首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A severe genetic deficiency of adenosine deaminase is causally associated with an autosomal recessive form of severe combined immunodeficiency disease, while subjects with absent erythrocyte but partial lymphocyte enzyme activity remain immunocompetent. The genetic expression of adenosine deaminase in B-lymphoblast cell lines derived from four unrelated subjects with the "partial" enzyme deficiency was examined. Enzymatic activity among these cell lines ranged from 5 to 50% of normal with the level of immunoreactive adenosine deaminase protein either proportional to enzyme activity or elevated in two of the cases. Northern blot analysis using a cDNA probe showed that adenosine deaminase mRNA in each of these cell lines was of normal expected size (1.6-1.8 kilobases) and was present in normal to above normal amounts. Rates of enzyme synthesis varied from 165 to 15% of normal. Adenosine deaminase protein degradation rates in these cell lines were 1.5 to almost 3 times faster than normal, consistent with the observed absence of the enzyme in erythrocytes. From these analyses apparent abnormalities in mRNA regulation, translation, and protein degradation can be identified among the partially adenosine deaminase-deficient cell lines studied. Ultimately, it will be essential to determine the nature of the protein mutation and the gene defect to define the structural alterations and functional abnormalities of enzyme variants isolated from subjects with partial adenosine deaminase deficiency.  相似文献   

2.
Summary Adenosine deaminase is found primarily in the cytoplasm of many cell types. In the human erythrocyte, about 30 per cent of the total adenosine deaminase activity is membrane associated, and about two-thirds of this is inactivated by treatment of intact erythrocytes with the nonpenetrating reagent diazotized sulfanilic acid, without affecting lactate dehydrogenase, a soluble cytoplasmic enzyme. This indicates that within the cell membranes, the catalytic site of about two-thirds of the adenosine deaminase faces the external medium, i.e., ecto adenosine deaminase. Localization of adenosine deaminase activity at the cell membrane is demonstrated directly by electron microscopy by use of the substrate 6-Chloropurine ribonucleoside, which is dechlorinated by adenosine deaminase to produce Cl, which is precipitated at its locus of formation by added Ag+, and the precipitated AgCl converted into the electron dense Ag0 upon exposure to light.From the Hydropathic Profile of the amino acid sequence of adenosine deaminase it is evident that there are two hydrophobic domains of sufficient length to span a biological membrane, and it is proposed that these domains could function to anchor the enzyme to the membrane.The importance of adenosine deaminase is indicated by the fatal immuno-deficiency which results from untreated genetic adenosine deaminase deficiency. It may be important to determine whether the amount of ecto adenosine deaminase activity is better suited to assess the clinical status of adenosine deaminase deficient patients that the currently used total cellular enzyme activity.Abbreviations ADA Adenosine Deaminase - LDH Lactate Dehydrogenase - HEPES N-2-Hydroxyethylpiperazine-N-2-ethanesulfonic acid - CPR 6-Chloropurine Ribonucleoside - SDS Sodium Dodecyl Sulfate - NAD -Nicotinamide Adenine Dinucleotide - HBSS Hank's Balanced Salt Solution - DASA Diazotized Sulfanilic Acid  相似文献   

3.
In fat cells isolated from the parametrial adipose tissue of rats, the addition of purified adenosine deaminase increased lipolysis and cyclic adenosine 3':5'-monophosphate (cyclic AMP) accumulation. Adenosine deaminase markedly potentiated cyclic AMP accumulation due to norepinephrine. The increase in cyclic AMP due to adenosine deaminase was as rapid as that of theophylline with near maximal effects seen after only a 20-sec incubation. The increases in cyclic AMP due to crystalline adenosine deaminase from intestinal mucosa were seen at concentrations as low as 0.05 mug per ml. Further purification of the crystalline enzyme preparation by Sephadex G-100 chromatography increased both adenosine deaminase activity and cyclic AMP accumulation by fat cells. The effects of adenosine deaminase on fat cell metabolism were reversed by the addition of low concentrations of N6-(phenylisopropyl)adenosine, an analog of adenosine which is not deaminated. The effects of adenosine deaminase on cyclic AMP accumulation were blocked by coformycin which is a potent inhibitor of the enzyme. These findings suggest that deamination of adenosine is responsible for the observed effects of adenosine deaminase preparations. Protein kinase activity of fat cell homogenates was unaffected by adenosine or N6-(phenylisopropyl)adenosine. Norepinephrine-activated adenylate cyclase activity of fat cell ghosts was not inhibited by N6-(phenylisopropyl)adenosine. Adenosine deaminase did not alter basal or norepinephrine-activated adenylate cyclase activity. Cyclic AMP phosphodiesterase activity of fat cell ghosts was also unaffected by adenosine deaminase. Basal and insulin-stimulated glucose oxidation were little affected by adenosine deaminase. However, the addition of adenosine deaminase to fat cells incubated with 1.5 muM norepinephrine abolished the antilipolytic action of insulin and markedly reduced the increase in glucose oxidation due to insulin. These effects were reversed by N6-(phenylisopropyl)adenosine. Phenylisopropyl adenosine did not affect insulin action during a 1-hour incubation. If fat cells were incubated for 2 hours with phenylisopropyl adenosine prior to the addition of insulin for 1 hour there was a marked potentiation of insulin action. The potentiation of insulin action by prior incubation with phenylisopropyl adenosine was not unique as prostaglandin E1, and nicotinic acid had similar effects.  相似文献   

4.
Abstract: Adenosine deaminase is an enzyme of purine metabolism that has largely been considered to be cytosolic. A few years ago, adenosine deaminase was reported to appear on the surface of cells. Recently, it has been demonstrated that adenosine deaminase interacts with a type II membrane protein known as either CD26 or dipeptidylpeptidase IV. In this study, by immunoprecipitation and affinity chromatography it is shown that adenosine deaminase and A1 adenosine receptors interact in pig brain cortical membranes. This is the first report in brain demonstrating an interaction between a degradative ectoenzyme and the receptor whose ligand is the enzyme substrate. By means of this interaction adenosine deaminase leads to the appearance of the high-affinity site of the receptor, which corresponds to the receptor-G protein complex. Thus, it seems that adenosine deaminase is necessary for coupling A1 adenosine receptors to heterotrimeric G proteins.  相似文献   

5.
The basis for the increased adenosine deaminase activity in deoxycoformycin-resistant rat hepatoma cells was investigated. Three variant cell lines with different levels of adenosine deaminase activity showed increases in the relative rate of synthesis of the enzyme in vivo. No difference in the rate of degradation of the enzyme was seen between the parental cell line and one variant cell line which exhibits a 180-fold increase in adenosine deaminase activity. Polysomal RNA isolated from this variant exhibited a 175-fold increase in the ability to direct the synthesis of adenosine deaminase in vitro.  相似文献   

6.
A previously isolated mouse Cl-1D derived cell line (B-1/25) overproduces adenosine deaminase (EC 3.5.4.4) by 3200-fold. The present studies were undertaken to determine the molecular basis of this phenomenon. Rabbit reticulocyte lysate and Xenopus oocyte translation studies indicated that the B-1/25 cells also overproduced adenosine deaminase mRNA. Total poly(A+) RNA derived from B-1/25 was used to construct a cDNA library. After prehybridization with excess parental Cl-1D RNA to selectively prehybridize nonamplified sequences, 32P-labeled cDNA probe synthesized from B-1/25 total poly(A+) RNA was used to identify recombinant colonies containing amplified mRNA sequences. Positive clones containing adenosine deaminase gene sequences were identified by blot hybridization analysis and hybridization-selected translation in both rabbit reticulocyte lysate and Xenopus oocyte translation systems. Adenosine deaminase cDNA clones hybridized with three poly(A+) RNA species of 1.5, 1.7, and 5.2 kilobases in length, all of which were overproduced in the B-1/25 cell line. Dot blot hybridization analysis using an adenosine deaminase cDNA clone showed that the elevated adenosine deaminase level in the B-1/25 cells was fully accounted for by an increase in adenosine deaminase gene copy number. The adenosine deaminase cDNA probes and the cell lines with amplified adenosine deaminase genes should prove extremely useful in studying the structure and regulation of the adenosine deaminase gene.  相似文献   

7.
Adenosine deaminase (ADA) is not only a cytosolic enzyme but can be found as an ecto-enzyme. At the plasma membrane, an adenosine deaminase binding protein (CD26, also known as dipeptidylpeptidase IV) has been identified but the functional role of this ADA/CD26 complex is unclear. Here by confocal microscopy, affinity chromatography and coprecipitation experiments we show that A1 adenosine receptor (A1R) is a second ecto-ADA binding protein. Binding of ADA to A1R increased its affinity for the ligand thus suggesting that ADA was needed for an effective coupling between A1R and heterotrimeric G proteins. This was confirmed by the fact that ASA, independently of its catalytic behaviour, enhanced the ligand-induced second messenger production via A1R. These findings demonstrate that, apart from the cleavage of adenosine, a further role of ecto-adenosine deaminase on the cell surface is to facilitate the signal transduction via A1R.  相似文献   

8.
Adenosine deaminase was purified 3038-fold to apparent homogeneity from human leukaemic granulocytes by adenosine affinity chromatography. The purified enzyme has a specific activity of 486 mumol/min per mg of protein at 35 degrees C. It exhibits a single band when subjected to sodium dodecyl sulphate/polyacrylamide-gel electrophoresis, non-denaturing polyacrylamide-gel electrophoresis and isoelectric focusing. The pI is 4.4. The enzyme is a monomeric protein of molecular weight 44000. Both electrophoretic behaviour and molecular weight differ from those of the low-molecular-weight adenosine deaminase purified from human erythrocytes. Its amino acid composition is reported. Tests with periodic acid-Schiff reagent for associated carbohydrate are negative. Of the large group of physiological compounds tested as potential effectors, none has a significant effect. The enzyme is specific for adenosine and deoxyadenosine, with Km values of 48 microM and 34 microM respectively. There are no significant differences in enzyme function on the two substrates. erythro-9-(2-Hydroxy non-3-yl) adenine is a competitive inhibitor, with Ki 15 nM. Deoxycoformycin inhibits deamination of both adenosine and deoxyadenosine, with an apparent Ki of 60-90 pM. A specific antibody was developed against the purified enzyme, and a sensitive radioimmunoassay for adenosine deaminase protein is described.  相似文献   

9.
The exact role of adenosine in the adenosine deaminase (EC 3.5.4.4) deficiency-related severe combined immunodeficiency disease has not been ascertained. We analysed the effects of adenosine, in the presence of the adenosine deaminase inhibitor, deoxycoformycin, on cell growth, cell phase distributions and intracellular nucleotide concentrations of cultured human lymphoblasts. Adenosine had a biphasic effect on cell growth and cell cycle distribution of a partial hypoxanthine phosphoribosyltransferase (EC 2.4.2.8) deficient MOLT-HPRT cell line. After 24 h of incubation, 60 microM adenosine inhibited cell growth more extensively than did 100 and 200 microM adenosine. The distribution of the MOLT-HPRT cells in the various phases of the cell cycle showed a similar biphasic pattern. Adenosine concentrations in the medium below 10 microM caused accumulation of adenine ribonucleotides and depletion of phosphoribosylpyrophosphate, UTP and CTP in the cells. This was associated with inhibition of cell growth. Medium adenosine concentrations above 10 microM neither resulted in accumulation of adenine ribonucleotides nor in inhibition of cell growth.  相似文献   

10.
Chinese hamster cells do not grow in medium containing high concentrations of adenosine because pyrimidine biosynthesis is inhibited. Adenosine metabolism was examined in two mutant cell lines isolated on the basis of resistance to adenosine. One line was deficient in adenosine kinase suggesting that high intracellular AMP concentrations may block pyrimidine synthesis indirectly in wild type cells by inhibiting PRPP synthetase. Although no enzymatic defect could be identified in the other cell line, these cells inefficiently utilize adenosine supplied in the medium.  相似文献   

11.
Adenosine deaminase is involved in purine metabolism and is a key enzyme for the control of the cellular levels of adenosine. Adenosine deaminase activity showed significant changes during embryogenesis of the camel tick Hyalomma dromedarii. From the elution profile of chromatography on DEAE-sepharose, three forms of enzyme (ADAI, ADAII and ADAIII) were separated. ADAII was purified to homogeneity after chromatography on Sephacryl S-200. The molecular mass of adenosine deaminase ADAII was 42 kDa for the native enzyme and represented a monomer of 42 kDa by SDS-PAGE. The enzyme had a pH optimum at 7.5 and temperature optimum at 40°C with heat stability up to 40°C. ADAII had a K m of 0.5 mM adenosine with higher affinity toward deoxyadenosine and adenosine than other purines. Ni2+, Ba2+, Zn2+, Li2+, Hg2+ and Mg2+ partially inhibited the ADAII. Mg2+ was the strongest inhibitor by 91% of the enzyme's activity.  相似文献   

12.
Adenosine kinase (EC 2.7.1.20) in a cytoplasmic fraction of rat heart was subjected to 5′-AMP-Sepharose 4B chromatography. The enzyme showed affinity for the column in contrast to adenosine deaminase, and was eluted with adenosine plus MgATP. Fractions containing adenosine kinase were put on a column of DEAE-Sephacel and eluted with a gradient. The enzyme was purified up to 3000-fold (yield 10%). The specific activity exceeded 8000 units per gram of protein and sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed only one band. We conclude that the method presented is a simple, quick, and elegant way of purifying myocardial adenosine kinase to virtual homogeneity.  相似文献   

13.
Adenosine deaminase (adenosine aminohydrolase; E.C. 3.5.4.4) has been purified 4686-fold from egg yolk. The procedure developed was used to isolate the enzyme from eight chicken eggs. An easily prepared affinity column employing purine riboside was used as the final step in the purification. The method developed permits the rapid isolation and a high recovery of the protein. The specific activity of the enzyme preparation obtained is 81.4 mU/mg.  相似文献   

14.
Adenosine deaminase (adenosine aminohydrolase; E.C. 3.5.4.4) has been purified 4686-fold from egg yolk. The procedure developed was used to isolate the enzyme from eight chicken eggs. An easily prepared affinity column employing purine riboside was used as the final step in the purification. The method developed permits the rapid isolation and a high recovery of the protein. The specific activity of the enzyme preparation obtained is 81.4 mU/mg.  相似文献   

15.
Effects of adenosine deaminase and glucagon on insulin-stimulated 2-deoxyglucose uptake by rat adipocytes are reported. (1) Adenosine deaminase (10 micrograms/ml) caused a rightward shift in the dose-response curve for the stimulation by insulin of 2-deoxyglucose uptake, but the enzyme did not alter either the basal or the maximally insulin-stimulated uptake rate. (2) In adipocytes obtained from 24 h-starved rats, glucagon inhibited the effect of insulin on 2-deoxyglucose uptake in the presence (but not in the absence) of adenosine deaminase. Basal uptake rates were unaffected. (3) Glucagon inhibited insulin-stimulated 2-deoxyglucose uptake to a greater extent in cells isolated from starved rats than in cells from fed rats. (4) Adipocytes isolated from fed and from starved rats did not differ in their capacity for degradation of 125I-labelled glucagon. The results suggest that adenosine and glucagon are regulators of insulin action in adipose tissue.  相似文献   

16.
Adenosine and its analogue N6-phenylisopropyladenosine stimulated pyruvate dehydrogenase activity of isolated rat adipocytes. Maximal stimulation was obtained with concentrations between 50 and 100 mu M, with the effect decreasing at higher concentrations. The effects of insulin on this enzyme was modified by adenosine. The concentration of insulin (10 mu units/ml) that produced almost half-maximal stimulation, had little or no effect, when adenosine deaminase was present. Adenosine also enhanced the effect of suboptimal but not optimal concentrations of insulin. Thus, the mechanism of adenosine action on adipocyte pyruvate dehydrogenase could in some way be similar or related to that of insulin.  相似文献   

17.
Summary A deficiency of the enzyme adenosine deaminase is associated with an autosomal recessive form of severe combined immunodeficiency disease in man. The molecular forms of the normal human enzyme have now been well characterized in an effort to better understand the nature of the enzyme defect in affected patients.In some human tissues adenosine deaminase exists predominantly as a small molecular form while in other tissues a large form composed of adenosine deaminase (small form) and an adenosine deaminase-binding protein predominates. The small form of the enzyme purified to homogeneity by antibody affinity chromatography is a monomer of native molecular weight of 37,600. The adenosine deaminase-binding protein, purified by adenosine deaminase affinity chromatography, appears to be a dimer of native molecular weight 213,000 and contains carbohydrate. Based on direct binding measurements, chemical cross-linking studies and sedimentation equilibrium analyses, small form adenosine deaminase has been shown to combine with purified binding protein in a molar ratio of 2:1 respectively to produce the large form adenosine deaminase.Reduced, but widely ranging levels of adenosine deaminating activity, have been reported in various tissues of adenosine deaminase deficient patients. Further, the characteristics of this residual enzyme activity have been analyzed immunochemically to substantiate genetic heterogeneity in this disorder.While many types of immunodeficiency are currently recognized in man, in most cases the molecular defect is unknown. The discovery of a deficiency of the enzyme, adenosine deaminase, ADA, (EC 3.5.4.4), in some patients with severe combined immunodeficiency disease represented an early clue to the pathogenesis of immune dysfunction at the molecular level1-4. Affected patients with markedly reduced levels of ADA exhibit a defect of both cellular and humoral immunity characterized clinically by severe recurrent infections with a fatal outcome if untreated. Attempts to elucidate the nature of the genetic mutation(s) leading to the reduction of ADA activity in these immunodeficient patients have been complicated in part by an incomplete understanding of the nature of ADA in normal tissues. In this review we will consider the structural characteristics of the normal and mutant forms of ADA as they are currently understood.  相似文献   

18.
Adenosine plays many significant roles both as a metabolic precursor and cell communicator. This report describes the preliminary characterization of two adenosine binding proteins isolated from bovine brain membranes. By using N6-9-aminononane adenosine labeled Sepharose 4B two major affinity bound proteins were purified having apparent molecular weights of 16 and 35 kDa. Either or both of the proteins could be selectively eluted from the affinity column with N6-9-aminononane adenosine, adenosine, cAMP, AMP, ADP, ATP, R-/S-phenylisopropyladenosine and NAD(H). By contrast, no proteins were eluted with caffeine, adenine, deoxyadenosine, 2',3'-AMP, inosine, IMP, xanthine, XMP, GMP, GTP or 5'-N-ethylcarboxamideadenosine. The selectivity of elution and lack of apparent enzymatic activity suggests that these proteins are novel membrane bound adenosine binding proteins.  相似文献   

19.
Adenosine deaminase has been localized in the plasma membrane of erythrocytes and platelets by means of immunological techniques using light and electron microscopy with cells in suspension. In erythrocytes, adenosine deaminase is associated with the external side of the plasma membrane. In platelets, the enzyme is associated with the external side of the plasma membrane, which is known to extend through the canalicular system of these cells. These results confirm our previous findings, based on biochemical studies, concerning the attachment of the enzyme to cell membranes.  相似文献   

20.
Adenosine deaminase and adenosine deaminase complexing protein have been localized in rabbit brain. Brains fixed in paraformaldehyde or in Clarke's solution were blocked coronally. Blocks from brains fixed in paraformaldehyde were either frozen in liquid nitrogen or embedded in paraffin. Tissue fixed in Clarke's solution was embedded in paraffin. Sections from each block were stained by the peroxidase-antiperoxidase method for adenosine deaminase or complexing protein using affinity-purified goat antibodies. Adenosine deaminase and complexing protein did not co-localize. Adenosine deaminase was detected in oligodendroglia and in endothelial cells lining blood vessels, whereas complexing protein was concentrated in neurons. The subcellular location and appearance of the peroxidase reaction product associated with individual cells was also quite distinctive. The cell bodies of adenosine deaminase-positive oligodendroglia were filled with intense deposits of peroxidase reaction product. In contrast to oligodendroglia, the reaction product associated with most neurons stained for complexing protein was concentrated in granular-appearing cytoplasmic deposits. In some instances, these deposits were clustered about the nuclear membrane. Staining of neurons in the granular layer of cerebellum was an exception. Granule cells were lightly outlined by peroxidase reaction product. Cerebellar islands, also referred to as glomeruli, were stained an intense uniform brown. These results raise the possibility that oligodendroglia and blood vessel endothelia, through the action of adenosine deaminase, might play a role in controlling the concentration of extracellular adenosine in brain. They do not, however, support the suggestion that complexing protein aids in adenosine metabolism by positioning adenosine deaminase on the plasma membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号