokinesis has been unclear. Here we report on the role of a contractile actomyosin ring in this process. Myo1p (the only type II myosin in S. cerevisiae) forms a ring at the presumptive bud site shortly before bud emergence. Myo1p ring formation depends on the septins but not on F-actin, and preexisting Myo1p rings are stable when F-actin is depolymerized. The Myo1p ring remains in the mother–bud neck until the end of anaphase, when a ring of F-actin forms in association with it. The actomyosin ring then contracts to a point and disappears. In the absence of F-actin, the Myo1p ring does not contract. After ring contraction, cortical actin patches congregate at the mother–bud neck, and septum formation and cell separation rapidly ensue. Strains deleted for MYO1 are viable; they fail to form the actin ring but show apparently normal congregation of actin patches at the neck. Some myo1Δ strains divide nearly as efficiently as wild type; other myo1Δ strains divide less efficiently, but it is unclear whether the primary defect is in cytokinesis, septum formation, or cell separation. Even cells lacking F-actin can divide, although in this case division is considerably delayed. Thus, the contractile actomyosin ring is not essential for cytokinesis in S. cerevisiae. In its absence, cytokinesis can still be completed by a process (possibly localized cell–wall synthesis leading to septum formation) that appears to require septin function and to be facilitated by F-actin.  相似文献   

5.
The Hof1 protein (Homologue of Fifteen) regulates formation of the primary septum during cytokinesis in the budding yeast Saccharomyces cerevisiae, whereas the orthologous Cdc15 protein in fission yeast regulates the actomyosin ring by using its F-BAR domain to recruit actin nucleators to the cleavage site. Here we show that budding yeast Hof1 also contributes to actin ring assembly in parallel with the Rvs167 protein. Simultaneous deletion of the HOF1 and RVS167 genes is lethal, and cells fail to assemble the actomyosin ring as they progress through mitosis. Although Hof1 and Rvs167 are not orthologues, they both share an analogous structure, with an F-BAR or BAR domain at the amino terminus, capable of inducing membrane curvature, and SH3 domains at the carboxyl terminus that bind to specific proline-rich targets. The SH3 domain of Rvs167 becomes essential for assembly of the actomyosin ring in cells lacking Hof1, suggesting that it helps to recruit a regulator of the actin cytoskeleton. This new function of Rvs167 appears to be independent of its known role as a regulator of the Arp2/3 actin nucleator, as actin ring assembly is not abolished by the simultaneous inactivation of Hof1 and Arp2/3. Instead we find that recruitment to the bud-neck of the Iqg1 actin regulator is defective in cells lacking Hof1 and Rvs167, though future studies will be needed to determine if this reflects a direct interaction between these factors. The redundant role of Hof1 in actin ring assembly suggests that the mechanism of actin ring assembly has been conserved to a greater extent across evolution than anticipated previously.  相似文献   

6.
We analyzed the development of multiple septa in elongated multinucleated cells (hyphae) of the filamentous ascomycete Ashbya gossypii in which septation is apparently uncoupled from nuclear cycles. A key player for this compartmentalization is the PCH protein Hof1. Hyphae that are lacking this protein form neither actin rings nor septa but still elongate at wild-type speed. Using in vivo fluorescence microscopy, we present for the first time the coordination of cytokinesis and septation in multiseptated and multinucleated cells. Hof1, the type II myosin Myo1, the landmark protein Bud3, and the IQGAP Cyk1 form collars of cortical bars already adjacent to hyphal tips, thereby marking the sites of septation. While hyphae continue to elongate, these proteins gradually form cortical rings. This bar-to-ring transition depends on Hof1 and Cyk1 but not Myo1 and is required for actin ring assembly. The Fes/CIP4 homology (FCH) domain of Hof1 ensures efficient localization of Hof1, whereas ring integrity is conferred by the Src homology 3 (SH3) domain. Up to several hours after site selection, actin ring contraction leads to membrane invagination and subsequent cytokinesis. Simultaneously, a septum forms between the adjacent hyphal compartments, which do not separate. During evolution, A. gossypii lost the homologs of two enzymes essential for cell separation in Saccharomyces cerevisiae.  相似文献   

7.
Cytokinesis in fission yeast involves the coordination of septum deposition with the contraction of a cytokinetic actomyosin ring. We have examined the role of the type V myosin Myo52 in the coupling of these two events by the construction of a series of deletion mutants of the Myo52 tail and a further mutant within the ATP binding domain of the head. Each mutant protein was ectopically expressed in fission yeast cells. Each truncation was assayed for the ability to localize to the cell poles and septum (the normal cellular locations of Myo52) and to rescue the morphology defects and temperature sensitivity of a myo52Delta strain. A region within the Myo52 tail (amino acids 1320-1503), with a high degree of similarity to the vesicle-binding domain of the budding yeast type V myosin Myo2p, was essential for Myo52's role in the maintenance of growth polarity and cell division. A separate region (amino acids 1180-1320) was required for Myo52 foci to move throughout the cytoplasm; however, constructs lacking this region, but which retained the ability to dimerize still associated with actin at sites of cell growth. Not all of the Myo52 truncations which localized rescued the morphological defects of myo52Delta, demonstrating that loss of function was not simply brought about by an inability of mutant proteins to target the correct cellular location. By contrast, Myo52 motor activity was required for both localization and cellular function. myo52Delta cells were unable to efficiently localize the beta-1,3-glucan synthase, Bgs1, either at the cell poles or at the division septum, regions of cell wall deposition. Bgs1 and Myo52 localized to vesicle-like dots at the poles in interphase and these moved together to the septum at division. These data have led to the formulation of a model in which Myo52 is responsible for the delivery of Bgs1 and associated molecules to polar cell growth regions during interphase. On the commencement of septum formation, Myo52 transports Bgs1 to the cell equator, thus ensuring the accurate deposition of beta-1,3-glucan at the leading edge of the primary septum.  相似文献   

8.
Cell division in the fission yeast Schizosaccharomyces pombe requires the formation and constriction of an actomyosin ring at the division site. The actomyosin ring is assembled in metaphase and anaphase A, is maintained throughout mitosis, and constricts after completion of anaphase. Maintenance of the actomyosin ring during late stages of mitosis depends on the septation initiation network (SIN), a signaling cascade that also regulates the deposition of the division septum. However, SIN is not active in metaphase and is not required for the initial assembly of the actomyosin ring early in mitosis. The FER/CIP4-homology (FCH) domain protein Cdc15p is a component of the actomyosin ring. Mutations in cdc15 lead to failure in cytokinesis and result in the formation of elongated, multinucleate cells without a division septum. Here we present evidence that the requirement of Cdc15p for actomyosin ring formation is dependent on the stage of mitosis. Although cdc15 mutants are competent to assemble actomyosin rings in metaphase, they are unable to maintain actomyosin rings late in mitosis when SIN is active. In the absence of functional Cdc15p, ring formation upon metaphase arrest depends on the anillin-like Mid1p. Interestingly, when cytokinesis is delayed due to perturbations to the division machinery, Cdc15p is maintained in a hypophosphorylated form. The dephosphorylation of Cdc15p, which occurs transiently in unperturbed cytokinesis, is partially dependent on the phosphatase Clp1p/Flp1p. This suggests a mechanism where both SIN and Clp1p/Flp1p contribute to maintenance of the actomyosin ring in late mitosis through Cdc15p, possibly by regulating its phosphorylation status.  相似文献   

9.
Fission yeast Cdc42p, a small GTPase of the Rho family, is essential for cell proliferation and maintenance of the rod-like cell morphology. Scd1/Ral1p is a GDP-GTP exchange factor (GEF) for Cdc42p. This study and a parallel study by others establish that Gef1p is another GEF for Cdc42p. Deletions of gef1 and scd1 are synthetically lethal, generating round dead cells, and hence mimic the phenotype of cdc42 deletion. Gef1p is localized mainly to the cell division site. Scd1p is also there, but it is also detectable in other parts of the cell, including the nucleus, growing ends, and the tips of conjugation tubes. Gef1p and Scd1p form a ring structure at the cell division site, which shrinks during cytokinesis following the contraction of the actomyosin ring. Formation of the Gef1p/Scd1p ring apparently depends on the integrity of the actomyosin ring. In turn, recruitment of Cdc42p to the cell division site follows the shrinking Gef1p/Scd1p ring; the Cdc42p accumulates like a closing iris. These observations suggest that Gef1p and Scd1p may have a role in mediating between contraction of the actomyosin ring and formation of the septum, by recruiting active Cdc42p to the septation site.  相似文献   

10.
Paxillins are a family of conserved LIM domain-containing proteins that play important roles in the function and integrity of the actin cytoskeleton. Although paxillins have been extensively characterized by cell biological and biochemical approaches, genetic studies are relatively scarce. Here, we identify and characterize a paxillin-related protein Pxl1p in the fission yeast Schizosaccharomyces pombe. Pxl1p is a component of the fission yeast actomyosin ring, a structure that is essential for cytokinesis. Cells deleted for pxl1 display a novel phenotype characterized by a splitting of the actomyosin ring in late anaphase, leading to the formation of two rings of which only one undergoes constriction. In addition, the rate of actomyosin ring constriction is slower in the absence of Pxl1p. pxl1Delta mutants display strong genetic interactions with mutants defective in IQGAP-related protein Rng2p and mutants defective in components of the fission yeast type II myosin machinery. Collectively, these results suggest that Pxl1p might cooperate with type II myosin and Rng2p-IQGAP to regulate actomyosin ring constriction as well as to maintain its integrity during constriction.  相似文献   

11.
In yeast, cytokinesis requires coordination between nuclear division, acto-myosin ring contraction, and septum synthesis. We studied the role of the Schizosaccharomyces pombe Bgs1p and Cfh3p proteins during cytokinesis under stress conditions. Cfh3p formed a ring in the septal area that contracted during mitosis; Cfh3p colocalized and co-immunoprecipitated with Cdc15p, showing that Cfh3p interacted with the contractile acto-myosin ring. In a wild-type strain, a significant number of contractile rings collapsed under stress conditions and this number increased dramatically in the cfh3Δ, bgs1cps1-191, and cfh3Δ bgs1/cps1-191. Our results show that after osmotic shock Cfh3p is essential for the stability of the (1,3) glucan synthase Bgs1p in the septal area, but not at the cell poles. Finally, cells adapted to stress; they repaired their contractile rings and re-localized Bgs1p to the cell surface some time after osmotic shock. A detailed analysis of the cytokinesis machinery in the presence of KCl revealed that the actomyosin ring collapsed before Bgs1p was internalized, and that it was repaired before Bgs1p re-localized to the cell surface. In the cfh3Δ, bgs1/cps1-191, and cfh3Δ bgs1/cps1-191 mutants, which have reduced glucan synthesis, the damage produced to the ring had stronger consequences, suggesting that an intact primary septum contributes to ring stability. The results show that the contractile actomyosin ring is very sensitive to stress, and that cells have efficient mechanisms to remedy the damage produced in this structure.  相似文献   

12.
Cytokinesis is a crucial event in the cell cycle of all living cells. In fungal cells, it requires co-ordinated contraction of an actomyosin ring and synthesis of both plasmatic membrane and a septum structure that will constitute the new cell wall end. Schizosaccharomyces pombe contains four essential putative (1,3)beta-d-glucan synthase catalytic subunits, Bgs1p to Bgs4p. Here we examined the function of Bgs1p in septation by studying the lethal phenotypes of bgs1(+) shut-off and bgs1Delta cells and demonstrated that Bgs1p is responsible and essential for linear (1,3)beta-d-glucan and primary septum formation. bgs1(+) shut-off generates a more than 300-fold Bgs1p reduction, but the septa still present large amounts of disorganized linear (1,3)beta-d-glucan and partial primary septa. Conversely, both structures are absent in bgs1Delta cells, where there is no Bgs1p. The septum analysis of bgs1(+)-repressed cells indicates that linear (1,3)beta-d-glucan is necessary but not sufficient for primary septum formation. Linear (1,3)beta-d-glucan is the polysaccharide that specifically interacts with the fluorochrome Calcofluor white in fission yeast. We also show that in the absence of Bgs1p abnormal septa are formed, but the cells cannot separate and eventually die.  相似文献   

13.
Iqg1p is a component of the actomyosin contractile ring that is required for actin recruitment and septum deposition. Cells lacking Iqg1p function have an altered bud-neck structure and fail to form a functional actomyosin contractile ring resulting in a block to cytokinesis and septation. Here it is demonstrated that increased expression of the actin cytoskeleton associated protein Bsp1p bypasses the requirement for contractile ring function. This also correlates with reduced bud-neck width and remedial septum formation. Increased expression of this protein in a temperature-sensitive iqg1-1 background causes remedial septum formation at the bud neck that is reliant upon chitin synthase III activity and restores cell separation. The observed suppression correlates with a restoration of normal bud-neck structure. While Bsp1p is a component of the contractile ring, its recruitment to the bud neck is not required for the observed suppression. Loss of Bsp1p causes a brief delay in the redistribution of the actin cytoskeleton normally observed at the end of actin ring contraction. Compromise of Iqg1p function, in the absence of Bsp1p function, leads to a profound change in the distribution of actin and the pattern of cell growth accompanied by a failure to complete cytokinesis and cell separation.  相似文献   

14.
Actomyosin ring contraction and chitin primary septum deposition are interdependent processes in cell division of budding yeast. By fusing Myo1p, as representative of the contractile ring, and Chs2p for the primary septum, to different fluorescent proteins we show herein that the two processes proceed essentially at the same location and simultaneously. Chs2p differs from Myo1p in that it reflects the changes in shape of the plasma membrane to which it is attached and in that it is packed after its action into visible endocytic vesicles for its disposal. To ascertain whether this highly coordinated system could function independently of other cell cycle events, we reexamined the septum-like structures made by the septin mutant cdc3 at various sites on the cell cortex at the nonpermissive temperature. With the fluorescent fusion proteins mentioned above, we observed that in cdc3 at 37 degrees C both Myo1p and Chs2p colocalize at different spots of the cell cortex. A contraction of the Myo1p patch could also be detected, as well as that of a Chs2p patch, with subsequent appearance of vesicles. Furthermore, the septin Cdc12p, fused with yellow or cyan fluorescent protein, also colocalized with Myo1p and Chs2p at the aberrant locations. The formation of delocalized septa did not require nuclear division. We conclude that the septation apparatus, composed of septins, contractile ring, and the chitin synthase II system, can function at ectopic locations autonomously and independently of cell division, and that it can recruit the other elements necessary for the formation of secondary septa.  相似文献   

15.
Little is known about the molecular machinery that directs secretory vesicles to the site of cell separation during cytokinesis. We show that in Saccharomyces cerevisiae, the class V myosin Myo2p and the Rab/Ypt Sec4p, that are required for vesicle polarization processes at all stages of the cell cycle, form a complex with each other and with a myosin light chain, Mlc1p, that is required for actomyosin ring assembly and cytokinesis. Mlc1p travels on secretory vesicles and forms a complex(es) with Myo2p and/or Sec4p. Its functional interaction with Myo2p is essential during cytokinesis to target secretory vesicles to fill the mother bud neck. The role of Mlc1p in actomyosin ring assembly instead is dispensable for this process. Therefore, in yeast, as recently shown in mammals, class V myosins associate with vesicles via the formation of a complex with Rab/Ypt proteins. Further more, myosin light chains, via their ability to be transported by secretory vesicles and to interact with class V myosin IQ motifs, can regulate vesicle polarization processes at a specific location and stage of the cell cycle.  相似文献   

16.
Cytokinesis completion in the budding yeast S. cerevisiae is driven by tightly regulated pathways, leading to actomyosin ring contraction coupled to plasma membrane constriction and to centripetal growth of the primary septum, respectively. These pathways can partially substitute for each other, but their concomitant inactivation leads to cytokinesis block and cell death. Here we show that both the lack of the functionally redundant FHA-RING ubiquitin ligases Dma1 and Dma2 and moderate Dma2 overproduction affect actomyosin ring contraction as well as primary septum deposition, although they do not apparently alter cell cycle progression of otherwise wild-type cells. In addition, overproduction of Dma2 impairs the interaction between Tem1 and Iqg1, which is thought to be required for AMR contraction, and causes asymmetric primary septum deposition as well as mislocalization of the Cyk3-positive regulator of this process. In agreement with these multiple inhibitory effects, a Dma2 excess that does not cause any apparent defect in wild-type cells leads to lethal cytokinesis block in cells lacking the Hof1 protein, which is essential for primary septum formation in the absence of Cyk3. Altogether, these findings suggest that the Dma proteins act as negative regulators of cytokinesis.  相似文献   

17.
The RHO1 gene encodes a homologue of mammalian RhoA small G-protein in the yeast Saccharomyces cerevisiae. Rho1p is required for bud formation and is localized at a bud tip or a cytokinesis site. We have recently shown that Bni1p is a potential target of Rho1p. Bni1p shares the FH1 and FH2 domains with proteins involved in cytokinesis or establishment of cell polarity. In S. cerevisiae, there is an open reading frame (YIL159W) which encodes another protein having the FH1 and FH2 domains and we have named this gene BNR1 (BNI1 Related). Bnr1p interacts with another Rho family member, Rho4p, but not with Rho1p. Disruption of BNI1 or BNR1 does not show any deleterious effect on cell growth, but the bni1 bnr1 mutant shows a severe temperature-sensitive growth phenotype. Cells of the bni1 bnr1 mutant arrested at the restrictive temperature are deficient in bud emergence, exhibit a random distribution of cortical actin patches and often become multinucleate. These phenotypes are similar to those of the mutant of PFY1, which encodes profilin, an actin-binding protein. Moreover, yeast two-hybrid and biochemical studies demonstrate that Bni1p and Bnr1p interact directly with profilin at the FH1 domains. These results indicate that Bni1p and Bnr1p are potential targets of the Rho family members, interact with profilin and regulate the reorganization of actin cytoskeleton.  相似文献   

18.
In budding yeast, partitioning of the cytoplasm during cytokinesis can proceed via a pathway dependent on the contractile actomyosin ring, as in other eukaryotes, or alternatively via a septum deposition pathway dependent on an SH3 domain protein, Hof1/Cyk2 (the yeast PSTPIP1 ortholog). In dividing yeast cells, Hof1 forms a ring at the bud neck distinct from the actomyosin ring, and this zone is active in septum deposition. We previously showed the yeast Wiskott-Aldrich syndrome protein (WASP)-interacting protein (WIP) ortholog, verprolin/Vrp1/End5, interacts with Hof1 and facilitates Hof1 recruitment to the bud neck. A Vrp1 fragment unable to interact with yeast WASP (Las17/Bee1), localize to the actin cytoskeleton or function in polarization of the cortical actin cytoskeleton nevertheless retains function in Hof1 recruitment and cytokinesis. Here, we show the ability of this Vrp1 fragment to bind the Hof1 SH3 domain via its Hof one trap (HOT) domain is critical for cytokinesis. The Vrp1 HOT domain consists of three tandem proline-rich motifs flanked by serines. Unexpectedly, the Hof1 SH3 domain itself is not required for cytokinesis and indeed appears to negatively regulate cytokinesis. The Vrp1 HOT domain promotes cytokinesis by binding to the Hof1 SH3 domain and counteracting its inhibitory effect.  相似文献   

19.
SCF-type (SCF: Skp1-Cullin-F-box protein complex) E3 ligases regulate ubiquitin-dependent degradation of many cell cycle regulators, mainly at the G1/S transition. Here, we show that SCF(Grr1) functions during cytokinesis by degrading the PCH protein Hof1. While Hof1 is required early in mitosis to assemble a functional actomyosin ring, it is specifically degraded late in mitosis and remains unstable during the entire G1 phase of the cell cycle. Degradation of Hof1 depends on its PEST motif and a functional 26S proteasome. Interestingly, degradation of Hof1 is independent of APC(Cdh1), but instead requires the SCF(Grr1) E3 ligase. Grr1 is recruited to the mother-bud neck region after activation of the mitotic-exit network, and interacts with Hof1 in a PEST motif-dependent manner. Our results also show that downregulation of Hof1 at the end of mitosis is necessary to allow efficient contraction of the actomyosin ring and cell separation during cytokinesis. SCF(Grr1)-mediated degradation of Hof1 may thus represent a novel mechanism to couple exit from mitosis with initiation of cytokinesis.  相似文献   

20.
The fission yeast Schizosaccharomyces pombe undergoes cell division through a medially placed actomyosin-based contractile ring. One of the key components of this ring is the F-actin based motor protein myosin II. The myosin II heavy chain Myo2p has two light-chain-binding domains, IQl and IQ2, which bind the essential light chain, Cdc4p, and the regulatory light chain, Rlc1p. Previously, we have reported the characterization of cells expressing Myo2p lacking the IQ2 domain that facilitates Myo2p interaction with Rlc1p. In this study, we have created and characterized S. pombe strains carrying precise deletions of IQ1 and the entire neck region encompassing the IQ1 and IQ2 domains. Surprisingly, we found that the entire neck region of Myo2p is dispensable for Myo2p function. Cells deleted for IQ1, IQ2 and the entire neck region of Myo2p do not display any obvious cytoskeletal abnormalities. Immunofluorescence studies indicated that Cdc4p localizes at the ring in early and late mitotic cells in a strain in which interactions of Cdc4p with both the myosin II heavy chains (Myo2p and Myp2p) are abolished. Unlike mutations in Rlc1p that are suppressed by a simultaneous deletion of its binding site on Myo2p, mutations in the essential light chain Cdc4p are not suppressed by deletion of its binding sites on Myo2p, suggesting that Cdc4p may have additional partners essential for cytokinesis. Consistent with this, we provide evidence that two other IQ-domain containing actomyosin ring proteins, Rng2p (an IQGAP-related protein) and Myo51p (a type V myosin heavy chain), physically interact with Cdc4p. We concluded that Cdc4p, a novel myosin light chain, interacts with multiple actomyosin ring components to effect cytokinesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号