首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The heptapeptide Ile-Arg-Ile-Cys-Arg-Lys-Gly-ethyl ester, having the amino acid sequence around the SH1 of myosin heavy chain, was coprecipitated with F-actin after ultracentrifugation. The heptapeptide inhibited the formation of acto-S-1 rigor complex by competing with S-1 for actin. Assuming a simple competitive inhibition, the dissociation constant of acto-heptapeptide complex was evaluated as 0.23 mM. An N-terminal tripeptide derivative from the heptapeptide Ile-Arg-Ile-methyl ester also formed a complex with F-actin with a dissociation constant of 1.1 mM. However, the other piece, Cys-Arg-Lys-Gly-ethyl ester, and a tetrapeptide, Val-Leu-Glu-Gly-ethyl ester, having the sequence adjacent to the N-terminal of the heptapeptide, scarcely bound with F-actin. These results suggest that part of the actin-binding site of myosin heavy chain around SH1 (Katoh, T., Katoh, H., and Morita, F. (1985) J. Biol. Chem. 260, 6723-6727) has the sequence of Ile-Arg-Ile and it is located adjacent to SH1 on its N-terminal side.  相似文献   

2.
《The Journal of cell biology》1983,96(6):1761-1765
Tomato activation inhibiting protein (AIP) is a molecule of an apparent molecular weight of 72,000 that co-purifies with tomato actin. In an assay system containing rabbit skeletal muscle F-actin and rabbit skeletal muscle myosin subfragment-1 (myosin S-1), tomato AIP dissociated the acto-S-1 complex in the absence of Mg+2ATP and inhibited the ability of F-actin to activate the low ionic strength Mg+2ATPase activity of myosin S-1. At a molar ratio of 5 actin to 1 AIP, a 50% inhibition of the actin-activated Mg+2ATPase activity of myosin S-1 was observed. The inhibition can be reversed by raising the calcium ion concentration to 1 X 10(-5) M. The AIP had no effect on the basal low ionic strength Mg+2ATPase activity of myosin S-1 in the absence of actin. The protein did not bind directly to actin nor did it cause depolymerization or aggregation of F-actin but appeared, instead, to interact with the actin binding site on myosin S-1. Since AIP is a potent, reversible inhibitor of the rabbit acto-S-1 ATPase activity, it is postulated that it may be responsible for the low levels of actin activation exhibited by tomato F-actin fractions containing the AIP.  相似文献   

3.
F-Actin bindings to subfragment-1 (S-1) and S-1 after limited proteolysis by trypsin (S-1t) were studied in the absence and presence of ATP by means of ultracentrifugation. No significant difference in the affinities for F-actin was observed between S-1 and S-1t in the absence of ATP. In contrast, the affinity for F-actin in the presence of ATP was decreased about 50 times by the limited proteolysis of the S-1 heavy chain. The S-1 whose SH1 and SH2 groups were cross-linked by N,N'-p-phenylenedimaleimide bound F-actin weakly. The affinity for F-actin was similar to that of unmodified S-1 in the presence of ATP and was also decreased markedly by limited proteolysis of the cross-linked S-1. Reciprocals of the dissociation constant of acto-S-1 complex decreased markedly with increase of ionic strength in the presence of ATP, but decreased only slightly at the rigor state. All these results are consistent with our proposal that S-1 has two different actin binding sites, as reported previously (Katoh, T., Imae, S., & Morita, F. (1984) J. Biochem. 95, 447-454). The mechanism of activation of S-1 ATPase by F-actin is discussed.  相似文献   

4.
The heptapeptide Ile-Arg-Ile-Cys-Arg-Lys-Gly-OEt is the analog of the S-site, one of the actin-binding sites in myosin [Suzuki et al. (1987) J. Biol. Chem. 262, 11410-11412]. Various substituted heptapeptides were synthesized, and the dissociation constants of each acto-heptapeptide complex was measured. Comparison of the dissociation constants indicated that the hydrophobic side chain of Ile-1 was critical for the binding with F-actin, but not that of Ile-3. The positive charge and the side chain length of Arg-2 were also important. The presence of a sulfur atom in the Cys-4 was also necessary. The affinity of the N-terminal Ile-Arg-Ile part for F-actin was influenced by the kind of residues in the C-terminal tetrapeptide part. Based on these results, the side chains of Ile(702), Arg(703), and Cys(SH1)(705) in myosin subfragment-1 heavy chain were assigned to be critical for the binding with F-actin. The amino acid sequence of S-1 heavy chain containing these critical residues for the S-site from residue number 700 to 717 can be predicted as an analogue of the segment B of the ATP-binding site [Walker et al. (1982) EMBO J. 1, 945-951]. The actin-binding S-site possibly shares a part of the ATP-binding site in myosin. We discuss the possibility that the S-site is an inhibitory site of myosin ATPase and the so-called actin-activation of myosin ATPase is a deinhibition induced by transient binding of F-actin to the S-site.  相似文献   

5.
G DasGupta  E Reisler 《Biochemistry》1992,31(6):1836-1841
The binding of myosin subfragment 1 (S-1) to actin in the presence of ATP and the acto-S-1 ATPase activities of acto-S-1 complexes were determined at 5 degrees C under conditions of partial saturation of actin, up to 90%, by antibodies against the first seven N-terminal residues on actin. The antibodies [Fab(1-7)] inhibited strongly the acto-S-1 ATPase and the binding of S-1 to actin in the presence of ATP at low concentrations of S-1, up to 25 microM. Further increases in S-1 concentration resulted in a partial and cooperative recovery of both the binding of S-1 to actin and the acto-S-1 ATPase while causing only limited displacement of Fab(1-7) from actin. The extent to which the binding and the ATPase activity were recovered depended on the saturation of actin by Fab(1-7). The combined amounts of S-1 and Fab binding to actin suggested that the activation of the myosin ATPase activity was due to actin free of Fab. Examination of the acto-S-1 ATPase activities as a function of S-1 bound to actin at different levels of actin saturation by Fab(1-7) revealed that the antibodies inhibited the activation of the bound myosin. Thus, the binding of antibodies to the N-terminal segment of actin can act to inhibit both the binding of S-1 to actin in the presence of ATP and a catalytic step in ATP hydrolysis by actomyosin. The implications of these results to the regulation of actomyosin interaction are discussed.  相似文献   

6.
The rates of the elementary steps of the actomyosin ATPase reaction were measured using the myosin subfragment-1 of porcine left ventricular muscle. The results could be explained only by the two-route mechanism for actomyosin ATPase (Inoue, Shigekawa, & Tonomura (1973) J. Biochem. 74, 923-934), in which ATP is hydrolyzed via routes with or without accompanying dissociation of actomyosin. The dependence on the F-actin concentration of the rate of the acto-S-1 ATPase reaction in the steady state was measured in 5 mM KCl at 20 degrees C. The maximal rate, Vmax, and the dissociation constant for F-actin of the ATPase, Kd, were 3.0 s-1 and 2.2 mg/ml, respectively. The Kd value was almost the same as that determined from the extent of binding of S-1 with F-actin during the ATPase reaction. The rate of recombination of the S-1-phosphate-ADP complex, S-1ADPP, with F-actin, vr, was lower than that of the ATPase reaction in the steady state. Thus, ATP is mainly hydrolyzed without accompanying dissociation of acto-S-1 into S-1ADPP and F-actin. In the cardiac acto-S-1 ATPase reaction, the rate of the ATPase reaction in the steady state and that of recombination of S-1ADPP with F-actin were about 1/5 those of the skeletal acto-S-1 ATPase reaction.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Polymerization of G-actin to F-actin was indicated by an increase in light-scattering intensity after the addition of a heptapeptide (Ile-Arg-Ile-Cys(MT)-Arg-Lys-Gly-OEt), an analog of the actin-binding S-site on S-1 heavy chain. The half-maximal concentration of the heptapeptide which induced an increase in the light-scattering intensity at 25 degrees C was about 110 microM, which was in the range of the dissociation constant of this peptide with F-actin. The polymerization of G-actin to F-actin by binding of the heptapeptide was further demonstrated by ultracentrifugal separation, Pi liberation, and electron microscopy. The polymerization of G-actin was induced only by the heptapeptide, but not by fragments of the heptapeptide. The well known acceleration of polymerization of G-actin by the myosin head may be due to the binding of G-actin with the S-site on the myosin head.  相似文献   

8.
The negatively charged residues in the N-terminus of actin and the 697-707 region on myosin subfragment 1 (S-1), containing the reactive cysteines SH1 and SH2, are known to be important for actin-activated myosin ATPase activity. The relationship between these two sites was first examined by monitoring the rates of SH1 and SH2 modification with N-ethylmaleimide in the presence of actin and, secondly, by testing for direct binding of SH1 peptides to the N-terminal segment on actin. While actin alone protected SH1 from N-ethylmaleimide modification, this effect was abolished by an antibody against the seven N-terminal amino acids on actin, F(ab)(1-7), and was greatly reduced when the charge of acidic residues at actin's N-terminus was altered by carbodiimide coupling of ethylenediamine. Neither F(ab)(1-7) nor ethylenediamine treatment reversed the effect of F-actin on SH2 reactivity in SH1-modified S-1. These results show a communication between the SH1 region on S-1 and actin's N-terminus in the acto-S-1 complex. To test whether such a communication involves the binding of the SH1 site on S-1 to the N-terminal segment of actin, the SH1 peptide IRICRKG-NH2(4+) was used. Cosedimentation experiments revealed the binding of three to six peptides per actin monomer. Peptide binding to actin was affected slightly, if at all, by F(ab)(1-7). The antibody also did not change the polymerization of G-actin by the peptides. The peptides caused a small reduction in the binding of S-1 to actin and did not change the binding of F(ab)(1-7).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
F-Actin was partially cross-linked to myosin subfragment-1 (S-1) at various molar ratios (r = S-1/actin) with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide. The cross-linked acto-S-1 ATPase showed so called "super-activation," Vx. S-1 was added further to the cross-linked acto-S-1 and the ATPase activity, Vy, was measured. Since the added S-1 can interact only with the bare actin protomers within the cross-linked actin filament, the difference, delta V = Vy - Vx - Vs (where Vs is the ATPase activity of the additional S-1 alone), can indicate the state of the bare actin protomers while the cross-linked acto-S-1 is hydrolyzing ATP. With increasing r, delta V decreased much more rapidly than delta Vo(1 - r) (where delta Vo is delta V at r = 0) and reached a minimum around r = 0.15. As r increased further, delta V approached the level of delta Vo(1 - r). When SH1/SH2-blocked S-1 was cross-linked to F-actin, delta V decreased according to delta Vo(1 - r). Therefore, the large reduction of delta V, observed when intact S-1 was cross-linked, was coupled to the high ATPase activity of the cross-linked acto-S-1. Combining these data with other kinetic data, we could deduce that structural distortion in a cross-linked actin induced by the ATPase reaction of the S-1 partner propagated over several bare actin protomers along the filament and reduced their affinity for the S-1-ADP-Pi complex.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Bertrand R  Derancourt J  Kassab R 《Biochemistry》2000,39(47):14626-14637
We have synthesized the luminescent and fluorescent lanthanide chelate S-(2-nitro-5-thiobenzoic acid)cysteaminyldiethylenetriaminepentaacetate-5-[(2-aminoethyl)am ino ]naphthalene-1-sulfonic acid as well as the fluorescent analogue S-(2-nitro-5-thiobenzoic acid)cysteaminyl-5-carboxyfluorescein using the procedure we recently described [Bertrand, R., Capony, J.-P., Derancourt, J., and Kassab, R. (1999) Biochemistry 38, 11914-11925]. Both mixed disulfides react with the skeletal myosin motor domain (S-1) as actin site-directed agents and label exclusively and stoichiometrically Cys 540 in the hydrophobic strong actin binding helix-loop-helix motif, causing only a 1.9-2.4-fold decrease in the V(max) for acto-S-1 ATPase. The covalently attached cysteaminyl probe side chain spans maximally 17 and 8 A, respectively, and the fluorophores have different polarity, volume, and flexibility. Thus, they may provide complementary spectroscopic information on the environmental properties of this critical actin binding region. Here, we have analyzed by extrinsic fluorescence spectroscopy S-1 derivatized with the fluorescein label or with the Tb(3+) or Eu(3+) chelate of the other label to assess the conformational transitions precisely occurring at this site upon interaction with F-actin, nucleotides, or phosphate analogues. For either label, specific spectral changes of significant amplitude were obtained, identifying at least two major structural states. One was mediated by rigor binding of F-actin in the absence or presence of MgADP. It was abolished by MgATP, and it was not produced by the binding of nonpolymerizable G-actin. A modeling of the corresponding changes in the intensity and lambda(max) of the fluorescence emission spectra, achieved using the fluorescent adducts of 2-mercaptoethanol in varying concentrations of dimethylformamide, illustrates the predicted apolar nature of the strong acto-S-1 interface. A second state was promoted by the binding of ATP, AMP-PNP, ADP.AlF4, ADP. BeFx, or PP(i). It should be prevalent in the weak acto-S-1 binding complexes. The accompanying fluorescence intensity reduction, observed with each label, in both the absence and presence of F-actin, would result from a specific modification by these ligands of the probe orientation and/or solvent accessibility as suggested by acrylamide quenching experiments. It could represent the spectral manifestation of the predicted allosteric linkage from the ATPase site to the strong actin binding site of S-1 that modulates the acto-S-1 affinity. Our study offers the basis necessary for further detailed spectroscopic investigations on the conformational dynamics in solution of the stereospecific and hydrophobic actin binding motif during the skeletal cross-bridge cycle.  相似文献   

11.
The oxygen exchange occurring during the acto-S-1 ATPase reaction was analyzed based on the distribution of 18O-labeled species of P1 using [gamma-18O]ATP as a substrate. Evidence was found for the two-route mechanism in which ATP is hydrolyzed via the dissociation of acto-S-1 into F-actin and the S-1-phosphate-ADP complex, S-1PADP, and their recombination, and also hydrolyzed without the dissociation of acto-S-1 (Inoue, A., Shigekawa, M., & Tonomura, Y. (1973) J. Biochem. 74, 923-934; Inoue, A., Ikebe, M., & Tonomura, Y. (1980) J. Biochem. 88, 1663-1677). When ATP was mainly hydrolyzed without the dissociation of acto-S-1, the extent of oxygen exchange was low. When ATP was hydrolyzed by both routes, the distribution of product P1 with 3, 2, 1, and 0 18O atoms showed a mixture resulting from low and high oxygen exchange. The rate of ATPase without the dissociation of acto-S-1 can be estimated from the rate of the overall reaction (v), the rate of recombination of S-1PADP with F-actin (vr), and the extent of dissociation of acto-S-1 (a). The distribution of the P1 species measured was almost equal to that calculated from the ratio of ATP hydrolysis via the two pathways as avr and v-avr, respectively. This result indicates that the rates of the dissociation of acto-S-1PADP into S-1PADP and F-actin and their recombination are much lower than the rate of decomposition of the acto-S-1PADP complex into acto-S-1 + ADP + Pi.  相似文献   

12.
G DasGupta  J White  P Cheung  E Reisler 《Biochemistry》1990,29(36):8503-8508
The role of the N-terminal segment of actin in myosin-induced polymerization of G-actin was studied by using peptide antibodies directed against the first seven N-terminal residues of alpha-skeletal actin. Light scattering, fluorescence, and analytical ultracentrifugation experiments showed that the Fab fragments of these antibodies inhibited the polymerization of G-actin by myosin subfragment 1 (S-1) by inhibiting the binding of these proteins to each other. Fluorescence measurements using actin labeled with pyrenyliodoacetamide revealed that Fab inhibited the initial step in the binding of S-1 to G-actin. It is deduced from these results and from other literature data that the initial contact between G-actin and S-1 involves residues 1-7 on actin and residues 633-642 on the S-1 heavy chain. This interaction appears to be of major importance for the binding of S-1 and G-actin. The presence of additional myosin contact sites on G-actin was indicated by concentration-dependent recovery of S-1 binding to G-actin without displacement of Fab. The reduced Fab inhibition of S-1 binding to polymerizing and polymerized actin is consistent with the tightening of acto-S-1 binding at these sites or the creation of new sites upon formation of F-actin.  相似文献   

13.
The rate constant for the binding of myosin subfragment-1 (S-1) with F-actin in the absence of nucleotide, k1, and that for dissociation of the F-actin-myosin subfragment-1 complex (acto-S-1), k-1, were measured independently. The rate of S-1 binding with F-actin was measured from the time course of the change in the light scattering intensity after mixing S-1 with various concentrations of F-actin and k1 was found to be 2.55 X 10(6) M-1 X S-1 at 20 degrees C. The dissociation rate of acto-S-1 was determined using F-actin labeled with pyrenyl iodoacetamide (Pyr-FA). Pyr-FA, with its fluorescence decreased by binding with S-1, was mixed with acto-S-1 complex and the rate of displacement of F-actin by Pyr-FA was measured from the decrease in the Pyr-FA fluorescence intensity. The k-1 value was calculated to be 8.5 X 10(-3) S-1 (or 0.51 min-1). The value of the dissociation constant of S-1 from acto-S-1 complex, Kd, was calculated from Kd = k-1/k1 to be 3.3 X 10(-9) M at 20 degrees C. Kd was also measured at various temperatures (0-30 degrees C), and the thermodynamic parameters, delta G degree, delta H degree, and delta S degree, were estimated from the temperature dependence of Kd to be -11.3 kcal/mol, +2.5 kcal/mol, and +47 cal/deg . mol, respectively. Thus, the binding of the myosin head with F-actin was shown to be endothermic and entropy-driven.  相似文献   

14.
The main purpose of this study was to determine whether potentiation of acto-S-1 ATPase activity (activity higher than that obtained with tropomyosin-free actin) could be caused by nucleotide-containing acto-S-1 complexes. In addition, we wanted to know whether these complexes also have a positive cooperative effect on their own apparent binding constant under conditions where nucleotide-free acto-S-1 complexes cause potentiation of ATPase activity. Using calcium-saturated troponin-tropomyosin actin filaments, we observed potentiation of ATPase activity in the presence of 5.0 mM magnesium 5'-adenylyl imidodiphosphate (MgAMPPNP) and calculated that the ability of acto-S-1-AMPPNP complexes to cause potentiation must have been very similar to that of nucleotide-free acto-S-1 complexes. In extension of earlier studies, potentiated acto-S-1 ATPase activity was characterized by an increase in Vmax and, as observed before, a lowering of the apparent Km for subfragment 1 (S-1). Under conditions similar to those that produce the potentiation of acto-S-1 ATPase activity, the apparent actin binding constant of nucleotide-free S-1 was increased about 3-5 fold while the apparent binding constant of AMPPNP to actin-bound S-1 was reduced to (2.5-10) x 10(2) M-1 compared to that of about (1-5) x 10(3) M-1 for S-1 bound to tropomyosin-free actin. Under the same conditions, the apparent binding constant of S-1-AMPPNP to actin was not increased. We suggest that a potentiated state of the tropomyosin actin filament is produced by the cooperative action of acto-S-1 or acto-S-1-AMPPNP complexes. The potentiated state is characterized by an increase in the Vmax of the acto-S-1 ATPase activity, increased binding constants for S-1 and S-1-ADP, and increased binding of tropomyosin to actin.  相似文献   

15.
Several studies using a variety of approaches have suggested a possible role for the amino-terminal residues of skeletal muscle actin in acto-myosin interaction. In order to assess the significance of acto-S-1 contacts involving the N-terminal segment of actin, we have prepared polyclonal antisera against a synthetic peptide corresponding to the seven amino-terminal residues of rabbit skeletal muscle actin (alpha-N-terminal peptide). Affinity-purified immunoglobulin (Ig) G (and Fab) prepared from these antisera reacts strongly and specifically with the amino-terminal segment of both G- and F-actin but not with myosin subfragment 1 (S-1). This specificity was determined by Western blot analysis of actin and its proteolytic fragments and the inhibition of the above reactivity by the alpha-N-terminal peptide. The alpha-N-terminal peptide did not interact with S-1 in solution, affect S-1 and actin-activated S-1 MgATPase, or cause dissociation of the acto-S-1 complex. In separate experiments F-actin could be cosedimented with S-1 and affinity-purified IgG or Fab by using an air-driven ultracentrifuge. Densitometric analysis of sodium dodecyl sulfate/polyacrylamide gels of pellet and supernatant fractions from such experiments demonstrated the binding of both S-1 and IgG or Fab to the same F-actin protomer. Our results suggest that, while the acidic N-terminal amino acids of actin may contact the myosin head, these residues cannot be the main determinants of acto-S-1 interaction.  相似文献   

16.
We have synthesized the mixed disulfide, S-(2-nitro-5-thiobenzoic acid) cysteaminyl-EDTA, using a rapid procedure and water-soluble chemistry. Its disulfide-thiol exchange reaction with rabbit myosin subfragment-1 (S-1), analyzed by spectrophotometry, ATPase assays, and peptide mapping, led to the incorporation of the cysteaminyl-EDTA group into only Cys 540 on the heavy chain and into the unique cysteine on the alkali light chains. The former thiol, residing in the strong actin binding site, reacted at a much faster rate with a concomitant 3-fold decrease in the V(max) for acto-S-1 ATPase but without change in the essential enzymatic functions of S-1. Upon chelation of Fe(3+) ions to the Cys 540-bound EDTA and incubation of the S-1 derivative-Fe complex with ascorbic acid at pH 7.5, the 95 kDa heavy chain underwent a conformation-dependent, single-cut oxidative fragmentation within 5-15 A of Cys 540. Three pairs of fragments were formed which, after specific fluorescent labeling and SDS-PAGE, could be positioned along the heavy chain sequence as 68 kDa-26 kDa, 62 kDa-32 kDa, and 54 kDa-40 kDa. Densitometric measurements revealed that the yield of the 54 kDa-40 kDa pair of bands, but not that for the two other pairs, was very sensitive to S-1 binding to nucleotides or phosphate analogues as well as to F-actin. In binary complexes, all the former ligands specifically lowered the yield to 40% of S-1 alone, roughly in the following order: ADP = AMP-PNP > ATP = ADP.AlF(4) > ADP.BeF(x)() > PP(i). By contrast, rigor binding to F-actin increased the yield to 130%. In the ternary acto-S-1-ADP complex, the yield was again reduced to 80%, and it fell to 25% in acto-S-1-ADP.AlF(4), the putative transition state analogue complex of the acto-S-1 ATPase. These different quantitative changes reflect distinct ligand-induced conformations of the secondary structure element whose scission generates the 54 kDa-40 kDa species. According to the S-1 crystal structure, this element could be unambiguously assigned to the switch II helix (residues 475-507) whose N-terminus lies 14.2 A from Cys 540 and would include the ligand-responsive cleavage site. This motif is thought to be crucial for the transmission of sub-nanometer structural changes at the ATPase site to both the actin site and the lever arm domain during energy transduction. Our study illustrates this novel, actin site-specific chemical proteolysis of S-1 as a direct probe of the switch II helix conformational transitions in solution most likely associated with the skeletal cross-bridge cycle.  相似文献   

17.
The actin-activated Mg2+-ATPase activities of phosphorylated Acanthamoeba myosins IA and IB were previously found to have a highly cooperative dependence on myosin concentration (Albanesi, J. P., Fujisaki, H., and Korn, E. D. (1985) J. Biol. Chem. 260, 11174-11179). This behavior is reflected in the requirement for a higher concentration of F-actin for half-maximal activation of the myosin Mg2+-ATPase at low ratios of myosin:actin (noncooperative phase) than at high ratios of myosin:actin (cooperative phase). These phenomena could be explained by a model in which each molecule of the nonfilamentous myosins IA and IB contains two F-actin-binding sites of different affinities with binding of the lower affinity site being required for expression of actin-activated ATPase activity. Thus, enzymatic activity would coincide with cross-linking of actin filaments by myosin. This theoretical model predicts that shortening the actin filaments and increasing their number concentration at constant total F-actin should increase the myosin concentration required to obtain the cooperative increase in activity and should decrease the F-actin concentration required to reach half-maximal activity at low myosin:actin ratios. These predictions have been experimentally confirmed by shortening actin filaments by addition of plasma gelsolin, an F-actin capping/severing protein. In addition, we have found that actin "filaments" as short as the 1:2 gelsolin-actin complex can significantly activate Acanthamoeba myosin I.  相似文献   

18.
Polymerization of G-actin by myosin subfragment 1   总被引:3,自引:0,他引:3  
The polymerization of actin from rabbit skeletal muscle by myosin subfragment 1 (S-1) from the same source was studied in the depolymerizing G-actin buffer. The polymerization reactions were monitored in light-scattering experiments over a wide range of actin/S-1 molar rations. In contrast to the well resolved nucleation-elongation steps of actin assembly by KC1 and Mg2+, the association of actin in the presence of S-1 did not reveal any lag in the polymerization reaction. Light scattering titrations of actin with S-1 and vice versa showed saturation of the polymerization reaction at stoichiometric 1:1 ratios of actin to S-1. Ultracentrifugation experiments confirmed that only stoichiometric amounts of actin were incorporated into a 1:1 acto-S-1 polymer even at high actin/S-1 ratios. These polymers were indistinguishable from standard complexes of S-1 with F-actin as judged by electron microscopy, light scattering measurements, and fluorescence changes observed while using actin covalently labeled with N-(1-pyrenyl)iodoacetamide. F-actin obtained by polymerization of G-actin by S-1 could initiate rapid assembly of G-actin in the presence of 10 mM KC1 and 0.5 mM MgCl2 and showed normal activation of MgATPase hydrolysis by myosin.  相似文献   

19.
R T King  L E Greene 《Biochemistry》1985,24(24):7009-7014
Chalovich and Eisenberg [Chalovich, J. M., & Eisenberg, E. (1982) J. Biol. Chem. 257, 2432-2437] have suggested that at low ionic strength, troponin-tropomyosin regulates the actomyosin ATPase activity by inhibiting a kinetic step in the actomyosin ATPase cycle rather than by blocking the binding of myosin subfragment 1 (S-1) to actin. This leads to the prediction that troponin-tropomyosin should inhibit the ATPase activity of the complex of actin and S-1 (acto . S-1) even when S-1 is cross-linked to actin. We now find that the ATPase activity of cross-linked actin . S-1 prepared under milder conditions than those used by Mornet et al. [Mornet, D., Bertrand, R., Pantel, P., Audemard, E., & Kassab, R. (1981) Nature (London) 292, 301-306] is inhibited 90% by troponin-tropomyosin in the absence of Ca2+. At mu = 18 mM, 25 degrees C, the ATPase activity of this cross-linked preparation is only about 2-fold greater than the maximal actin-activated ATPase activity of S-1 obtained with regulated actin in the absence of Ca2+. At physiological ionic strength, the ATPase activity of this cross-linked actin . S-1 preparation is inhibited about 95% by troponin-tropomyosin. Since cross-linked S-1 behaves kinetically like S-1 in the presence of infinite actin concentration, it is very unlikely that inhibition of the ATPase activity of cross-linked actin . S-1 is due to blocking of the binding of S-1 to actin. Therefore, these results are in agreement with the suggestion that troponin-tropomyosin regulates primarily by inhibiting a kinetic step in the ATPase cycle.  相似文献   

20.
A synthetic peptide corresponding to a sequence 632-642 (S632-642) on the myosin subfragment 1 (S-1) heavy chain and spanning the 50/20 kDa junction of S-1 binds to actin in the presence and absence of S-1. The binding of 1.0 mole of peptide per actin causes almost complete inhibition of actomyosin ATPase activity and only partial inhibition of S-1 binding to actin. The binding of S632-642 to the N-terminal segment of actin is supported by competitive carbodiimide cross-linking of S-1 and S632-642 to actin and the catalytic properties of cross-linked acto-S-1 and actin-peptide complexes. These results show that the sequence 632-642 on S-1 is an autonomous binding site for actin and confirm the catalytic importance of its interactions with the N-terminal segment of actin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号