首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
Growth factors are biologically-active mediators that bind to specific receptors on target cells and regulate genes involved in cell growth, wound healing and regeneration. In the case of wound healing, a proper wound dressing is needed to cover the wound area, protect the damaged tissue, and if possible to activate cell proliferation and stimulate the healing process. In this study we examined the efficacy of a glycolipoprotein tissue homogenate extract from Eisenia foetida (G-90) to activate signal transduction pathways, leading to wound healing. We measured the activation of EGF and FGF in healthy skin, in wounds with physiological healing and in wounds treated with G-90. The activation of EGF and FGF was measured during the first 24 h of wound healing under both physiological conditions and treatment with G-90. In both cases an increased concentration of EGF and FGF was observed 6 h after wounding. In comparison with healthy skin, the concentration of EGF increased 10-fold and FGF five-fold in wounds treated with G-90 (10 ng ml(-1)). Healing in physiological conditions resulted in a two-fold increase of EGF and 1.5-fold of FGF.  相似文献   

4.
Molecular biology of the cell cycle   总被引:2,自引:0,他引:2  
Genes and cDNA clones have been identified in animal cells that are cell cycle-regulated, i.e. they are preferentially expressed in a phase of the cell cycle. Some of these genes, including four oncogenes, are induced when G0 cells are stimulated to proliferate. Four approaches are described to identify the genes that regulate the transition of cells from a resting to a growing stage. The interrelationship among cell cycle-regulated genes, oncogenes, growth factors and receptors for growth factors points the way to a genetic dissection of cell cycle progression.  相似文献   

5.
Mechanical loading stimulates tendon healing via mechanisms that are largely unknown. Genes will be differently regulated in loaded healing tendons, compared with unloaded, just because of the fact that healing processes have been changed. To avoid such secondary effects and study the effect of loading per se, we therefore studied the gene expression response shortly after a single loading episode in otherwise unloaded healing tendons. The Achilles tendon was transected in 30 tail-suspended rats. The animals were let down from the suspension to load their tendons on a treadmill for 30 min once, 5 days after tendon transection. Gene expression was studied by Affymetrix microarray before and 3, 12, 24, and 48 h after loading. The strongest response in gene expression was seen 3 h after loading, when 150 genes were up- or downregulated (fold change ≥2, P ≤ 0.05). Twelve hours after loading, only three genes were upregulated, whereas 38 were downregulated. Fewer than seven genes were regulated after 24 and 48 h. Genes involved in the inflammatory response were strongly regulated at 3 and 12 h after loading; this included upregulation of iNOS, PGE synthase, and IL-1β. Also genes involved in wound healing/coagulation, angiogenesis, and production of reactive oxygen species were strongly regulated by loading. Microarray results were confirmed for 16 selected genes in a repeat experiment (N = 30 rats) using real-time PCR. It was also confirmed that a single loading episode on day 5 increased the strength of the healing tendon on day 12. In conclusion, the fact that there were hardly any regulated genes 24 h after loading suggests that optimal stimulation of healing requires a mechanical loading stimulus every day.  相似文献   

6.
7.
8.
Chen I  Hsieh T  Thomas T  Safe S 《Gene》2001,262(1-2):207-214
Aryl hydrocarbon receptor (AhR) agonists inhibit 17beta-estradiol (E2) induced growth of MCF-7 human breast cancer cells in vitro and rodent mammary tumor growth in vivo. Genes associated with inhibitory AhR-estrogen receptor (ER) crosstalk were investigated in MCF-7 human breast cancer cells using poly(A)(+)RNA from cells treated with either 1 nM E2 (target) or E2 plus 1 nM 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) (reference) or 25 microM diindolylmethane (DIM) as AhR agonists in MCF-7 cells. Suppression subtractive hybridization (SSH) was subsequently used to identify 33 genes with sequence homology to known human genes that are induced by E2 and inhibited by AhR agonists in MCF-7 cells; two unknown genes were also identified. Many of these genes are involved in cell proliferation and these include cell cycle regulators (cdc28/cdc2-associated protein), nucleotide synthases (thymidylate synthase), early intermediate genes (early growth response alpha, EGRalpha) and other proteins involved in signaling pathways (calmodulin, ATP synthase alpha subunit). Thus SSH has identified a diverse spectrum of new genes that are affected by inhibitory AhR-ER crosstalk and among this group are a subset of genes that may be critical for the in vivo antitumorigenic effects of AhR agonists.  相似文献   

9.
10.
Growth factors are the key elements in wound healing signaling for cell migration, differentiation and proliferation. Platelet-rich plasma (PRP), one of the most studied sources of growth factors, has demonstrated to promote wound healing in vitro and in vivo. Adipose tissue is an alternative source of growth factors. Through a simple lipoaspirate method, adipose derived growth factor-rich preparation (adipose tissue extract; ATE) can be obtained. The authors set out to compare the effects of these two growth factor sources in cell proliferation and migration (scratch) assays of keratinocyte, fibroblast, endothelial and adipose derived stem cells. Growth factors involved in wound healing were measured: keratinocyte growth factor, epidermal growth factor, insulin-like growth factor, interleukin 6, platelet-derived growth factor beta, tumor necrosis factor alfa, transforming growth factor beta and vascular endothelial growth factor. PRP showed higher growth factor concentrations, except for keratinocyte growth factor, that was present in adipose tissue in greater quantities. This was reflected in vitro, where ATE significantly induced proliferation of keratinocytes at day 6 (p < 0.001), compared to plasma and control. Similarly, ATE-treated fibroblast and adipose stem cell cultures showed accelerated migration in scratch assays. Moreover, both sources showed accelerated keratinocyte migration. Adipose tissue preparation has an inductive effect in wound healing by proliferation and migration of cells involved in wound closure. Adipose tissue preparation appears to offer the distinct advantage of containing the adequate quantities of growth factors that induce cell activation, proliferation and migration, particularly in the early phase of wound healing.  相似文献   

11.
12.
The vitamin D receptor (VDR) is a member of the steroid/retinoid receptor superfamily of nuclear receptors and has potential tumor-suppressive functions in prostate and other cancer types. Vitamin D3 (VD3) exerts its biological actions by binding within cells to VDR. The VDR then interacts with specific regions of the DNA in cells, and triggers changes in the activity of genes involved in cell division, cell survival, and cellular function. Using human primary cultures and the prostate cancer (PCa) cell line, ALVA-31, we examined the effects of VD3 under different culture conditions. Complete G0/G1 arrest of ALVA-31 cells and approximately 50% inhibition of tumor stromal cell growth was observed. To determine changes in gene expression patterns related to VD3 activity, microarray analysis was performed. More than approximately 20,000 genes were evaluated for twofold relative increases and decreases in expression levels. A number of the gene targets that were up- and down-regulated are related to potential mechanisms of prostatic growth regulation. These include estrogen receptor (ER), heat shock proteins: 70 and 90, Apaf1, Her-2/neu, and paxillin. Utilizing antibodies generated against these targets, we were able to confirm the changes at the protein level. These newly reported gene expression patterns provide novel information not only potential markers, but also on the genes involved in VD3 induced apoptosis in PCa.  相似文献   

13.
Regulation of gene expression by alpha-tocopherol   总被引:5,自引:0,他引:5  
  相似文献   

14.
We determined the effects of DNA damage caused by ultraviolet radiation on gene expression in Leptospira interrogans using DNA microarrays. These data were integrated with DNA binding in vivo of LexA1, a regulator of the DNA damage response, assessed by chromatin immunoprecipitation and massively parallel DNA sequencing (ChIP-seq). In response to DNA damage, Leptospira induced expression of genes involved in DNA metabolism, in mobile genetic elements and defective prophages. The DNA repair genes involved in removal of photo-damage (e.g. nucleotide excision repair uvrABC, recombinases recBCD and resolvases ruvABC) were not induced. Genes involved in various metabolic pathways were down regulated, including genes involved in cell growth, RNA metabolism and the tricarboxylic acid cycle. From ChIP-seq data, we observed 24 LexA1 binding sites located throughout chromosome 1 and one binding site in chromosome 2. Expression of many, but not all, genes near those sites was increased following DNA damage. Binding sites were found as far as 550 bp upstream from the start codon, or 1 kb into the coding sequence. Our findings indicate that there is a shift in gene expression following DNA damage that represses genes involved in cell growth and virulence, and induces genes involved in mutagenesis and recombination.  相似文献   

15.
16.
17.
Sun H  Clancy HA  Kluz T  Zavadil J  Costa M 《PloS one》2011,6(3):e17982

Background

Hexavalent chromium [Cr(VI)] is a potent human carcinogen. Occupational exposure has been associated with increased risk of respiratory cancer. Multiple mechanisms have been shown to contribute to Cr(VI) induced carcinogenesis, including DNA damage, genomic instability, and epigenetic modulation, however, the molecular mechanism and downstream genes mediating chromium''s carcinogenicity remain to be elucidated.

Methods/Results

We established chromate transformed cell lines by chronic exposure of normal human bronchial epithelial BEAS-2B cells to low doses of Cr(VI) followed by anchorage-independent growth. These transformed cell lines not only exhibited consistent morphological changes but also acquired altered and distinct gene expression patterns compared with normal BEAS-2B cells and control cell lines (untreated) that arose spontaneously in soft agar. Interestingly, the gene expression profiles of six Cr(VI) transformed cell lines were remarkably similar to each other yet differed significantly from that of either control cell lines or normal BEAS-2B cells. A total of 409 differentially expressed genes were identified in Cr(VI) transformed cells compared to control cells. Genes related to cell-to-cell junction were upregulated in all Cr(VI) transformed cells, while genes associated with the interaction between cells and their extracellular matrices were down-regulated. Additionally, expression of genes involved in cell proliferation and apoptosis were also changed.

Conclusion

This study is the first to report gene expression profiling of Cr(VI) transformed cells. The gene expression changes across individual chromate exposed clones were remarkably similar to each other but differed significantly from the gene expression found in anchorage-independent clones that arose spontaneously. Our analysis identified many novel gene expression changes that may contribute to chromate induced cell transformation, and collectively this type of information will provide a better understanding of the mechanism underlying chromate carcinogenicity.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号