首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The α1β1 integrin, an inserted (I) domain containing collagen receptor, is expressed in the cell surface membrane of normal and malignant cells, and may play a role in their migration through tissues or in metastatic spread. Here we report that a functional anti-human α1β1 integrin monoclonal antibody (mAb) (1B3.1) directly and specifically binds plastic bound recombinant human α1 I-domain protein containing the collagen binding site. Detection was diminished by acidification of the I-domain protein but was enhanced by increasing concentrations of Mg2+ cation. Furthermore, we detected binding of the mAb to proteins from the ocular fluids of 6 patients, with the highest concentration, corresponding to 22.1 ng/ml of I-domain, found in a sample from the eye of a patient with metastatic lung adenocarcinoma. Interestingly, we found that both SKNSH neuroblastoma cells and virally transformed human T cells adhered specifically to plastic wells coated with either immobilized collagen IV oral I-domain. MAb 1B3.1 inhibited adhesion to collagen IV but not to immobilized I-domain. These results suggest a novel function for cell free α1 I-domain as a substrate for cellular adhesion, which may have relevance in tumor spread in vivo.  相似文献   

2.
Exogenous soluble human alpha3 noncollagenous (NC1) domain of collagen IV inhibits angiogenesis and tumor growth. These biological functions are attributed to the binding of alpha3NC1 to integrin alphavbeta3. However, in some tumor cells that express integrin alphavbeta3, the alpha3NC1 domain does not inhibit proliferation, suggesting that integrin alphavbeta3 expression is not sufficient to mediate the anti-tumorigenic activity of this domain. Therefore, in the present study, we searched for novel binding receptors for the soluble alpha3NC1 domain in cells lacking alphavbeta3 integrin. In these cells, soluble alpha3NC1 bound integrin alpha3beta1; however, unlike alphavbeta3, alpha3beta1 integrin did not mediate cell adhesion to immobilized alpha3NC1 domain. Interestingly, in cells lacking integrin alpha3beta1, adhesion to the alpha3NC1 domain was enhanced due to activation of integrin alphavbeta3. These findings indicate that integrin alpha3beta1 is a receptor for the alpha3NC1 domain and transdominantly inhibits integrin alphavbeta3 activation. Thus integrin alpha3beta1, in conjunction with integrin alphavbeta3, modulates cellular responses to the alpha3NC1 domain, which may be pivotal in the mechanism underpinning its anti-angiogenic and anti-tumorigenic activities.  相似文献   

3.
We herein report a group of allosteric inhibitors of integrin alpha(2)beta(1) based on an arylamide scaffold. Compound 4 showed an IC(50) of 4.80 microM in disrupting integrin I-domain/collagen binding in an ELISA. These arylamide compounds are able to block collagen binding to integrin alpha(2)beta(1) on the platelet surface. Further we find that compound 4 recognizes a hydrophobic cleft on the side of the alpha(2) I-domain, suggesting an alternative targeting site for drug development.  相似文献   

4.
Integrin alpha(1)beta(1) and alpha(2)beta(1) are the major cellular receptors for collagen, and collagens bind to these integrins at the inserted I-domain in their alpha subunit. We have previously shown that a cyclic peptide derived from the metalloproteinase domain of the snake venom protein jararhagin blocks the collagen-binding function of the alpha(2) I-domain. Here, we have optimized the structure of the peptide and identified the site where the peptide binds to the alpha(2) I-domain. The peptide sequence Arg-Lys-Lys-His is critical for recognition by the I-domain, and five negatively charged residues surrounding the "metal ion-dependent adhesion site" (MIDAS) of the I-domain, when mutated, show significantly impaired binding of the peptide. Removal of helix alphaC, located along one side of the MIDAS and suggested to be involved in collagen-binding in these I-domains, does not affect peptide binding. This study supports the notion that the metalloproteinase initially binds to the alpha(2) I-domain at a location distant from the active site of the protease, thus blocking collagen binding to the adhesion molecule in the vicinity of the MIDAS, while at the same time leaving the active site free to degrade nearby proteins, the closest being the beta(1) subunit of the alpha(2)beta(1) cell-surface integrin itself.  相似文献   

5.
Tumor cell invasion of basement membranes (BM) represents one of the critical steps in the metastatic process. Tumor cell recognition of individual BM matrix components may involve individual cell adhesion receptors, such as integrins or cell surface proteoglycans, or may involve a coordinate action of both types of receptors. In this study, we have focused on the identification of a cell surface CD44/chondroitin sulfate proteoglycan (CSPG) and alpha 2 beta 1 integrin on human melanoma cells that are both directly involved in the in vitro invasion of reconstituted BM via a type IV collagen-dependent mechanism. Interfering with cell surface expression of human melanoma CSPG with either p-nitro-phenyl-beta-D-xylopyranoside treatment or anti-CD44 monoclonal antibody (mAb) preincubation (mAb) preincubation inhibits melanoma cell invasion through reconstituted BM. These treatments also strongly inhibit melanoma cell migration on type IV collagen, however, they are ineffective at inhibiting cell adhesion to type IV collagen. Purified melanoma cell surface CD44/CSPG, or purified chondroitin sulfate, bind to type IV collagen affinity columns, consistent with a role for CD44/CSPG-type IV collagen interactions in mediating tumor cell invasion. In contrast, melanoma cell migration on laminin (LM) does not involve CD44/CSPG, nor does CD44/CSPG bind to LM, suggesting that CD44/CSPG-type IV collagen interactions are specific in nature. Additionally, anti-alpha 2 and anti-beta 1 integrin mAbs are capable of blocking melanoma cell invasion of reconstituted BM. Both of these anti-integrin mAbs inhibit melanoma cell adhesion and migration on type IV collagen, whereas only anti-beta 1 mAb inhibits cell adhesion to LM. Collectively, these results indicate that melanoma cell adhesion to type IV collagen is an important consideration in invasion of reconstituted BM in vitro, and suggest that CD44/CSPG and alpha 2 beta 1 integrin may collaborate to promote human melanoma cell adhesion, migration, and invasion in vivo.  相似文献   

6.
Modulation of integrin affinity and/or avidity provides a regulatory mechanism by which leukocyte adhesion to endothelium is strengthened or weakened at different stages of emigration. In this study, we demonstrate that binding of high-affinity alpha 4 beta 1 integrins to VCAM-1 strengthens alpha L beta 2 integrin-mediated adhesion. The strength of adhesion of Jurkat cells, a human leukemia T cell line, or MnCl2-treated peripheral blood T cells to immobilized chimeric human VCAM-1/Fc, ICAM-1/Fc, or both was quantified using parallel plate flow chamber leukocyte detachment assays in which shear stress was increased incrementally (0.5-30 dynes/cm2). The strength of adhesion to VCAM-1 plus ICAM-1, or to a 40-kDa fragment of fibronectin containing the CS-1 exon plus ICAM-1, was greater than the sum of adhesion to each molecule alone. Treatment of Jurkat or blood T cells with soluble cross-linked VCAM-1/Fc or HP2/1, a mAb to alpha 4, significantly increased adhesion to ICAM-1. These treatments induced clustering of alpha L beta 2 integrins, but not the high-affinity beta 2 integrin epitope recognized by mAb 24. Up-regulated adhesion to ICAM-1 was abolished by cytochalasin D, an inhibitor of cytoskeletal rearrangement. Taken together, our data suggest that the binding of VCAM-1 or fibronectin to alpha 4 beta 1 integrins initiates a signaling pathway that increases beta 2 integrin avidity but not affinity. A role for the cytoskeleton is implicated in this process.  相似文献   

7.
The alpha2beta1 integrin is a major collagen receptor that plays an essential role in the adhesion of normal and tumor cells to the extracellular matrix. Here we describe the isolation of a novel metalloproteinase/disintegrin, which is a potent inhibitor of the collagen binding to alpha2beta1 integrin. This 55-kDa protein (alternagin) and its disintegrin domain (alternagin-C) were isolated from Bothrops alternatus snake venom. Amino acid sequencing of alternagin-C revealed the disintegrin structure. Alternagin and alternagin-C inhibit collagen I-mediated adhesion of K562-alpha2beta1-transfected cells. The IC50 was 134 and 100 nM for alternagin and alternagin-C, respectively. Neither protein interfered with the adhesion of cells expressing alphaIIbeta3, alpha1beta1, alpha5beta1, alpha4beta1 alphavbeta3, and alpha9beta1 integrins to other ligands such as fibrinogen, fibronectin, and collagen IV. Alternagin and alternagin-C also mediated the adhesion of the K562-alpha2beta1-transfected cells. Our results show that the disintegrin-like domain of alternagin is responsible for its ability to inhibit collagen binding to alpha2beta1 integrin.  相似文献   

8.
Lishko VK  Kudryk B  Yakubenko VP  Yee VC  Ugarova TP 《Biochemistry》2002,41(43):12942-12951
Fibrinogen is a ligand for leukocyte integrin alpha(M)beta2 (CD11b/CD18, Mac-1) and mediates adhesion and migration of leukocytes during the immune-inflammatory responses. The binding site for alpha(M)beta2 resides in gammaC, a constituent subdomain in the D-domain of fibrinogen. The sequence gamma383-395 (P2-C) in gammaC was implicated as the major binding site for alpha(M)beta2. It is unknown why alpha(M)beta2 on leukocytes can bind to immobilized fibrinogen in the presence of high concentrations of soluble fibrinogen in plasma. In this study, we have investigated the accessibility of the binding site in fibrinogen for alpha(M)beta2. We found that the alpha(M)beta2-binding site in gammaC is cryptic and identified the mechanism that regulates its unmasking. Proteolytic removal of the small COOH-terminal segment(s) of gammaC, gamma397/405-411, converted the D100 fragment of fibrinogen, which contains intact gammaC and is not able to inhibit adhesion of the alpha(M)beta2-expressing cells, into the fragment D98, which effectively inhibited cell adhesion. D98, but not D100, bound to the recombinant alpha(M)I-domain, and the alpha(M)I-domain recognition peptide, alpha(M)(Glu253-Arg261). Exposure of the P2-C sequence in fibrinogen, D100, and D98 was probed with a site-specific mAb. P2-C is not accessible in soluble fibrinogen and D100 but becomes exposed in D98. P2-C is also unmasked by immobilization of fibrinogen onto a plastic and by deposition of fibrinogen in the extracellular matrix. Thus, exposure of P2-C by immobilization and by proteolysis correlates with unmasking of the alpha(M)beta2-binding site in the D-domain. These results demonstrate that conformational alterations regulate the alpha(M)beta2-binding site in gammaC and suggest that processes relevant to tissue injury and inflammation are likely to be involved in the activation of the alpha(M)beta2-binding site in fibrinogen.  相似文献   

9.
The alpha1beta1 integrin is a major cell surface receptor for collagen. Ligand binding is mediated, in part, through a 200 amino acid inserted 'I'-domain contained in the extracellular part of the integrin alpha chain. Integrin I-domains contain a divalent cation binding (MIDAS) site and require cations to interact with integrin ligands. We have determined the crystal structure of recombinant I-domain from the rat alpha1beta1 integrin at 2.2 A resolution in the absence of divalent cations. The alpha1 I-domain adopts the dinucleotide binding fold that is characteristic of all I-domain structures that have been solved to date and has a structure very similar to that of the closely related alpha2beta1 I-domain which also mediates collagen binding. A unique feature of the alpha1 I-domain crystal structure is that the MIDAS site is occupied by an arginine side chain from another I-domain molecule in the crystal, in place of a metal ion. This interaction supports a proposed model for ligand-induced displacement of metal ions. Circular dichroism spectra determined in the presence of Ca2+, Mg2+ and Mn2+ indicate that no changes in the structure of the I-domain occur upon metal ion binding in solution. Metal ion binding induces small changes in UV absorption spectra, indicating a change in the polarity of the MIDAS site environment.  相似文献   

10.
We have previously assigned an integrin alpha(2)beta(1)-recognition site in collagen I to the sequence, GFOGERGVEGPOGPA (O = Hyp), corresponding to residues 502-516 of the alpha(1)(I) chain and located in the fragment alpha(1)(I)CB3 (Knight, C. G., Morton, L. F., Onley, D. J., Peachey, A. R., Messent, A. J., Smethurst, P. A., Tuckwell, D. S., Farndale, R. W., and Barnes, M. J. (1998) J. Biol. Chem. 273, 33287-33294). In this study, we show that recognition is entirely contained within the six-residue sequence GFOGER. This sequence, when in triple-helical conformation, readily supports alpha(2)beta(1)-dependent cell adhesion and exhibits divalent cation-dependent binding of isolated alpha(2)beta(1) and recombinant alpha(2) A-domain, being at least as active as the parent collagen. Replacement of E by D causes loss of recognition. The same sequence binds integrin alpha(1) A-domain and supports integrin alpha(1)beta(1)-mediated cell adhesion. Triple-helical GFOGER completely inhibits alpha(2) A-domain binding to collagens I and IV and alpha(2)beta(1)-dependent adhesion of platelets and HT 1080 cells to these collagens. It also fully inhibits alpha(1) A-domain binding to collagen I and strongly inhibits alpha(1)beta(1)-mediated adhesion of Rugli cells to this collagen but has little effect on either alpha1 A-domain binding or adhesion of Rugli cells to collagen IV. We conclude that the sequence GFOGER represents a high-affinity binding site in collagens I and IV for alpha(2)beta(1) and in collagen I for alpha(1)beta(1). Other high-affinity sites in collagen IV mediate its recognition of alpha(1)beta(1).  相似文献   

11.
We have isolated and characterized EMS16, a potent and selective inhibitor of the alpha2beta1 integrin, from Echis multisquamatus venom. It belongs to the family of C-lectin type of proteins (CLPs), and its amino acid sequence is homologous with other members of this protein family occurring in snake venoms. EMS16 (M(r) approximately 33K) is a heterodimer composed of two distinct subunits linked by S-S bonds. K562 cells transfected with alpha2 integrin selectively adhere to immobilized EMS16, but not to two other snake venom-derived CLPs, echicetin and alboaggregin B. EMS16 inhibits adhesion of alpha2beta1-expressing cells to immobilized collagen I at picomolar concentrations, and the platelet/collagen I interaction in solution at nanomolar concentrations. EMS16 inhibits binding of isolated, recombinant I domain of alpha2 integrin to collagen in an ELISA assay, but not the interaction of isolated I domain of alpha1 integrin with collagen IV. Studies with monoclonal antibodies suggested that EMS16 binds to the alpha2 subunit of the integrin. EMS16 inhibits collagen-induced platelet aggregation, but has no effect on aggregation induced by other agonists such as ADP, thromboxane analogue (U46619), TRAP, or convulxin. EMS16 also inhibits collagen-induced, but not convulxin-induced, platelet cytosolic Ca(2+) mobilization. In addition, EMS16 inhibits HUVEC migration in collagen I gel. In conclusion, we report a new, potent viper venom-derived inhibitor of alpha2beta1 integrin, which does not belong to the disintegrin family.  相似文献   

12.
Subendothelial collagen plays an important role, via both direct and indirect mechanisms, in the initiation of thrombus formation at sites of vascular injury. Collagen binds plasma von Willebrand factor, which mediates platelet recruitment to collagen under high shear. Subsequently, the direct binding of the platelet receptors glycoprotein VI and alpha2beta1 to collagen is critical for platelet activation and stable adhesion. Leeches, have evolved a number of inhibitors directed towards platelet-collagen interactions so as to prevent hemostasis in the host during hematophagy. In this article, we describe the molecular mechanisms underlying the ability of the leech product saratin to inhibit platelet binding to collagen. In the presence of inhibitors of ADP and thromboxane A2, both saratin and 6F1, a blocking alpha2beta1 mAb, abrogated platelet adhesion to fibrillar and soluble collagen. Additionally, saratin eliminated alpha2beta1-dependent platelet adhesion to soluble collagen in the presence of an Src kinase inhibitor. Moreover, saratin prevented platelet-rich plasma adhesion to fibrillar collagen, a process dependent upon both alpha2beta1 and von Willebrand factor binding to collagen. Furthermore, saratin specifically inhibited the binding of the alpha2 integrin subunit I domain to collagen, and prevented platelet adhesion to collagen under flow to the same extent as observed in the presence of a combination of mAbs to glycoprotein Ib and alpha2beta1. These results demonstrate that saratin interferes with integrin alpha2beta1 binding to collagen in addition to inhibiting von Willebrand factor-collagen binding, presumably by binding to an overlapping epitope on collagen. This has significant implications for the use of saratin as a tool to inhibit platelet-collagen interactions.  相似文献   

13.
Glycosylation of integrins has been implicated in the modulation of their function. Characterisation of carbohydrate moieties of alpha(3) and beta(1) subunits from non-metastatic (WM35) and metastatic (A375) human melanoma cell lines was carried out on peptide-N-glycosidase F-released glycans using matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS). beta(1) integrin subunit from both cell lines displayed tri- and tetraantennary oligosaccharides complex type glycans, but only in A375 cell line was the sialylated tetraantennary complex type glycan (Hex(7)HexNAc(6)FucSia(4)) present. In contrast, only alpha(3) subunit from metastatic cells possessed beta1-6 branched structures. Our data indicate that the beta(1) and alpha(3) subunits expressed by the metastatic A375 cell line carry beta1-6 branched structures, suggesting that these cancer-associated glycan chains may modulate tumor cell adhesion by affecting the ligand binding properties of alpha(3)beta(1) integrin. In direct ligand binding assays, alpha(3)beta(1) integrin from both cell lines binds strongly to fibronectin and to much lesser degree to placental laminin. No binding to collagen IV was observed. Enzymatic removal of sialic acid residues from purified alpha(3)beta(1) integrin stimulates its adhesion to all examined ECM proteins. Our data suggest that the glycosylation profile of alpha(3)beta(1) integrin in human melanoma cells correlates with the acquisition of invasive capacity during melanoma progression.  相似文献   

14.
J L Guan  R O Hynes 《Cell》1990,60(1):53-61
Using purified recombinant fibronectins we show that WEHI 231 lymphoid cells spread only on fibronectin containing the alternatively spliced V region. Spreading is specifically blocked by peptides from the V25 segment (also called CS-1), which can be selectively spliced out independently of the rest of the V region. Using synthetic peptides we localize the binding site to a 10 amino acid segment that is highly conserved. Integrin alpha 4 beta 1 is a major integrin on the surfaces of these cells and binds specifically to the V25 segment with a primary specificity for the conserved 10 amino acid sequence. Antibodies to integrin alpha 4 inhibit spreading of WEHI 231 cells on V+ fibronectin. Therefore, integrin alpha 4 beta 1 is a fibronectin receptor specific for an alternatively spliced cell adhesion site and may play important roles in selective adhesion of various cell types to specific forms of fibronectin.  相似文献   

15.
Collagen type IV provides a biomechanically stable scaffold into which the other constituents of basement membranes are incorporated, but it also plays an important role in cell adhesion. This occurs with collagen type IV mainly via the alpha1beta1 integrin, and the proposed epitope involved in this type of collagen/integrin interaction corresponds to a non-sequential R/Xaa/D motif, where the arginine and aspartate residues are provided by the alpha2 and alpha1 chains of the collagen molecule, respectively. Since the stagger of the three alpha chains in native collagen type IV is still unknown and different alignments of the chains lead to different spatial epitopes, two heterotrimeric collagen peptides containing the natural 457-469 sequences of the cell adhesion site were synthesized in which the single chains were assembled via disulfide bonds into the two most plausible alpha1alpha2alpha1' and alpha2alpha1alpha1' registers. The differentiated triple-helical stabilities of the two heterotrimers suggest a significant structural role of the chain register in collagen, although the binding to alpha1beta1 integrin is apparently less affected as indicated by preliminary experiments.  相似文献   

16.
Although integrins are known to mediate connections between extracellular adhesion molecules and the intracellular actin cytoskeleton, the mechanisms that are responsible for coupling ligand binding to intracellular signaling, for generating diversity in signaling, and for determining the efficacy of integrin signaling in response to ligand engagement are largely unknown. By characterizing the class of anti-integrin monoclonal antibodies (mAbs) that stimulate integrin activation and ligand binding, we have identified integrin-ligand-mAb complexes that exhibit differential signaling properties. Specifically, addition of 12G10 mAb to cells adhering via integrin alpha4beta1 was found to trigger disruption of the actin cytoskeleton and prevent cell attachment and spreading, whereas mAb addition to cells adhering via alpha5beta1 stimulated all of these processes. In contrast, soluble ligand binding to either alpha4beta1 or alpha5beta1 was augmented or unaffected by 12G10. The regions of the integrin responsible for differential signaling were then mapped using chimeras. Surprisingly, a chimeric alpha5 integrin containing the beta-propeller domain from the ligand binding pocket of alpha4 exhibited the same signaling properties as the full-length alpha4 integrin, whereas exchanging or removing cytoplasmic domains had no effect. Thus the mAb 12G10 demonstrates dual functionality, inhibiting cell adhesion and spreading while augmenting soluble ligand binding, via a mechanism that is determined by the extracellular beta-propeller domain of the associating alpha-subunit. These findings therefore demonstrate a direct and variable agonistic link between the ligand binding pocket of integrins and the cell interior that is independent of the alpha cytoplasmic domains. We propose that either ligand-specific transmembrane conformational changes or ligand-specific differences in the kinetics of transmembrane domain separation underlie integrin agonism.  相似文献   

17.
The expression of alpha 5 beta 1 integrin on the surface of fibroblasts requires adhesion to substratum. We have examined the basis for this adhesion-dependent surface expression by comparing the life cycle of integrins in parallel cultures of adherent and nonadherent cells. Results of biosynthetic labeling experiments in NRK fibroblasts showed that the synthesis and biosynthetic processing of the beta 1 integrin subunit proceed in the absence of cell attachment; however, when examining the behavior of preexisting cell surface integrins, we observed that the alpha beta 1 integrins are internalized and degraded when adhesion to substratum is blocked. A kinetic analysis of integrin internalization in cycloheximide-treated NRK cells showed that each of the fibroblast integrins we examined (in both the beta 1 and beta 3 families) are lost from the cell surface after detachment from substratum. Thus, the default integrin life cycle in fibroblasts involves continuous synthesis, processing, transport to the cell surface, and internalization/degradation. Interestingly, studies with NIH-3T3 cells expressing alpha 1 beta 1 integrin showed that the loss of cell-surface alpha 5 beta 1 integrin is blocked by adhesion of cells to dishes coated with type IV collagen (a ligand for alpha 1 beta 1 integrin) as well as fibronectin. Similarly, adhesion of these cells to dishes coated with type IV collagen stabilizes the surface expression of alpha 5 beta 1 as well as alpha 1 beta 1 integrin. We propose that the adhesion of fibroblasts to extracellular matrix protein alters the integrin life cycle and permits retention of these proteins at the cell surface where they can play important roles in transmitting adhesion-dependent signals.  相似文献   

18.
The angiogenic inducer CCN1 (cysteine-rich 61, CYR61), a secreted matricellular protein of the CCN family, is a ligand of multiple integrins, including alpha 6 beta 1. Previous studies have shown that CCN1 interaction with integrin alpha 6 beta 1 mediates adhesion of fibroblasts, endothelial cells, and smooth muscle cells, as well as migration of smooth muscle cells. Recently, we have reported that CCN1-induced tubule formation of unactivated endothelial cells is also mediated through integrin alpha 6 beta 1. In this study, we demonstrate that human skin fibroblasts adhere specifically to the T1 sequence (GQKCIVQTTSWSQCSKS) within domain III of CCN1, and this process is blocked by anti-alpha 6 and anti-beta 1 monoclonal antibodies. Alanine substitution mutagenesis of the T1 sequence further defines the sequence TTSWSQCSKS as the critical determinant for mediating alpha 6 beta 1-dependent adhesion. Soluble T1 peptide specifically inhibits fibroblast adhesion to CCN1 in a dose-dependent manner. Furthermore, T1 also inhibits cell adhesion to other alpha 6 beta 1 ligands, including CCN2 (CTGF), CCN3 (NOV), and laminin, but not to ligands of other integrins. In addition, T1 specifically inhibits alpha 6 beta 1-dependent tubule formation of unactivated endothelial cells in a CCN1-containing collagen gel matrix. To confirm that T1 binds integrin alpha 6 beta 1 directly, we perform affinity chromatography and show that integrin alpha 6 beta 1 is isolated from an octylglucoside extract of fibroblasts on T1-coupled Affi-gel. Taken together, these findings define the T1 sequence in CCN1 as a novel binding motif for integrin alpha 6 beta 1, providing the basis for the development of peptide mimetics to examine the functional role of alpha 6 beta 1 in angiogenesis.  相似文献   

19.
Two integrin-type collagen receptors, alpha(1)beta(1) and alpha(2)beta(1), are structurally very similar. However, cells can concomitantly express the both receptors and they might have independent functions. Here, Chinese hamster ovary (CHO) cells, which lack endogenous collagen receptors, were transfected with either alpha(1) or alpha(2) integrin cDNA. Cells were allowed to adhere to various collagen types and their integrin function was tested by observing the progression of cell spreading. The cells expressing alpha(1)beta(1) integrin could spread on collagen types I, III, IV, and V but not on type II, while alpha(2)beta(1) integrin could mediate cell spreading on collagen types I-V. Type XIII is a transmembrane collagen and its interaction with the integrins has not been previously studied. CHO-alpha1beta1 cells could spread on human recombinant type XIII collagen, unlike CHO-alpha2beta1 cells. Integrins alpha(1)beta(1) and alpha(2)beta(1) recognize collagens with the specific alphaI domains. The alpha(1)I and alpha(2)I domains were produced as recombinant proteins, labeled with europium and used in a sensitive solid-phase binding assay based on time-resolved fluorescence. alpha(1)I domain, unlike the alpha(2)I domain, could attach to type XIII collagen. The results indicate, that alpha(1)beta(1) and alpha(2)beta(1) have different ligand binding specificity. Distinct recognition of different collagen subtypes by the alphaI domains can partially explain the differences seen in cell spreading. However, despite the fact that CHO-alpha1beta1 cells could not spread on type II collagen alpha(1)I domain could bind to this collagen type. Thus, the cell spreading on collagens may also be regulated by factors other than the integrins.  相似文献   

20.
Identification of integrin collagen receptors on human melanoma cells   总被引:29,自引:0,他引:29  
Integrin receptors may mediate the adhesion of cells to a number of extracellular matrix components. We found that the attachment of human melanoma cells to collagen types I and IV was blocked by antibodies to the integrin beta 1 subunit but not by peptides containing the Arg-Gly-Asp sequence. Ligand affinity chromatography was used to search for integrin-related receptors which mediate adhesion to native collagens. Detergent extracts of surface 125I-iodinated melanoma cells were chromatographed on type I or IV collagen-Sepharose columns. Bound material was eluted and analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. EDTA, but not Arg-Gly-Asp peptides, eluted a mixture of two integrin-related heterodimeric complexes. Each complex contained the integrin beta 1 chain with Mr of 110,000 and a distinct alpha chain with Mr of either 200,000 or 150,000. Immunoprecipitation with specific monoclonal antibodies identified the complexes as very late activation antigen (VLA)-1 (alpha 1 beta 1) and VLA-2 (alpha 2 beta 1), respectively. The binding of these receptors to collagen appeared to be specific because they failed to be retained on fibronectin- or laminin-Sepharose columns. Immunofluorescent staining of cells on collagen substrates with antibodies to VLA-1 and VLA-2 localized these complexes in vinculin-positive adhesion plaques. In contrast, the receptor complexes were not detected in adhesion plaques of cells attached to fibronectin- or laminin-coated substrates. These results indicate that melanoma cells express at least two different integrin-related collagen-binding receptor complexes that appear to mediate cell adhesion to collagen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号