首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A fusion protein composed of a cellulose binding domain from Neocallimastix patriciarum cellulase A and Candida antarctica lipase B (CBD-lipase) was produced by Pichia pastoris methanol utilization plus phenotype in high cell-density cultures. The genes expressing CBD-lipase were fused to the alpha-factor secretion signal sequence of Saccharomyces cerevisiae and placed under the control of the alcohol oxidase gene (AOX1) promoter. To control the repression and induction of AOX1 and oxygen demand at high cell density, a four-stage process was used. Batch growth on glycerol was used in the first step to provide biomass (28 g L-1) while product formation was prevented due to repression of the AOX1. The second stage was exponential fed-batch growth on glycerol, which caused a slight increase of the enzyme alcohol oxidase activity due to derepression of the AOX1. This procedure resulted in smooth transition to exponential fed-batch growth on methanol, the third stage, in which the AOX1 was strongly induced. The fourth stage was constant fed-batch growth on methanol used to control the oxygen demand at the high cell density. A kinetic model was developed that could predict biomass growth and oxygen consumption in processes with and without oxygen-enriched air. With oxygen enrichment to 34% O2 in the inlet air the methanol feed rate could be increased by 50% and this resulted in 14% higher final cell density (from 140 to 160 g L-1 cell dry weight). The increased methanol feed rate resulted in a proportionally increased specific rate of product secretion to the medium. After an initial decrease, the synthesis capacity of the cell was kept constant throughout the cultivation, which made the product concentration increase almost constantly during the process. The kinetic model also describes how the low maintenance demand of P. pastoris compared with E. coli enables this organism to grow to such high cell densities.  相似文献   

2.
The DO-controlled glucose limited fed-batch technique was investigated in an E. coli process for production of a recombinant protein. The kLac* value (oxygen transfer rate at zero oxygen concentration) was calculated from on-line gas analysis data during the process. In the investigated processes with induced production of recombinant protein, the kLac* value decreased drastically several hours after induction. The reason for the decrease was found in increasing concentrations of DNA in the medium and increased viscosity due to cell lysis. The consequences of such a dramatic decrease in the volumetric oxygen transfer coefficient on the glucose feed and specific rates are described in computer simulations and experimental data.  相似文献   

3.
Summary Three Lactococcus strains (Lactococcus ssp. lactis var. diacetylactis, Lactococcus ssp. lactis cremoris and Lactococcus ssp. lactis var. lactis) isolated from the Tunisian lben were grown at constant pH on CSL medium in stirred fermentors for lactic starters production. The agitation required to homogenate alkali used to pH control should be low because it affects the Lactococcus growth. Scale up from 20-liter fermentor to 400-liter fermentor was carried out at constant impeller tip speed below 150 cm sу. The CSL supplementation and fed-batch with glucose increased the yield in the upper 1010 cfu/ml. The consumed glucose during fermentation was converted into lactic acid and cell. Before fed-batch, the maximum specific growth rate of Lactococcus ssp. lactis var. diacetylactis was around 1 hу and the number of cells increased 20 to 40 times according to inoculum size. After fed-batch, the glucose consumption rate remains constant but specific growth rate decreased and number of cell trebled only.  相似文献   

4.
A recombinant strain of Saccharomyces cerevisiae harboring GOD gene originated from Aspergillus niger was used for the production of extracellular glucose oxidase. The effect of continuous galactose feeding on the induction of GAL-10 promoter was examined in a 5 l bioreactor. The highest enzyme production level (164 U cmх) was achieved at 96 h of cultivation. The production performance was compared with the results of fed-batch cultivations carried out in the same laboratory. Continuous feeding mode was found to be less productive due to excess ethanol formation and plasmid instability.  相似文献   

5.
In this study, callus and cell suspension were induced from seedlings of licorice (G. uralensis). In addition, it was revealed that the appropriate concentration of sucrose could promote the callus growth and increase the content of polysaccharide. The methyl jasmonate (MJ) and phenylalanine (PHE) could enhance the callus growth and content of flavonoids for G. uralensis. For producing more flavonoids and polysaccharide, two-stage cultivation was performed. In the first step, 30 g L?1 sucrose was fed into a 5-L balloon-type bubble bioreactor on 8th day of culture to enhance cell production and metabolite production. In a two-stage cultivation process, PHE (2 mM) and MJ (5 mg L?1) were added into a 5-L balloon-type bubble bioreactor after 10 days of culture. Using a fed-batch cultivation strategy (30 g L?1 sucrose was fed into a 5-L balloon-type bubble bioreactor on 8th day), polysaccharide production was enhanced to 1.19 g L?1, which was 2.12-fold greater than that in batch cultivation. The flavonoids yield (55.42 mg L?1) which was about 22 % higher than that in batch cultivation was obtained on 21st day. In a two-stage cultivation process, the polysaccharide content was increased by 1.14- and 2.12-fold compared with fed-batch cultivation and batch cultivation on 15th day. Meanwhile, total flavonoids yield (132.36 mg L?1) on 15th day, was increased by 2.26- and 2.67-fold compared with fed-batch cultivation and batch cultivation. In conclusion, two-stage cultivation process combined with the sucrose and elicitor treatment could promote both the callus growth and the secondary metabolites accumulation.  相似文献   

6.
The effect of glucose feeding on bacitracin production was investigated by fed-batch culture of Bacillus licheniformis. In batch culture, bacitracin secretion was induced after the glucose initially contained in the medium was completely consumed. The concentration of bacitracin, however, increased to no more than 340 units·ml−1 in the batch cultivations. Therefore, additional glucose was supplied after exhaustion of the initial glucose. The effect of glucose feeding on bacitracin biosynthesss was investigated in two ways, the pH-stat modal feeding method and the CO2-dependent feeding method. A kinetic study of bacitracin production found that some glucose was necessary, even during the bacitracin production phase. Excessive feeding of glucose, however, caused a reduction in bacitracin biosynthetic activity. When 50 g·l−1 of defatted soy bean meal (SBM) was used, the bacitracin concentration reached 670 units·ml−1 with the pH-stat modal feeding method and 610 units·ml−1 with the CO2-dependent feeding method, respectively. The yield of bacitracin from consumed glucose was better for the pH-stat method. Using this control strategy, the highest concentration of bacitracin (940 units·ml−1) was obtained with 150 g·l−1 of SBM.  相似文献   

7.
The effect of post-induction nutrient feeding strategies on the production of bioadhesive protein using an IPTG inducible expression system in Escherichia coli was investigated. Cells were cultured in an exponential fed-batch mode to the OD600 of ca. 100 (48 gDCW/L) prior to induction. Six different post-induction nutrient feeding strategies (pH-stat, exponential, constant and linear change in feeding rate with three different slopes) were then applied, and bioadhesive protein production was examined. It was found that post-induction cell growth was independent of nutrient feeding rate. However, bioadhesive protein production was significantly affected by post-induction feeding strategies. Linearly changing post-induction feeding rate with a suitable slope allowed production of bioadhesive protein up to 5.3 g/L, which was higher than that obtained by the other post-induction feeding strategies.  相似文献   

8.
The growth and carotenoid production of Phaffia rhodozyma in fed-batch cultures with different feeding methods and grown at specific growth rates similar to the batch culture was compared. With constant feeding, exponential feeding, DO-stat and pH-stat fed-batch cultures of Phaffia rhodozyma, the highest biomass (17.4 g/l) and lowest carotenoid content (307 g/g cell) of Phaffia rhodozyma was from the DO-stat fed-batch culture. The lowest biomass (14.7 g/l) and highest carotenoid content (412 g/g cell) was from the exponential, fed-batch culture.  相似文献   

9.
The long-term process for producing human granulocyte-colony stimulating factor (hG-CSF) was developed using two-stage cyclic fed-batch culture, in which hG-CSF expressing-recombinant Escherichia coli was directed by an L-arabinose promoter system. For the optimization, the preinduction growth rate during the growth stage and the feeding strategy during the production stage were investigated. The maximum harvest volume during the production stage was predicted before long-term cyclic operation. Based on those optimized strategies, the two-stage cyclic fed-batch culture was performed for 12 cycles (86 h). The cell growths in both stages were maintained at 45-50 g/L and 71-77 g/L, respectively. hG-CSF was stably produced at a level of 8-9 g/L and the plasmid stability was maintained at more than 90%. Volumetric productivity by the two-stage cyclic fed-batch culture was 0.643 g/L/h, which was about 280% higher than that of conventional DO-stat fed-batch culture.  相似文献   

10.
黄独脱毒苗叶片和茎段再生体系的建立   总被引:8,自引:2,他引:6  
尹明华  洪森荣 《植物研究》2009,29(4):492-499
以黄独茎尖再生苗为试材,研究不同因素对黄独脱毒苗叶片和茎段再生体系的影响,以期对黄独脱毒苗的再生体系进行优化。结果表明,叶片和茎段诱导愈伤组织的最佳培养基是MS+KT 2 mg·L-1+2,4-D 2 mg·L-1;叶片和茎段诱导愈伤组织的最佳蔗糖浓度分别为30和50 g·L-1;叶片和茎段在黑暗中较容易诱导出愈伤组织;叶片和茎段愈伤组织分化的最佳培养基是MS+KT 4 mg·L-1+NAA 0.1 mg·L-1;继代2次的叶片和茎段愈伤组织较容易分化;黄独不定芽生根的最佳培养基是1/2MS+IBA 0.1 mg·L-1+NAA 0.5 mg·L-1+PP333 1 mg·L-1。本实验成功建立了黄独脱毒苗叶片和茎段的再生体系,为黄独脱毒苗的工厂化生产奠定了技术基础。  相似文献   

11.
灯盏花花药培养初报   总被引:1,自引:1,他引:0  
对灯盏花花药培养诱导单倍体植株进行了研究。结果显示:灯盏花花药愈伤组织培养以附加60 g·L-1蔗糖较好,B5和MS培养基相比较,MS培养基较适宜,在MS+NAA 1.0 mg·L-1+BA 0.5 mg·L-1+蔗糖60 g·L-1的培养基中,花药愈伤组织诱导率可达36.03%。将愈伤组织转移到MS+6-BA 1.0 mg·L-1中继代增殖后,经芽苗分化、生根后可得到完整植株。再生植株根尖细胞经细胞学鉴定存在单倍体。  相似文献   

12.
Arabic date is overproduced in Arabic countries such as Saudi Arabia and Iraq and is mostly composed of sugars (70–80 wt%). Here we developed a fed-batch fermentation process by using a kinetic model for the efficient production of lactic acid to a high concentration from Arabic date juice. First, a kinetic model of Lactobacillus rhamnosus grown on date juice in batch fermentation was constructed in EXCEL so that the estimation of parameters and simulation of the model can be easily performed. Then, several fed-batch fermentations were conducted by employing different feeding strategies including pulsed feeding, exponential feeding, and modified exponential feeding. Based on the results of fed-batch fermentations, the kinetic model for fed-batch fermentation was also developed. This new model was used to perform feed-forward controlled fed-batch fermentation, which resulted in the production of 171.79 g l?1 of lactic acid with the productivity and yield of 1.58 and 0.87 g l?1 h?1, respectively.  相似文献   

13.
Secretion of the expressed heterologous proteins can reduce the stress to the host cells and is beneficial to their recovery and purification. In this study, fed-batch cultures ofEscherichia coliYK537 (pAET-8) were conducted in a 5-L fermentor for the secretory production of human epidermal growth factor (hEGF) whose expression, was under the control of alkaline phosphatase promoter. The effects of feeding of glucose and complex nitrogen sources on hEGF production were investigated. When the fed-batch culture was conducted in a chemically defined medium, the cell density was 9.68 g/L and the secreted hEGF was 44.7 mg/L in a period of 60 h. When a complex medium was used and glucose was added in pH-stat mode, the secreted hEGF was improved to 345 mg/L. When the culture was fed with glucose at a constant specific rate of 0.25 gg−1h−1, hEGF reached 514 mg/L. The effects of adding a solution containing yeast extract and tryptone were further studied. Different rate of the nitrogen source feeding resulted in different levels of phosphate and acetic acid formation, thus affected hEGF expression. At the optimal feeding rate, hEGF production achieved 686 mg/L.  相似文献   

14.
以红皮云杉未成熟胚为外植体进行胚性愈伤组织诱导实验,利用L16(42×2)混合水平正交设计研究基础培养基、光照条件、未成熟胚采集时期对胚性愈伤组织诱导的影响,以此为基础对不同的培养温度梯度进行了筛选。结果表明:改良RJW基本培养基为最适宜的基础培养基,光照条件以暗培养为宜,未成熟胚的最适宜的采集时间7月20日,适宜培养温度为22℃。当未成熟胚在添加1.0 mg·L-1 BA,5.0 mg·L-1 NAA,20 g·L-1蔗糖,450 mg·L-1 L-谷氨酰胺、750 mg·L-1水解酪蛋白的改良RJW培养基,22℃下暗培养时,胚性愈伤组织诱导率最高,达到81.3%。  相似文献   

15.
濒危植物珙桐的组织培养与植株再生   总被引:3,自引:0,他引:3  
以珙桐冬芽为材料进行组织培养和植株再生研究,结果表明:珙桐冬芽直接诱导丛生芽的最适培养基为WPM+NAA 0.2 mg·L-1+6-BA 3.0 mg·L-1+AC 2.0 g·L-1;珙桐带芽茎段增殖的适宜培养基为WPM+NAA 0.05 mg·L-1+6-BA 1.0 mg·L-1+GA3 2.0 mg·L-1+AC 2.0 g·L-1;生根最佳培养基为White+IBA3.0 mg·L-1+6-BA 1.0 mg·L-1+AC 2.0 g·L-1,在此条件下,根发育良好,植株健壮;组培苗炼苗后移栽,成活率可达80%。  相似文献   

16.
野葛叶片和茎段高频再生体系的建立   总被引:5,自引:3,他引:2  
探讨几种因子对野葛叶片和茎段高频再生体系建立的影响。采用植物组织培养、正交实验和单因子实验的方法。野葛叶片和茎段的最佳消毒方式为70%酒精处理30 s后再用0.1%HgCl2处理15 min;野葛叶片愈伤组织诱导的最佳培养基为MS+NAA 1.0 mg·L-1+2,4-D 2 mg·L-1,野葛茎段愈伤组织诱导的最佳培养基为MS+NAA 0.5 mg·L-1+6-BA 1.0 mg·L-1+2,4-D 2 mg·L-1;暗培养更有利于野葛愈伤组织的诱导;野葛叶片和茎段愈伤组织诱导的最佳蔗糖浓度均为30 g·L-1;野葛叶片愈伤组织的最佳出芽培养基为MS+NAA 1.0 mg·L-1+6-BA 3.0 mg·L-1,而野葛茎段愈伤组织的最佳出芽培养基为MS+ NAA 0.5 mg·L-1+KT 2 mg·L-1;光照培养更有利于野葛叶片和茎段愈伤组织芽的再分化;野葛叶片愈伤组织再生芽生根的最佳培养基为MS+NAA 0.5 mg·L-1+PP333 0.5 mg·L-1,而野葛茎段愈伤组织再生芽生根的最佳培养基为MS+NAA 0.5 mg·L-1+PP333 3.0 mg·L-1;野葛叶片和茎段愈伤组织再生芽生根的最佳蔗糖浓度均为30 g·L-1;叶片再生苗移栽的最佳PP333浓度为1.0 mg·L-1,茎段再生苗移栽的最佳PP333浓度为3.0 mg·L-1;叶片和茎段再生苗的最佳移栽基质均为蛭石:珍珠岩(2:1)。  相似文献   

17.
High cell density cultivation of Haematococcus pluvialis for astaxanthin production was carried out in batch and fed-batch modes in 3.7-L bioreactors with stepwise increased light intensity control mode. A high cell density of 2.65 g L−1 (batch culture) or 2.74 g L−1 (fed-batch culture) was obtained, and total astaxanthin production in the fed-batch culture (64.36 mg L−1) was about 20.5% higher than in the batch culture (53.43 mg L−1). An unstructured kinetic model to describe the microalga culture system including cell growth, astaxanthin formation, as well as sodium acetate consumption was proposed. Good agreement was found between the model predictions and experimental data. The models demonstrated that the optimal light intensity for mixotrophic growth of H. pluvialis in batch or fed-batch cultures in a 3.7-L bioreactor was 90–360 μmol m−2 s−1, and that the stepwise increased light intensity mode could be replaced by a constant light intensity mode. Received 24 December 1998/ Accepted in revised form 23 April 1999  相似文献   

18.
Conifers decrease the amount of biomass apportioned to leaves relative to sapwood in response to increasing atmospheric evaporative demand. We determined how these climate-driven shifts in allocation affect the aboveground water relations of ponderosa pine growing in contrasting arid (desert) and humid (montane) climates. To support higher transpiration rates, a low leaf:sapwood area ratio (AL/AS) in desert versus montane trees could increase leaf-specific hydraulic conductance (KL). Alternatively, a high sapwood volume:leaf area ratio in the desert environment may increase the contribution of stored water to transpiration. Transpiration and hydraulic conductance were determined by measuring sap flow (JS) and shoot water potential during the summer (June-July) and fall (August-September). The daily contribution of stored water to transpiration was determined using the lag between the beginning of transpiration from the crown at sunrise and JS. In the summer, mean maximum JS was 31.80LJ.74 and 24.34Dž.05 g m-2 s-1 for desert and montane trees (a 30.6% difference), respectively. In the fall, JS was 25.33NJ.52 and 16.36dž.64 g m-2 s-1 in desert and montane trees (a 54.8% difference), respectively. JS was significantly higher in desert relative to montane trees during summer and fall (P<0.05). Predawn and midday shoot water potential and sapwood relative water content did not differ between environments. Desert trees had a 129% higher KL than montane trees in the summer (2.41᎒-5 versus 1.05᎒-5 kg m-2 s-1 MPa-1, P<0.001) and a 162% higher KL in the fall (1.97᎒-5 versus 0.75᎒-5 kg m-2 s-1 MPa-1, P<0.001). Canopy conductance decreased with D in all trees at all measurement periods (P<0.05). Maximum gC was 3.91 times higher in desert relative to montane trees averaged over the summer and fall. Water storage capacity accounted for 11 kg (11%) and 10.6 kg (17%) of daily transpiration in the summer and fall, respectively, and did not differ between desert and montane trees. By preventing xylem tensions from reaching levels that cause xylem cavitation, high KL in desert ponderosa pine may facilitate its avoidance. Thus, the primary benefit of low leaf:sapwood allocation in progressively arid environments is to increase KL and not to increase the contribution of stored water to transpiration.  相似文献   

19.
Jerusalem artichoke extract or powder was used for astaxanthin production using Phaffia rhodozyma without acidic or enzymatic inulin hydrolysis. The culture medium containing Jerusalem artichoke as carbon source was optimized, and feeding strategies, including constant, exponential, pH-stat, and substrate feedback fed-batch fermentations, were also compared for enhancing the cell biomass and astaxanthin synthesis by P. rhodozyma. Substrate-feedback fed-batch fermentation resulted in the highest dry cell weight of 83.60 g/L, with a carotenoid concentration and yield of 982.50 mg/L and 13.30 mg/g, respectively, under optimized medium components using Jerusalem artichoke extract as carbon source in a 3-L stirred-tank bioreactor. Moreover, 482.50 mg/L of carotenoids and 253.10 mg/L of astaxanthin were obtained by continuous feeding of Jerusalem artichoke powder, which was used as carbon source. Astaxanthin essence with high DPPH-scavenging activity was obtained from the extracted astaxanthin, and the DPPH free radical scavenging rate of 40 ppm astaxanthin essence reached 76.29%. When stored at 4 °C, astaxanthin essence showed the highest stability, with a minimum k value of 0.0099 week−1 and maximum half-life (t1/2) value of 70 weeks.  相似文献   

20.
Recombinant hG-CSF was expressed in Pichia pastoris under the control of the AOX1 promoter. In this study, the glycerol feeding rate was adjusted to achieve the maximum attainable specific growth rate before induction. Using a two-stage glycerol feeding method, the specific growth rate was changed from a maximum value of 0.21 h−1 (at the beginning of feeding) to 0.15 h−1 prior to induction. With this approach, the final dry cell wt and rhG-CSF yield achieved was close to 120 g l−1 and 320 mg l−1, respectively. Our study found that the two-stage feeding method allowed the overall productivity of rhG-CSF to increase 2.9 times that of the conventional fed-batch method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号