首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Antiserum against the brassinosteroid (BR), castasterone, was produced by immunizing a rabbit with castasterone-carboxymethoxylamine oxime conjugated with bovine serum albumin (BSA). In a radioimmunoassay (RIA), the antiserum recognized a range of naturally occurring BRs with varying specificities. Detection limits of castasterone and brassinolide were approximately 0.3 pmol. This RIA system was successfully used for analyzing endogenous BRs in seeds and stems ofPhaseolus vulgaris L., and showed that stems are quite different from seeds in terms of the species and quantity of the endogenous BRs.  相似文献   

2.
The brassinosteroids (BRs) occur ubiquitously in the plant kingdom. The occurrence of BRs has been demonstrated in almost every part of higher plants, such as pollen, flower buds, fruits, seeds, vascular cambium, leaves, shoots and roots. In this study, BRs were isolated and identified in the culture of wild-type Chlorella vulgaris. Seven BRs, including teasterone, typhasterol, 6-deoxoteasterone, 6-deoxotyphasterol, 6-deoxocastasterone, castasterone and brassinolide, were identified by GC–MS. All compounds belong to the BR biosynthetic pathway. The results suggest that early and late C6 oxidation pathways are operating in C. vulgaris. This study represents the first isolation of BRs from C. vulgaris cultures.  相似文献   

3.
Seven dwarf mutants resembling brassinosteroid (BR)-biosynthetic dwarfs were isolated that did not respond significantly to the application of exogenous BRs. Genetic and molecular analyses revealed that these were novel alleles of BRI1 (Brassinosteroid-Insensitive 1), which encodes a receptor kinase that may act as a receptor for BRs or be involved in downstream signaling. The results of morphological and molecular analyses indicated that these represent a range of alleles from weak to null. The endogenous BRs were examined from 5-week-old plants of a null allele (bri1-4) and two weak alleles (bri1-5 and bri1-6). Previous analysis of endogenous BRs in several BR-biosynthetic dwarf mutants revealed that active BRs are deficient in these mutants. However, bri1-4 plants accumulated very high levels of brassinolide, castasterone, and typhasterol (57-, 128-, and 33-fold higher, respectively, than those of wild-type plants). Weaker alleles (bri1-5 and bri1-6) also accumulated considerable levels of brassinolide, castasterone, and typhasterol, but less than the null allele (bri1-4). The levels of 6-deoxoBRs in bri1 mutants were comparable to that of wild type. The accumulation of biologically active BRs may result from the inability to utilize these active BRs, the inability to regulate BR biosynthesis in bri1 mutants, or both. Therefore, BRI1 is required for the homeostasis of endogenous BR levels.  相似文献   

4.
5.
Kim SK  Chang SC  Lee EJ  Chung WS  Kim YS  Hwang S  Lee JS 《Plant physiology》2000,123(3):997-1004
Exogenously applied brassinolide (BL, 10(-9)-10(-5) M) increased gravitropic curvature in maize (Zea mays) primary roots. The BL-enhanced gravitropic curvature was clearly promoted in the presence of indole-3-acetic acid (IAA, 10(-10)-10(-8) M), indicating that BL is interactive with IAA during the gravitropic response. The interactive effect between BL and IAA was completely diminished by treatment of p-chlorophenoxy isobutric acid, an auxin action antagonist. The activation of the gravitropic response by BL in the absence and in the presence of IAA was nullified by application of 2, 3,5-triiodobenzoic acid, a polar auxin transport inhibitor. The data indicate that brassinosteroids (BRs) might be involved in auxin-mediated processes for the gravitropic response. Gas chromotography-selected ion-monitoring analysis revealed that maize primary roots contained approximately 0.3 ng g(-1) fresh weight castasterone as an endogenous BR. Exogenously applied castasterone also increased the gravitropic response of maize roots in an IAA-dependent manner. This study provides the first evidence, to our knowledge, for occurrence and gravitropic activity of BRs in plant roots.  相似文献   

6.
Brassinolide (BL), a plant 7-oxalactone-type steroid hormone, is one of the active brassinosteroids (BRs) that regulates plant growth and development. BL is biosynthesized from castasterone by the cytochrome P450 monooxygenase, CYP85A2. We showed that a Pichia pastoris transformant that synchronously expresses Arabidopsis P450 reductase gene ATR1 and P450 gene CYP85A2 converts teasterone and typhasterol to 7-oxateasterone and 7-oxatyphasterol, respectively. Thus, CYP85A2 catalyzes the lactonization reactions of not only castasterone but also teasterone and typhasterol. The two 2-deoxy-7-oxalactone-type BRs were identified in Arabidopsis plants. Although the reversible conversion between 7-oxateasterone and 7-oxatyphasterol was observed in vivo, no conversion of 7-oxatyphasterol to BL was observed. The biological activity of 7-oxatyphasterol toward Arabidopsis hypocotyl elongation was nearly the same as that of castasterone. These results suggest that a new BR biosynthetic pathway, a BR lactonization pathway, functions in Arabidopsis and plays an important role in regulating the concentration of active BRs, even though the metabolism of 7-oxatyphasterol to BL is still unknown.  相似文献   

7.
The response of two field-grown inbred lines of maize (Zea mays L.) and their F1 hybrid to the application of 10−8–10−14 M solutions of 24-epibrassinolide or synthetic androstane analogue of castasterone in V3/4 and V6/7 developmental stages was followed during the vegetative and early reproductive phases of plant development. Brassinosteroids (BRs) significantly affected (either positively or negatively, depending on the genotype and the developmental stage they were applied) the height of plants during the early weeks after their application, but not the final plant height nor the number of leaves. Spraying of plants with BRs in V3/4 developmental stage usually also increased the length of the 7th to 10th leaf, whereas the application in V6/7 developmental stage had the opposite effect. The beginning of the reproductive phase of plant development and the course of flowering was strongly influenced by the application of BRs. Treatment of plants in V3/4 stage delayed and treatment of plants in V6/7 stage advanced the dates of anthesis and silking, regardless of the type of BR used, its concentration or plant genotype. The influence of BRs on the development of the secondary ear was the least pronounced in the F1 hybrid; in both inbred lines it strongly depended on the concentrations of BRs used. Various yield parameters were also affected by treatment of plants with BRs, but this effect depended on the developmental stage during which the application of BRs occured, the plant genotype, the type of BR and its concentration.  相似文献   

8.
9.
Brassinolide (BL), a plant 7-oxalactone-type steroid hormone, is one of the active brassinosteroids (BRs) that regulates plant growth and development. BL is biosynthesized from castasterone by the cytochrome P450 monooxygenase, CYP85A2. We showed that a Pichia pastoris transformant that synchronously expresses Arabidopsis P450 reductase gene ATR1 and P450 gene CYP85A2 converts teasterone and typhasterol to 7-oxateasterone and 7-oxatyphasterol, respectively. Thus, CYP85A2 catalyzes the lactonization reactions of not only castasterone but also teasterone and typhasterol. The two 2-deoxy-7-oxalactone-type BRs were identified in Arabidopsis plants. Although the reversible conversion between 7-oxateasterone and 7-oxatyphasterol was observed in vivo, no conversion of 7-oxatyphasterol to BL was observed. The biological activity of 7-oxatyphasterol toward Arabidopsis hypocotyl elongation was nearly the same as that of castasterone. These results suggest that a new BR biosynthetic pathway, a BR lactonization pathway, functions in Arabidopsis and plays an important role in regulating the concentration of active BRs, even though the metabolism of 7-oxatyphasterol to BL is still unknown.  相似文献   

10.
Several cytochrome P450 monooxygenases (P450s) catalyze essential oxidative reactions in brassinosteroid (BR) biosynthesis as well as in BR catabolism; however, only limited information exists on the P450s involved in the BR catabolic pathway. Here, we report the characterization of two P450 mRNAs, CYP734A7 and CYP734A8, from Lycopersicon esculentum. These P450s show high homology with Arabidopsis CYP734A1/BAS1 (formerly CYP72B1), which inactivates BRs via C-26 hydroxylation. Transgenic tobacco plants that constitutively overexpressed CYP734A7 showed an extreme dwarf phenotype similar to BR deficiency. Quantitative gas chromatography-mass spectrometry analysis of endogenous BRs in the transgenic plants showed that the levels of castasterone and 6-deoxocastasterone significantly decreased in comparison with those in wild-type plants. By measuring the Type I substrate-binding spectra using recombinant CYP734A7, the dissociation constants for castasterone, brassinolide, and 6-deoxocastasterone were determined to be 6.7, 12, and 12 microM, respectively. In an in vitro assay, CYP734A7 was confirmed to metabolize castasterone to 26-hydroxycastasterone. In addition, 28-norcastasterone and brassinolide were converted to the hydroxylated products. The expression of CYP734A7 and CYP734A8 genes in tomato seedlings was upregulated by exogenous application of bioactive BRs. These results indicated that CYP734A7 is a C-26 hydroxylase of BRs and is likely involved in BR catabolism in tomato. The presence of the CYP734A subfamily in various plant species suggests that oxidative inactivation of BRs by these proteins is a widespread phenomenon in plants.  相似文献   

11.
The aim of the study was to examine the effect of exogenous 24-epibrassinolide on its uptake and content of endogenous brassinosteroids in wheat seedlings. 24-Epibrassinolide was applied at two concentrations (0.1 and 2.0 μM) and in three different methods: by soaking seeds, by drenching and by spraying plants. Brassinosteroids were determined by high-performance liquid chromatography combined with electrospray mass spectrometry. Three important brassinosteroids, 24-epibrassinolide, brassinolide and castasterone, were detected in the wheat leaves, but their contents varied with leaf insertion and plant age. Increased 24-epibrassinolide content in the leaf tissue was found when this hormone was applied by soaking or drenching. Additionally the seed treatment influenced brassinosteroid balance in seedlings. The growth response of wheat seedlings treated with 24-epibrassinolide has been also investigated.  相似文献   

12.
This study was conducted to investigate changes of nucleic acids and protein levels in response to brassinosteroid (BR) effect in the green alga Chlorella vulgaris Beijerinck. BRs had the greatest effect on growth and metabolism of algae between 24 and 36 h after treatment in the range from 10–12 to 10–8 M. The highest growth of the content of nucleic acids and proteins was observed in the case of brassinolide (BL) at the concentration 10–8 M in the 36th hour of cultivation. BL and its derivatives are biologically more active than castasterone (CS). The lowest stimulatory activity was shown by homoCS. The stimulatory effect of BRs in the algae was arranged in the following order: BL > 24-epiBL > homoBL > CS > 24-epiCS > homoCS. The relationship between the structure and the biological activity of BRs in stimulation of growth and changes in the content of DNA, RNA and proteins are discussed.  相似文献   

13.
Both free and conjugated brassinosteroids (BRs) in the pollen and anthers of Erythronium japonicum Decne. were investigated. As a free form of BRs, typhasterol was identified by GC-MS. Polar conjugated BRs occurred only in the anther, and non-polar con-jugated BRs occurred both in the pollen and mainly in the anther.

BR parts of acid hydrolysis of the former were identified to be teasterone (major) and castasterone (minor). Those of alkaline hydrolysis of the latter were identified to be typhasterol (major) and teasterone (minor).  相似文献   

14.
Precursor administration experiments with 2H-labeled 6-oxocampestanol, 6-deoxocastasterone and 6alpha-hydroxycastasterone in cultured cells of Catharanthus roseus were performed and the metabolites were analyzed by GC-MS. [2H6]Cathasterone was identified as a metabolite of [2H6]6-oxocampestanol, whereas [2H6]6alpha-hydroxycastasterone and [2H6]castasterone were identified as metabolites of [2H6]6-deoxocastasterone, and [2H6]castasterone was identified as a metabolite of [2H6]6alpha-hydroxycastasterone, indicating that 6-deoxocastasterone is converted to castasterone via 6alpha-hydroxycastasterone. In addition, 6-deoxocathasterone, a putative biosynthetic intermediate in the late C6-oxidation pathway, was identified as an endogenous brassinosteroid. These studies provide further evidence supporting our proposed biosynthetic pathways for brassinolide.  相似文献   

15.
Brassinosteroids (BRs) are plant steroidal hormones that regulate plant growth and development. An Arabidopsis dwarf mutant, shrink1-D (shk1-D), was isolated and the phenotype was shown to be caused by activation of the CYP72C1 gene. CYP72C1 is a member of the cytochrome P450 monooxygenase gene family similar to BAS1/CYP734A1 that regulates BR inactivation. shk1-D has short hypocotyls in both light and dark, and short petioles and siliques. The seeds are also shortened along the longitudinal axis indicating CYP72C1 controls cell elongation. The expression of CPD, TCH4 and BAS1 were altered in CYP72C1 overexpression transgenic lines and endogenous levels of castasterone, 6-deoxocastasterone and 6-deoxotyphasterol were also altered. Unlike BAS1/CYP734A1 the expression of CYP72C1 was not changed by application of exogenous brassinolide. We propose that CYP72C1 controls BR homeostasis by modulating the concentration of BRs.  相似文献   

16.
As the first step toward understanding the involvement of endogenous brassinosteroids (BRs) in cytodifferentiation, we analyzed biosynthetic activities of BRs in zinnia (Zinnia elegans L. cv Canary Bird) cells differentiating into tracheary elements. The results of feeding experiments suggested that both the early and late C6-oxidation pathways occur during tracheary element differentiation. Gas chromatography-mass spectrometry analysis revealed that five BRs, castasterone, typhasterol, 6-deoxocastasterone, 6-deoxotyphasterol, and 6-deoxoteasterone, actually existed in cultured zinnia cells and culture medium. Quantification of endogenous BRs in each stage of tracheary element differentiation by gas chromatography-mass spectrometry exhibited that they increased dramatically prior to the morphogenesis, which was consistent with the idea that BRs are necessary for the initiation of the final stage of tracheary element differentiation. Moreover, the proportion of each BR in culture medium was quite different from that in cells, suggesting that specific BRs are selectively secreted into medium and may function outside the cells.  相似文献   

17.
Brassinosteroids are part of the hormonal network that regulates growth processes and stress responses in plants. There is evidence for a similar hormonal network in microalgae. In the present study, six microalgae (Chlorococcum ellipsoideum, Gyoerffyana humicola, Nautococcus mamillatus, Acutodesmus acuminatus, Protococcus viridis and Chlorella vulgaris) were subjected to salt and low temperature stress with the addition of 36 g l–1 NaCl and transfer from 25°C to 15°C. There was a rapid response to salt stress with the brassinosteroid content (mainly castasterone with lower amounts of brassinolide, homocastasterone and typhasterol) increasing within 30 min of the salt treatment and remaining at these elevated levels after 7 h. The decrease in temperature had little effect on the brassinosteroid content. This was the first study to show that endogenous brassinosteroids increase in response to abiotic stress in a number of microalgae species.  相似文献   

18.
19.
A capillary GC-MS analysis revealed that two stereoisomers of castasterone are contained in immature seeds of Phaseolus vulgaris. 400 MHz proton NMR analysis of the stereoisomers determined they are A ring epimers of castasterone, 3-epicastasterone and 2,3-diepicastasterone. In rice lamina inclination assay, 3-epicastasterone and 2,3-diepicastasterone showed reduced biological activity than that of castasterone. Together with our previous finding that 2-epicastasterone exhibits a less biological activity than CS, this result indicates that epimerization of hydroxyl at C-2 or/and C-3 is/are inactive processes to reduce biological activity of CS after exerting as a bioactive brassinosteroid in P. vulgaris.  相似文献   

20.
Brassinosteroids (BRs) are steroid plant hormones that are essential for many plant growth and developmental processes, including cell expansion, vascular differentiation and stress responses. Up to now the inhibitory effects of BRs on cell division of mammalian cells are unknown. To determine basic anticancer structure-activity relationships of natural BRs on human cells, several normal and cancer cell lines have been used. Several of the tested BRs were found to have high cytotoxic activity. Therefore, in our next series of experiments, we tested the effects of the most promising and readily available BR analogues with interesting anticancer properties, 28-homocastasterone (1) and 24-epibrassinolide (2), on the viability, proliferation, and cycling of hormone-sensitive/insensitive (MCF-7/MDA-MB-468) breast and (LNCaP/DU-145) prostate cancer cell lines to determine whether the discovered cytotoxic activity of BRs could be, at least partially, related to brassinosteroid-nuclear receptor interactions. Both BRs inhibited cell growth in a dose-dependent manner in the cancer cell lines. Flow cytometry analysis showed that BR treatment arrested MCF-7, MDA-MB-468 and LNCaP cells in G(1) phase of the cell cycle and induced apoptosis in MDA-MB-468, LNCaP, and slightly in the DU-145 cells. Our results provide the first evidence that natural BRs can inhibit the growth, at micromolar concentrations, of several human cancer cell lines without affecting the growth of normal cells. Therefore, these plant hormones are promising leads for potential anticancer drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号