首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sprays of demeton-methyl insecticide decreased the spread of yellowing viruses by aphids in sugar-beet crops in England. Between 1957 and 1960, when yellows was prevalent, the incidence, assessed as ‘infected-plant-weeks’, was decreased by 36–41 % by one spray, depending on when it was applied, and by 55 % by two sprays, giving average yield increases of 1½ and 2 ton/acre of roots respectively. Between 1962 and 1966, when yellows spread less, a spray at the time when growers were advised to spray by the British Sugar Corporation decreased yellows incidence by 37 %, whereas sprays 2 weeks earlier or later decreased it by 24 % and 25 % respectively. Between 1958 and 1966 an annual average of 160000 of the country's 440000 acres of sugar beet has been sprayed, often to control Aphis fabae as well as to check the spread of yellows. A spray gives a profitable yield increase when yellows incidence in unsprayed plots is 20 % at the end of August.  相似文献   

2.
In a field experiment fewer sugar-beet plants became infected with aphid-transmitted yellowing viruses in plots that had been sprayed with solutions of thiabendazole lactate than in water-sprayed plots, after exposure to natural infestation with aphids. Subsequent glasshouse tests showed that foliar sprays of o·o1 % thiabendazole lactate in water significantly reduced the proportion of inoculated sugar-beet plants which became infected with beet yellows virus (BYV) or beet mild yellowing virus (BMYV) after inoculation with viruliferous Myzus persicae (Sulz.). This effect on virus transmission was not apparently due to a direct insecticidal action of thiabendazole, because adult aphids usually survived equally well on sprayed and unsprayed plants. Treatment of test plants with thiabendazole did not affect the transmission of beet mosaic virus to them by M. persicae. The fecundity of M. persicae was greatly reduced by transferring them to plants which had been sprayed with thiabendazole or by spraying them with thiabendazole before transfer to unsprayed plants. The fertility of adult Aphis fabae Scop, was also reduced by spraying with thiabendazole. The mechanisms whereby thiabendazole affected fecundity of aphids and transmission of viruses are not understood.  相似文献   

3.
Differences in resistance to infection with beet yellows virus (BYV) and beet mild yellowing virus (BMYV) have been observed in virus-tolerant sugar-beet breeding material. The results of glasshouse virus-susceptibility tests usually agreed well with those of field experiments in which plants were exposed to artificial, or natural, infestation with viruliferous aphids. Breeding lines and varieties, which showed resistance to BYV when Myzus persicae Sulz, was used as vector, generally showed a similar resistance to this virus when Aphis fabae Scop. was used. Varieties which were resistant to infection with one virus were not necessarily resistant to the other, although some showed resistance to both BYV and BMYV. Preliminary results suggest that resistance to infection may be controlled by recessive genes which occur widely in sugar-beet cultivars. The mechanism of this form of resistance is not understood, but it does not appear to be closely associated with resistance to the aphid vectors of the viruses. The observed differences in resistance to infection demonstrate the possibility of breeding a sugar-beet variety in which two forms of resistance to virus yellows, tolerance and resistance to infection, are combined.  相似文献   

4.
Apterous Myzus persicae were found to move frequently from leaf to leaf on sugar-beet plants in controlled environment conditions. It is suggested that aphid movement can be related to changes in the rate and content of translocate flow during leaf development. These changes make newly-emerged leaves nutritionally favourable to colonising aphids and make expanding leaves slowly wane in favourability during the process of ‘sink to source’ conversion leading to aphid dispersal from the leaf. Variation in temperature was not found to alter the rate of aphid movement or the period (measured in thermal time) that aphids spent on particular leaves. However, the lower temperature was found to increase the rate of aphid development, aphid size and fecundity; these effects could also be due to nutritional factors. This dispersal behaviour may be a tactic to maximise food intake by a polyphagous aphid and increase the probability that nymphs are deposited on nutritionally-favourable leaves. The implications of the interleaf dispersal of apterous M. persicae for within- and between-plant spread of beet yellows virus (BYV) and beet mild yellowing virus (BMYV) are discussed.  相似文献   

5.
Menazon, an organophosphorus insecticide (only slightly toxic to mammals), applied to sugar-beet seed, decreased the proportion of seedlings infested with aphids during May and early June and the number of aphids per plant during June and early July to one-third of that in the control plots. It also checked the spread of virus yellows. Of eight field trials in 1965, 1966 and 1967 in which more than 10% of the plants in plots not treated with insecticide had yellows, menazon seed dressing increased sugar yield by about 8 cwt per acre. Spraying with demeton-methyl when ‘a spray warning’ was issued in the area gave a similar increase, and had no further effect on plots sown with menazon-treated seed. Menazon-dressed sugar-beet seed is recommended in regions where yellows is usually prevalent, or where there is reason to expect a large aphid infestation.  相似文献   

6.
Beet yellows virus, beet mosaic virus, rust ( Uromyces betae (Pers) Lév.), and downy mildew ( Peronospora schachtii Fuckel.) were found to be common in wild beet ( Beta vulgaris s.-sp. maritima L.) growing on the foreshores of south Wales and southern England. The virus diseases were more prevalent in southeast England than in the west, rust more in the west than in the east, and downy mildew is equally prevalent in all regions.
Beet yellows is the most commercially important disease and is more common in sugar-beet crops in East Anglia than elsewhere in Great Britain. There was no evidence that beet yellows spread in East Anglia from wild beet to nearby sugar-beet crops during the springs of 1958 or 1959, and Myzus persicae Sulz., the principal vector of yellows, was rarely found on wild beet growing on the foreshore.
In glasshouse experiments aphids colonized sugar-beet plants watered with tap water in preference to those watered with sea water. Daily watering with sea water made plants unpalatable to aphids within 14 days. Aphids also preferred leaves sprayed with distilled water to those that had been sprayed with sea water. Salt solutions gave results similar to those obtained with sea water.  相似文献   

7.
In the glasshouse, adult, apterous Myzus persicae (Sulz.) and Aphis fabae Scop, settled better and deposited more larvae on sucrose-sprayed sugar-beet plants than on water-sprayed plants. M. persicae settled badly and deposited few larvae on plants that were kept in the dark before or after infestation. The effects of darkness on aphids were reduced by spraying the host plants with 10% solutions of sucrose before infestation. Viruliferous M. persicae transmitted beet yellows virus (BYV) and beet mild yellowing virus (BMYV) less efficiently to dark-treated plants than to those grown in normal daylight. Spraying sugar beet with sucrose before inoculation with viruliferous M. persicae increased the proportion of successful BYV transmissions but only when the plants were dark-treated. The effects of sucrose and darkness on settling and larviposition of aphids and on virus transmission may be related to changes in the concentration of carbohydrates, particularly sugars, in the leaves.  相似文献   

8.
The separate effects of beet yellows virus (BYV) and beet mild yellowing virus (BMYV) on yield of sugar-beet cultivars inoculated at different growth stages were assessed in field trials in 1985 and 1987. Early or mid-season inoculation decreased sugar yield by up to 47% for BYV, and up to 29% for BMYV. Infections after the end of July had no significant effect on yield. Both viruses caused significant increases in the juice impurities sodium, potassium and amino-nitrogen after infecting plants early in the season. Yield losses associated with infection were determined by the causative virus, the time of infection, and susceptibility of the sugar-beet cultivars.  相似文献   

9.
A survey of aphids and virus diseases of sugar-beet root crops in eastern England was made between 1940 and 1948. Prior to 1943 the observations were made on fertilizer experiments; from 1943 onwards they were made on commercial fields selected for position in relation to beet and mangold seed crops. The incidence of beet yellows increased with increasing numbers of Myzus persicae , but not of Aphis fabae. The relation with M. persicae was sufficiently close to suggest that it is the most important, possibly the only important, vector of beet yellows virus. Beet mosaic virus also increased with increasing numbers of M. persicae , but the relation was not close enough to exclude the possibility of other vectors.
Numbers of A. fabae on sugar beet were slightly, but consistently, depressed by the use of salt as a fertilizer. Other fertilizers had variable effects. Neither aphids nor virus are likely to be greatly affected by fertilizers.
Beet yellows is most prevalent in areas where seed crops are grown, but within these areas nearness to individual seed crops did not appear to increase its incidence. M. persicae were more numerous on sugar beet in seed-crop areas than elsewhere, and this alone might account for the prevalence of yellows. Beet mosaic virus is more closely associated with seed crops than is beet yellows. It is most prevalent near to seed crops within the seed-crop areas.  相似文献   

10.
Survival of Myzus persicae confined in clip-cages on mature leaves of sugar beet declined as the plants aged. Death of aphids was often preceded by the appearance of a black deposit in the aphids' stomachs, which may have been the cause of death. Both the rate of death and the proportion of aphids dying with black deposits was significantly less when plants were infected with beet yellows virus or beet mild yellowing virus, by comparison with healthy plants. The implication of these phenomena on the onset of mature plant resistance is discussed.  相似文献   

11.
The yield of plants of monogerm cultivars of sugar beet artificially infected with both beet yellows and beet mild yellowing viruses was, on average, depressed 2–7% for every 100 ‘infected plant weeks’, equivalent to c. £25/ha at 1976 prices. The cv. Vytomo, previously recommended to growers as being tolerant of infection by virus yellows, had a high sugar content and abundant foliage but in field trials its actual yield of sugar was no greater when infected, and lower when virus-free, than that of some other monogerm cultivars.  相似文献   

12.
Experiments have shown that, as in the years 1955-57, two yellowing viruses, beet yellows virus (SBYV) and sugar-beet mild yellowing virus (SBMYV), were present in commercial sugar-beet crops in East Anglia in 1958 and 1959. The evidence that they are not closely related viruses has been confirmed. In both years the prevalence of the two viruses was estimated by aphid transmissions from yellowed sugar-beet leaves to healthy sugar beet and Chenopodium capitatum seedlings in the glasshouse, and in 1959 additionally by examination of symptoms on field plants. SBMYV was more common than SBYV over the whole region in 1958, but in 1959 SBYV was slightly more prevalent than SBMYV. In both years SBYV was found more often in the southern than in the northern parts of the region. The results described in this paper suggest that breeding for tolerance to SBMYV may be at least as important economically in East Anglia as breeding for tolerance to SBYV. A wide range of SBYV strains was present in East Anglia in 1959, most of the strains being those which caused severe symptoms in sugar beet and C. capitatum.  相似文献   

13.
Information on infectivity of the aphids which invade sugar beet root crops each Spring is required for forecasting incidence and providing advice on control of virus yellows. Monoclonal antibodies, produced in the USA to barley yellow dwarf virus (BYDV) and in Canada to beet western yellows virus (BWYV), were used to distinguish between sugar-beet-infecting strains of the luteovirus beet mild yellowing virus (BMYV), and the non-beet-infecting strains of the closely-related BWYV in plant and aphid tissue. Totals of 773 immigrant winged Myzuspersicae and 124 Macrosiphum euphorbiae were caught in water traps in a crop of sugar beet between 25 April and 5 August 1990. Using the monoclonal antibodies and an amplified ELISA, 67%M. persicae and 19%M. euphorbiae were shown to contain BWYV; 8%M. persicae and 7%M. euphorbiae contained BMYV. In studies with live winged aphids collected from the same sugar beet field during May, 25 of 60 M. persicae and two of 13 M. euphorbiae transmitted BWYV to the indicator host plant Montia perfoliata; two M. persicae and two M. euphorbiae transmitted BMYV. In another study three of 65 M. persicae and one of three M. euphorbiae in which only BWYV was detected, transmitted this virus to sugar beet.  相似文献   

14.
Surveys of the principal yellowing viruses of sugar beet, beet yellows virus (BYV) and beet mild yellowing virus (BMYV) in Spain were carried out from 1990–1993. Beet yellowing viruses were detected in all provinces, although the mean percentages of plants infected with BYV and BMYV were practically zero in the southern zone. Within the northern zone high variations from one province to another could be observed. The mean percentages of plants infected with BYV were higher in the Ebro Valley than in the Duero Valley. Areas infected with BYV were very restricted, while BMYV could be found to a variable extent all over Spain, although the infection levels were lower. The incidence and distribution of these viruses in the Spanish sugar beet crop makes the study and application of control measures for beet yellowing viruses necessary.  相似文献   

15.
This paper studies the influence of previous infestation on the host quality of sugar beet (Beta vulgaris L.) for aphids and the influence of previous infestation on sugar beet yellowing virus epidemiology. Sugar beet previously infested with Myzus persicae (Sulzer) or Aphis fabae Scopoli (Homoptera: Aphididae) had an improved host quality for subsequently infesting aphids of the same species. There was a significant negative relationship between the number of M. persicae infesting a plant and the proportion of those that died with a dark deposit in their stomachs, and a significant positive relationship between the number that settled on a plant and the number that infested it previously. Nymphs feeding on previously infested plants grew more rapidly than those on control plants. The beneficial effect of previous infestation persisted for at least 2 weeks and prolongation of the infestation beyond 2 weeks was of no further benefit to the aphids. Field grown sugar beet, previously colonised by M. persicae, was more susceptible to natural infestation by M. persicae up to 5 days after exposure. Previously infested plants were also more susceptible to infection with beet mild yellowing virus (BMYV) but not beet yellows virus (BYV), suggesting that the aphids on the previously infested sugar beet settled more readily and were more inclined to feed (and thus transmit BMYV) than aphids on the previously uninfested plants. The consequences for the control of sugar beet yellowing virus vectors are discussed.  相似文献   

16.
The occurrence of beet mild yellowing virus (BMYV) on feeding- and sugar-beet in Czechoslovakia has been proved. The virus was transmitted by aphidMyzus persicae (Sulz.) on indicator plantsSinapis alba L.,Capsella bursa-pastoris Medik, andClaytonia perfoliata Donn and from these plants back to sugar-beet cv. ‘Dobrovická A.’ A weed plantRaphanus raphanistrum L. was identified as a new natural host plant of BMYV. The virus was identified in ten of twelve biologically examined samples of beet with BMYV-like symptoms, which were collected at various places in Czechoslovakia  相似文献   

17.
The incidence of beet mild yellowing luteovirus (BMYV) and non-beet-infecting strains of beet western yellows luteovirus (BWYV) in individual winged aphids, caught in yellow water-traps, in sugar beet during the spring and early summer, and in oilseed rape plots in the autumn, was monitored using monoclonal antibodies in ELISA tests from 1990 to 1993. Between 0% and 8% of the Myzus persicae trapped in sugar beet each year carried BMYV, whereas 0% to 4% caught in oilseed rape in the autumn contained this virus. In 1990, 6.5% of Macrosiphum euphorbiae trapped in sugar beet contained BMYV, but in subsequent years less than 1% were carrying virus. Much higher proportions (26–67%) of the M. persicae tested from sugar beet contained BWYV, and similar proportions tested from oilseed rape (24–45%) also carried this virus in the autumn. In contrast only 3–19% of the M. euphorbiae caught in sugar beet contained BWYV, and none in oilseed rape. In 1991 and 1992 large numbers of Breuicoryne brassicae were caught in the plot of oilseed rape, of which over 50% contained BWYV; none were carrying BMYV. In transmission studies between 1990 and 1992, 1% and 27% of M. persicae transmitted BMYV and BWYV respectively to indicator plants; subsequent ELISA tests on the same aphids showed that 3% and 33% respectively contained the two viruses. One percent of M. euphorbiae transmitted BMYV, but none were found to contain BMYV using ELISA; 15% transmitted BWYV whilst only 5% were found to carry the virus. In 1992 and 1993 the incidence of BMYV-infection in the sugar-beet fields in which aphids had been trapped ranged from 1.2%, in a field which had received granular pesticide (aldicarb) at drilling plus three foliar aphicidal sprays, to 39.5% in a field which had received only one foliar spray. In 1992 in a sugar-beet crop which had received no aphicidal treatments, and where 2.8% of immigrant M. persicae and 2.5% of M. euphorbiae contained BMYV, 11.6% of plants developed BMYV infection. Lowest levels of infection were associated with the use of granular pesticides at drilling. In 1990, 80% of oilseed rape plants in a field plot were infested with a mean of seven wingless M. persicae per plant by mid-December; 37% of these plants were infected with BWYV. The studies show that M. persicae is the principal vector of BWYV, and large proportions of winged M. persicae carry the virus, in contrast to BMYV, which is consistent with the common occurrence of BWYV in brassica crops such as oilseed rape.  相似文献   

18.
Oilseed rape (Brassica napus L. ssp. oleifera) was studied as a potential overwintering host for the sugar-beet yellowing viruses, beet yellows virus (BYV) and beet mild yellowing virus (BMYV), and their principal vector, Myzus persicae. In spring 1982, plants infected with a virus which reacted positively in enzyme-linked immunosorbent assay (ELISA) with BMYV antibody globulin were found in oilseed-rape crops; none of the plants contained virus which reacted with BYV antibody globulin. This virus was subsequently identified as beet western yellows virus (BWYV). No leaf symptoms could be consistently associated with infection of oilseed rape, but the virus was reliably detected by sampling any leaf on an infected oilseed-rape plant. Some isolates from oilseed rape did infect sugar beet in glasshouse tests, but the proportions of inoculated plants which became infected were low. Apparently there is therefore little danger of much direct transmission of BWYV by M. persicae from oilseed rape to sugar beet in spring. BWYV was introduced to and spread within oilseed-rape crops in autumn by M. persicae, and autumn-sown oilseed rape proved to be a potentially important overwintering host for M. persicae. In a survey of 80 autumn-sown crops of oilseed rape in East Anglia, northern England and Scotland in spring 1983, 78 were shown to be extensively infected with BWYV. Experimental plots of oilseed rape with 100% BWYV-infection yielded approximately 13.4% less oil than plots with 18% virus infection, the result of a decrease in both seed yield and oil content.  相似文献   

19.
The pyrethroid, deltamethrin, alone or as an emulsifiable formulation, hindered infection of healthy plants with the persistent beet mild yellowing virus (BMYV) and both acquisition of, and infection with, the non-persistent potato virus Y (PVY) and the semi-persistent sugar beet yellows virus (BYV) by Myzus persicae in glasshouse tests.
Another pyrethroid, RU-15525, also protected against infection with PVY. Even sub-lethal amounts of deltamethrin decreased virus transmission by rapidly incapacitating the aphids, the effect being least with aphids most resistant to organophosphorous insecticides and to certain pyrethroids including deltamethrin. Demeton-S-methyl hindered infection only with BMYV. This work shows that deltamethrin restricts transmission of persistent, semi-persistent and perhaps more importantly of non-persistent viruses in the glasshouse, and has potential for doing the same in the field.  相似文献   

20.
Differences in inherited resistance among seven sugar-beet stocks had similar effects on Myzus persicae clones representing the range of variation in aphid response to resistant and susceptible sugar beet observed in fifty-eight clones collected between 1969 and 1971. Three sugar-beet stocks were consistently resistant. Statistically significant interactions between beet stocks and aphid clones did not indicate the existence of biotypes with specific abilities to overcome resistance. M. persicae clones differed in their vigour of colonizing sugar beet, irrespective of the differences between beet stocks. The readiness of adult aphids to settle determined the size of aphid population produced and included a component related to the response of the aphid clone to sugar beet as a host, and a component related to the resistance ranking of the beet stock. Breeding sugar beet with resistance to aphids will be simplified, as the results indicate that, at present, differences between aphid biotypes need not be considered a problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号