首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Measurements were made of the kinetic and steadystate characteristics of the potassium conductance in the giant axon of the crabCarcinus maenas. These measurements were made in the presence of tetrodotoxin, using the feedback amplifier concept introduced by Dodge and Frankenhaeuser (J. Physiol. (London) 143:76–90). The conductance increase during depolarizing voltage-clamp pulses was analyzed assuming that two separate potassium channels exist in these axons. The first potassium channel exhibited activation and fast inactivation gating which could be fitted using them 3 h, Hodgkin-Huxley formalism. The second potassium channel exhibited the standardn 4 Hodgkin-Huxley kinetics. These two postulated channels are blocked by internal application of caesium, tetraethylammonium and sodium ions. External application of 4 amino-pyridine also blocks these channels.  相似文献   

2.
1. The sodium and potassium conductances of the HODGKIN-HUXLEY model are simulated by a field effect transistor with a series resistor. This arrangement leads to a simple analog model of the excitable membrane (fig. 1 and 2). 2. Normally, the model is silent (fig. 3), but it becomes automatic (fig. 4) when the decay time (de-activation) of the potassium conductance is at least twice the recovery from inactivation time of the sodium conductance (taud greater than 2 tauri). 3. The effects of changes in sodium (fig. 5 and 6) and potassium (fig. 7, 8 and 9) concentration gradients upon the membrane potential and the ionic currents are easily studied when the model is silent or automatic. 4. When automatic, an increase in the potassium concentration gradient induces a lengthening of the period and ultimately, when the gradient is very high, spontaneous activity is blocked (fig. 9). On the other hand, increases of sodium gradient over 30% of normal value do not modify the period (fig 6). 5. The potassium concentration gradient modifies the excitability solely through membrane polarization (fig. 8), while sodium concentration has no effect on it (fig. 5). 6. Results with the model strengthen the hypothesis that tetraethylammonium (TEA) acts on both the maximum potassium conductance (gK) and the mechanism of sodium conductance inactivation (Tauh) to lengthen the action potential as observed on the Ranvier node (fig. 10). Effects of TEA on potassium conductance activation are also discussed. 7. Because of its simplicity and accuracy, this model lends itself easily to many other simulations.  相似文献   

3.
On the voltage-dependent action of tetrodotoxin.   总被引:2,自引:0,他引:2       下载免费PDF全文
The use of the maximum rate-of-rise of the action potential (Vmax) as a measure of the sodium conductance in excitable membranes is invalid. In the case of membrane action potentials, Vmax depends on the total ionic current across the membrane; drugs or conditions that alter the potassium or leak conductances will also affect Vmax. Likewise, long-term depolarization of the membrane lessens the fraction of total ionic current that passes through the sodium channels by increasing potassium conductance and inactivating the sodium conductance, and thereby reduces the effect of Vmax of drugs that specifically block sodium channels. The resultant artifact, an apparent voltage-dependent potency of such drugs, is theoretically simulated for the effects of tetrodotoxin on the Hodgkin-Huxley squid axon.  相似文献   

4.
Transmitter release from depolarized nerve terminals seems to be preceded by a rise in the intracellular concentration of ionized calcium. In squid giant axons, depolarization promotes calcium entry by two routes: one that is blocked by tetrodotoxin and one that is insensitive to tetrodotoxin. The TTX-sensitive route seems to be the sodium channel of the action potential; but the TTX-insensitive route seems to be quite distinct from the sodium and potassium channels of the action potential. It is blocked by Mg-2+, Mn-2+ and Co-2+ ions and by the organic calcium antagonist D-600 and has many features in common with the mechanism that couples excitation to secretion.  相似文献   

5.
Squid giant axons were internally perfused with tetrodotoxin and procaine, and excitability and electrical properties were studied by means of current-clamp and sucrose-gap voltage-clamp methods. Internally perfused tetrodotoxin was virtually without effect on the resting potential, the action potential, the early transient membrane ionic current, and the late steady-state membrane ionic current even at very high concentrations (1,000–10,000 nM) for a long period of time (up to 36 min). Externally applied tetrodotoxin at a concentration of 100 nM blocked the action potential and the early transient current in 2–3 min. Internally perfused procaine at concentrations of 1–10 mM reversibly depressed or blocked the action potential with an accompanying hyperpolarization of 2–4 mv, and inhibited both the early transient and late steady-state currents to the same extent. The time to peak early transient current was increased. The present results and the insolubility of tetrodotoxin in lipids have led to the conclusion that the gate controlling the flow of sodium ions through channels is located on the outer surface of the nerve membrane.  相似文献   

6.
Measurements were made of the kinetic and steady-state characteristics of the potassium conductance in the giant axon of the crab Carcinus maenas. These measurements were made in the presence of tetrodotoxin, using the feedback amplifier concept introduced by Dodge and Frankenhaeuser (J. Physiol, (London) 143:76-90). The conductance increase during depolarizing voltage-clamp pulses was analyzed assuming that two separate potassium channels exist in these axons. The first potassium channel exhibited activation and fast inactivation gating which could be fitted using the m3h, Hodgkin-Huxley formalism. The second potassium channel exhibited the standard n4 Hodgkin-Huxley kinetics. These two postulated channels are blocked by internal application of caesium, tetraethylammonium and sodium ions. External application of 4 amino-pyridine also blocks these channels.  相似文献   

7.
The modulation of the effects of sotalol (30 microM) by two sodium channel blockers, tetrodotoxin (0.07 microM) and lidocaine (50 microM), and by a potassium channel activator, nicorandil (30 microM), were examined. Sotalol alone greatly increased Purkinje fiber transmembrane action potential duration and, in some preparations, induced early after depolarizations. Concurrent with the changes in action potential duration, sotalol also increased isolated Purkinje strand developed force paced at slow rates (0.33 Hz). These sotalol-induced alterations of Purkinje strand electromechanical characteristics were similar to those produced by either veratrine (0.6 or 1.0 micrograms/mL) or by tetraethylammonium (10 mM). The effects of sotalol on action potential duration and force development were reversed by exposure to either tetrodotoxin or nicorandil. Lidocaine also reversed the effects of sotalol on action potential duration and developed force. The sotalol-induced increase in action potential duration and development of early after depolarizations may, therefore, be abated by combination with drugs that either block cardiac sodium channels or that increase membrane potassium conductance. Combination with such drugs may help prevent the adverse arrhythmogenic effects of sotalol.  相似文献   

8.
Tetrodotoxin Interference of CNS Excitation by Glutamic Acid   总被引:2,自引:0,他引:2  
TETRODOTOXIN (TTX), the powerful neurotoxin of the puffer fish, blocks electrical excitation of many neuronal and muscle membranes1. This neurotoxin selectively blocks the sodium conductance increase, leaving the delayed potassium conductance change unaltered2–6.  相似文献   

9.
Summary The passive electrical properties, and the ionic basis of the action potential have been examined in the subumbrella myoid epithelium of the siphonophoreChelophyes. The myoepithelial cells are electrically coupled, and are 20 m wide, some 1 mm long, and only 5 m thick. Membrane constants determined by a 2-electrode study were: = 280 m; Rm = 0.11 kOhm/cm2; Ri = 24 Ohm/cm. Mean resting potential was – 85 mV. The first action potential of a series (whether evoked by repetitive stimulation, or occurring in a natural unstimulated swimming burst) shows a rapid rise and fall with no afterpotential. The overshoot is small, but successive action potentials show a remarkable facilitation, overshooting by as much as 70 mV. They also show a plateau phase after the initial rapid rise, which is terminated by a rapid fall. Conduction velocity was 27 cm/s.Changes in the external milieu, and the effects of Ca2+ blocking agents indicated that the action potentials are complex events. Although insensitive to TTX, the action potential is dependent on external sodium concentration, and is not abolished by Ca2+ blocking agents: in this respect it resembles the sodium-dependent action potentials of other siphonophore tissues.The ionic basis of the facilitated action potentials is not yet clear, but it seems probable that a fast potassium conductance terminating the unfacilitated action potential is progressively inactivated during repetitive activity, and that the plateau phase of the facilitated action potential is maintained by a sodium conductance mechanism, to be terminated by a calcium-activated potassium conductance.Abbreviations EGTA 1,2-bis-[2-di(carboxymethyl)-amino-ethoxyl]-ethane - TEA tetraethyl ammonium chloride - TTX tetrodotoxin This work was carried out during a visit to the Station Zoologique, Villefranche-sur-Mer in the spring of 1979; it is a pleasure to express our thanks to Prof. P. Bougis and his staff for their kind hospitality. Q.B. and P.A.V.A. were supported by a grant from the British Council which is gratefully acknowledged.  相似文献   

10.
The effects of sodium pentobarbital were studied using intracellular recordings from CA1 and CA3 pyramidal cells in slices of guinea pig hippocampus. Drugs were applied either by perfusion or by pressure ejection at concentrations of 10(-6), 10(-5), and 10(-4) M. Pentobarbital at all concentrations caused neuronal hyperpolarization, decreased spontaneous activity, and sometimes decreased input resistance. Hyperpolarization also occurred in zero calcium perfusate or with tetrodotoxin in the perfusate. The postspike train long-lasting afterhyperpolarization, which is an intrinsic calcium-mediated potassium conductance, was increased at all doses. gamma-Aminobutyric acid induced depolarizing dendritic responses were augmented only at 10(-4) M pentobarbital. It is proposed that one of the important mechanisms of pentobarbital neuronal inhibition, particularly at lower doses, is an increase in potassium conductance.  相似文献   

11.
The effects of haloperidol, an antipsychotic butyrophenone, on excitability and action potential production in frog's sartorius muscle fibers were studied. This drug produced a local-anestheticlike effect which developed slowly over 1 to 5 h with lower concentrations (2.7 to 5.3 X 10(-6 M) but was completely reversed by exposing the muscles to a drug-free solution. In studies with intracellular microelectrodes, evidence was obtained showing that haloperidol decreased excitability and depressed action potential production by inhibiting the specific increase in sodium conductance (gNa) which normally follows an adequate stimulus. Evidence also was obtained showing an inhibition of the secondary increase in potassium conductance (gK). Haloperidol is structurally related to meperidine and it was found that the inhibition of gNa produced by haloperidol is partially antagonized by low concentrations of naloxone (2.8 X 10(-8) and 2.8 X 10(-7) M); as was previously shown for meperidine. Thus haloperidol, like meperidine, suppresses action potential production by two mechanisms of action: one, a nonspecific local-anaestheticlike effect; and the other, a specific inhibition of gNa mediated by means of an opiate drug receptor associated with the muscle fiber membrane. Naloxone did not antagonize the effects of chlorpromazine on gNa.  相似文献   

12.
Tarichatoxin, isolated from California newt eggs, has been found to selectively block the increase of sodium conductance associated with excitation in lobster giant axons at nanomolar concentrations. This resulted from a reduction in the amplitude of the conductance increase rather than a change in its temporal characteristics. The normal potassium conductance increase with depolarization is not altered. A high concentration of calcium applied concomitantly with the toxin significantly improves the reversibility of the sodium blocking. This toxin has recently been identified as chemically identical with tetrodotoxin from the puffer fish. Toxins from the two sources are equally effective and are shown to have an action which is distinctly different from that of procaine.  相似文献   

13.
Experiments by the voltage clamp method showed that external application of quinidine (5 × 10–5 M) to the Ranvier node membrane of the frog nerve fiber inhibitis both sodium and potassium currents. Blocking of the sodium current is considerably intensified by repetitive depolarization of the membrane (1–10 Hz); the rate of development of the block increases with an increase in stimulation frequency. After the end of stimulation the sodium current gradually returns to its initial level (with a time constant of the order of 30 sec at 12°C). Unlike repetitive depolarization with short (5 msec) stimuli, a prolonged shift (1 sec) of potential toward depolarization has no significant effect on quinidine blocking of the sodium current. Analysis of the current-voltage characteristic curves showed that quinidine blocks outward sodium current more strongly than inward. Batrachotoxin protects sodium channels against the blocking action of quinidine in a concentration of 10–5 M. Inhibition of the outward potassium currents by quinidine is distinctly time-dependent in character: Initially the potassium current rises to a maximum, then falls steadily to a new stationary level. The results agree with the view that quinidine, applied externally, penetrates through the membrane in the basic form and blocks open sodium and potassium channels from within in the charged (protonated) form. The similarity in principle between the action of quinidine and local anesthetics on the sodium suggests that these compounds bind with the same receptor, located in the inner mouth of the sodium channel.A. V. Vishnevskii Institute of Surgery, Academy of Medical Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 14, No. 3, pp. 324–330, May–June, 1982.  相似文献   

14.
Strychnine blocks sodium conductance in the frog node of Ranvier. This block was studied by reducing and slowing sodium inactivation with scorpion venom. The block is voltage and time dependent. The more positive the axoplasm the greater the block and the faster the approach to equilibrium. Some evidence is presented suggesting that only open channels can be blocked. The block is reduced by raising external sodium or lithium but not impermeant cations. A quaternary derivative of strychnine was synthesized and found to have the same action only when applied intracellularly. We conclude that strychnine blocks sodium channels by a mechanism analogous to that by which it blocks potassium channels. The potassium channel block had previously been found to be identical to that by tetraethylammonium ion derivatives. In addition, strychnine resembles procaine and its derivatives in both its structure and the mechanism of sodium channel block.  相似文献   

15.
The effects of tetrodotoxin, procaine, and manganese ions were examined on the Ca spike of the barnacle muscle fiber injected with Ca-binding agent as well as on the action potential of the ventricular muscle fiber of the frog heart. Although tetrodotoxin and procaine very effectively suppress the "Na spike" of other tissues, no suppressing effects are found on "Ca spike" of the barnacle fiber, while the initiation of the Ca spike is competitively inhibited by manganese ions. The initial rate of rise of the ventricular action potential is suppressed by tetrodotoxin and procaine but the plateau phase of the action potential is little affected. In contrast the suppressing effect of manganese ions is mainly on the plateau phase. The results suggest that the plateau phase of the ventricular action potential is related to the conductance increase in the membrane to Ca ions even though Na conductance change may also contribute to the plateau.  相似文献   

16.
Tetrahydroaminoacridine (tacrine) is an anticholinesterase agent used in the treatment of Alzheimer's disease. Its effectiveness against dementia is attributed to its inhibition of acetylcholine breakdown in the synaptic cleft. Tacrine has also been shown to block ionic currents, including many types of potassium (K+) currents, calcium currents, and sodium currents. However, the physiologic significance of this blockade, especially with respect to its effectiveness against Alzheimer's disease, is not clear because of relatively high (several hundred micromolar to millimolar) concentrations of tacrine employed in many studies of channel blockade, and because it blocks several types of currents. A complete mutational and pharmacologic resolution of ionic currents in the larval muscles of Drosophila allowed us to examine the selectivity of tacrine's effects at very low concentrations. At concentrations as low as 10 μM, tacrine selectively blocked the delayed rectifier K+ current without affecting the three other K+ currents or the calcium channel current in these cells. It also increased the duration of the action potentials significantly. An interesting aspect of tacrine's selectivity is that the current blocked by it is the quinidine-sensitive delayed rectifier K+ current rather than the 4-aminopyridine (4-AP)-sensitive transient K+ current. This is in contrast to the generally emphasized structural relationship between tacrine and 4-AP. Since tacrine is structurally related to quinidine as well, these observations suggest a structural basis for the selectivity of tacrine, 4-AP, and quinidine for specific K+ channels. Furthermore, the data are consistent with the possibility of increased neurotransmitter release, due to prolonged presynaptic action potentials, acting synergistically with the anticholinesterase activity of tacrine to increase its therapeutic effectiveness. © 1997 John Wiley & Sons, Inc. J Neurobiol 32: 1–10, 1997.  相似文献   

17.
The data of the author and Uhlig, and new data, on the conductivity of sodium and of potassium guaiacolates in guaiacol at 25° have been computed with an improved conductance equation which is valid to somewhat higher concentrations than the equations formerly used. The new constants are, Λ0 = 9.0, K = 2.8 x 10–5 for sodium guaiacolate and Λ0 = 9.5, K = 3.4 x 10–5 for potassium guaiacolate.  相似文献   

18.
We studied the effect of “chemical” (induced by the action of sodium thiosulfate, STS) hypoxia on the potassium conductance of the membrane of pheochromocytoma cells. Application of 1 to 10 mM STS decreased in a dose-dependent manner the amplitude of integral potassium current without changes in the voltage dependence of its activation. The concentration dependence of the action of STS on the amplitude of potassium current was estimated using the Boltzmann equation. The value of concentration for 50% inhibition was 2.7 ± 0.2 mM, while the slope coefficient was 0.9 ± 0.2 mM−1. In the presence of 10 mM STS, the decrease in the amplitude of potassium current reached, on average, 55%. Therefore, “chemical” hypoxia influences rather significantly the potassium conductance of the membrane of pheochromocytoma PC12 cells.  相似文献   

19.
A peptide neurohormone from the brain and nervous system of the Madeira cockroach Leucophaea maderae has stimulating effects on both the mechanical and electrical events of hindgut visceral muscle. The peptide initiated action potentials at silent recording sites in the circular muscles of the rectum after prior treatment with tetrodotoxin (10−6 g/ml). The neurohormone also caused an increase in the amplitude and frequency of spontaneous postsynaptic potentials. However, the isolated hindgut failed to respond to the neurohormone after depolarization in high potassium saline solutions. Both the potassium contracture and the action of the neurohormone were calcium dependent.Although some hindguts were responsive to the neurohormone in a Ca free medium, such preparations failed to respond in 0·5 mM EGTA. Moreover, 1 mM Mn blocked the action of the peptide. The sodium ion was also essential for effective hormone action. These results suggest the presence of a loosely bound source of Ca at the surface of muscle membranes that in some way interacts with the neurohormone to change muscle excitability.  相似文献   

20.
Cells in the pacemaker region of toad (Bufo marinus) sinus venosus had spontaneous rhythmic action potentials. The rate of firing of action potentials, the rate of diastolic depolarization and the maximum rate of rise of action potentials were reduced by TTX (10 nm to 1 m). Currents were recorded with the whole cell, tight seal technique from cells enzymatically dissociated from this region. Cells studied were identified as pacemaker cells by their characteristic morphology, spontaneous rhythmic action potential activity that could be blocked by cobalt but not by TTX and lack of inward rectification. When calcium, potassium and nonselective cation currents (If) activated by hyperpolarization were blocked, depolarization was seen to generate transient and persistent inward currents. Both were sodium currents: they were abolished by tetrodotoxin (10 to 100 nm), their reversal potential was close to the sodium equilibrium potential and their amplitude and reversal potential were influenced as expected for sodium currents when extracellular sodium ions were replaced with choline ions. The transient sodium current was activated at potentials more positive than –40 mV while the persistent sodium current was obvious at more negative potentials. It was concluded that, in toad pacemaker cells, TTX-sensitive sodium currents contributing both to the upstroke of action potentials and to diastolic depolarization may play an important role in setting heart rate.We thank the Australian National Heart Foundation for their support. D.A.S. is an NHMRC Senior Research Officer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号