首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Seasonal differences in PSII efficiency (Fv/Fm), the conversion state of the xanthophyll cycle (Z + A)/ (V + A + Z), and leaf adenylate status were investigated in Euonymus kiautschovicus. On very cold days in winter, Fv/Fm assessed directly in the field remained low and Z + A high throughout day and night in both sun and shade leaves. Pre-dawn transfer of leaves from subfreezing temperatures in the field to room temperature revealed that recovery (increases in Fv/Fm and conversion of Z + A to violaxanthin) consisted of one, rapid phase in shade leaves, whereas in sun leaves a rapid phase was followed by a slow phase requiring days. The pre-dawn ATP/ADP ratio, as well as that determined at midday, was similar when comparing overwintering leaves with those sampled in the summer, although pre-dawn levels of ATP + ADP were elevated in all leaves during winter relative to summer. After a natural transition to warmer days during the winter, pre-dawn Fv/Fm and Z + A in shade leaves had returned to values typical for summer, whereas in sun leaves Fv/Fm and Z + A levels remained intermediate between the cold day in winter and the summer day. Thus two distinct forms of sustained (Z + A)-dependent energy dissipation were identified based upon their differing characteristics. The form that was sustained on cold days but relaxed rapidly upon warming occurred in all leaves and may result from maintenance of a low lumenal pH responsible for the nocturnal engagement of (Z + A)-dependent thermal dissipation exclusively on very cold days in the winter. The form that was sustained even upon warming and correlated with slow Z + A to violaxanthin conversion occurred only in sun leaves and may represent a sustained engagement of (Z + A)-dependent energy dissipation associated with an altered PSII protein composition. In the latter, warm-sustained form, uncoupler or cycloheximide infiltration had no effect on the slow phase of recovery, but lincomycin infiltration inhibited the slow increase in Fv/Fm and the conversion of Z + A to violaxanthin.  相似文献   

2.
Seeds of Suaeda salsa were cultured in dark for 3 d and betacyanin accumulation in seedlings was promoted significantly. Then the seedlings with accumulated betacyanin (C+B) were transferred to 14/10 h light/dark and used for chilling treatment 15 d later. Photosystem 2 (PS2) photochemistry, D1 protein content, and xanthophyll cycle during the chilling-induced photoinhibition (exposed to 5 °C at a moderate photon flux density of 500 μmol m−2 s−1 for 3 h) and the subsequent restoration were compared between the C+B seedlings and the control (C) ones. The maximal efficiency of PS2 photochemistry (Fv/Fm), the efficiency of excitation energy capture by open PS2 centres (Fv′/Fm′), and the yield of PS2 electron transport (ΦPS2) of the C+B and C leaves both decreased during photoinhibition. However, smaller decreases in Fv/Fm, Fv′/Fm′, and ΦPS2 were observed in the C+B leaves than in C ones. At the same time, the deepoxidation state of xanthophyll cycle, indicated by (A+Z)/(V+A+Z) ratio, increased rapidly but the D1 protein content decreased considerably during the photoinhibition. The increase in rate of (A+Z)/(V+A+Z) was higher but the D1 protein turnover was slower in C+B than C leaves. After photoinhibition treatment, the plants were transferred to a dim irradiation (10 μmol m−2 s−1) at 25 °C for restoration. During restoration, the chlorophyll (Chl) fluorescence parameters, D1 protein content, and xanthophyll cycle components relaxed gradually, but the rate and level of restoration in the C+B leaves was greater than those in the C leaves. The addition of betacyanins to the thylakoid solution in vitro resulted in similar changes of Fv/Fm, D1 protein content, and (A+Z)/(V+A+Z) ratio during the chilling process. Therefore, betacyanin accumulation in S. salsa seedlings may result in higher resistance to photoinhibition, larger slowing down of D1 protein turnover, and enhancement of non-radiative energy dissipation associated with xanthophyll cycle, as well as in greater restoration after photoinhibition than in the control when subjected to chilling at moderate irradiance.  相似文献   

3.
Differently oriented leaves of Yucca schidigera and Yucca brevifolia were characterized in the Mojave Desert with respect to photosystem II and xanthophyll cycle activity during three different seasons, including the hot and dry summer, the relatively cold winter, and the mild spring season. Photosynthetic utilization of a high percentage of the light absorbed in PSII was observed in all leaves only during the spring, whereas very high levels of photoprotective, thermal energy dissipation were employed both in the summer and the winter season in all exposed leaves of both species. Both during the summer and the winter season, when energy dissipation levels were high diurnally, xanthophyll cycle pools (relative to either Chl or other carotenoids) were higher relative to the spring, and a nocturnal retention of high levels of zeaxanthin and antheraxanthin (Z + A) occurred in all exposed leaves of both species. Although this nocturnal retention of Z + A was associated with nocturnal maintenance of a low PSII efficiency (Fv/Fm) on a cold winter night, pre‐dawn Fv/Fm was high in (Z + A)‐retaining leaves following a warm summer night. This indicates nocturnal engagement of Z + A in a state primed for energy dissipation throughout the cold winter night – while high levels of retained Z + A were not engaged for energy dissipation prior to sunrise on a warm summer morning. Possible mechanisms for a lack of sustained engagement of retained Z + A for energy dissipation at elevated temperatures are discussed.  相似文献   

4.
A yellow leaf colouration mutant (named ycm) generated from rice T-DNA insertion lines was identified with less grana lamellae and low thylakoid membrane protein contents. At weak irradiance [50 μmol(photon) m−2 s−1], chlorophyll (Chl) contents of ycm were ≈20 % of those of WT and Chl a/b ratios were 3-fold that of wild type (WT). The leaf of ycm showed lower values in the actual photosystem 2 (PS2) efficiency (ΦPS2), photochemical quenching (qP), and the efficiency of excitation capture by open PS2 centres 1 (Fv′/Fm′) than those of WT, except no difference in the maximal efficiency of PS2 photochemistry (Fv/Fm). With progress in irradiance [100 and 200 μmol(photon) m−2 s−1], there was a change in the photosynthetic pigment stoichiometry. In ycm, the increase of total Chl contents and the decrease in Chl a/b ratio were observed. ΦPS2, qP, and Fv′/Fm′ of ycm increased gradually along with the increase of irradiance but still much less than in WT. The increase of xanthophyll ratio [(Z+A)/(V+A+Z)] associated with non-photochemical quenching (qN) was found in ycm which suggested that ycm dissipated excess energy through the turnover of xanthophylls. No significant differences in pigment composition were observed in WT under various irradiances, except Chl a/b ratio that gradually decreased. Hence the ycm mutant developed much more tardily than WT, which was caused by low photon energy utilization independent of irradiance.  相似文献   

5.
Cornic G  Bukhov NG  Wiese C  Bligny R  Heber U 《Planta》2000,210(3):468-477
The role of cyclic electron transport has been re-examined in leaves of C3 plants because the bioenergetics of chloroplasts (H+/e = 3 in the presence of a Q-cycle; H+/ATP = 4 of ATP synthesis) had suggested that cyclic electron flow has no function in C3 photosynthesis. After light activation of pea leaves, the dark reduction of P700 (the donor pigment of PSI) following far-red oxidation was much accelerated. This corresponded to loss of sensitivity of P700 to oxidation by far-red light and a large increase in the number of electrons available to reduce P700+ in the dark. At low CO2 and O2 molar ratios, far-red light was capable of decreasing the activity of photosystem II (measured as the ratio of variable to maximal chlorophyll fluorescence, Fv/Fm) and of increasing light scattering at 535 nm and zeaxanthin synthesis, indicating formation of a transthylakoid pH gradient. Both the light-induced increase in the number of electrons capable of reducing far-red-oxidised P700 and the decline in Fv/Fm brought about by far-red in leaves were prevented by methyl viologen. Antimycin A inhibited CO2-dependent O2 evolution of pea leaves at saturating but not under limiting light; in its presence, far-red light failed to decrease Fv/Fm. The results indicate that cyclic electron flow regulates the quantum yield of photosystem II by decreasing the intrathylakoid pH when there is a reduction in the availability of electron acceptors at the PSI level (e.g. during drought or cold stresses). It also provides ATP for the carbon-reduction cycle under high light. Under these conditions, the Q-cycle is not able to maintain a H+/e ratio of 3 for ATP synthesis: we suggest that the ratio is flexible, not obligatory. Received: 23 February 1999 / Accepted: 19 August 1999  相似文献   

6.
Overwintering needles of the evergreen conifer Douglas fir exhibited an association between arrest of the xanthophyll cycle in the dissipating state (as zeaxanthin + antheraxanthin; Z + A) with a strongly elevated predawn phosphorylation state of the D1 protein of the photosystem II (PSII) core. Furthermore, the high predawn phosphorylation state of PSII core proteins was associated with strongly increased levels of TLP40, the cyclophilin-like inhibitor of PSII core protein phosphatase, in winter versus summer. In turn, decreases in predawn PSII efficiency, Fv/Fm, in winter were positively correlated with pronounced decreases in the non-phosphorylated form of D1. In contrast to PSII core proteins, the light-harvesting complex of photosystem II (LHCII) did not exhibit any nocturnally sustained phosphorylation. The total level of the D1 protein was found to be the same in summer and winter in Douglas fir when proteins were extracted in a single step from whole needles. In contrast, total D1 protein levels were lower in thylakoid preparations of overwintering needles versus needles collected in summer, indicating that D1 was lost during thylakoid preparation from overwintering Douglas fir needles. In contrast to total D1, the ratio of phosphorylated to non-phosphorylated D1 as well as the levels of the PsbS protein were similar in thylakoid versus whole needle preparations. The level of the PsbS protein, that is required for pH-dependent thermal dissipation, exhibited an increase in winter, whereas LHCII levels remained unchanged.  相似文献   

7.
Changes in climate, land management and fire regime have contributed to woody species expansion into grasslands and savannas worldwide. In the USA, Pinus ponderosa P.&C. Lawson and Juniperus virginiana L. are expanding into semiarid grasslands of Nebraska and other regions of the Great Plains. We examined P. ponderosa and J. virginiana seedling response to soil water content, one of the most important limiting factors in semiarid grasslands, to provide insight into their success in the region. Photosynthesis, stomatal conductance, maximum photochemical efficiency of PSII, maximum carboxylation velocity, maximum rate of electron transport, stomatal limitation to photosynthesis, water potential, root‐to‐shoot ratio, and needle nitrogen content were followed under gradual soil water depletion for 40 days. J. virginiana maintained lower Ls, higher A, gs, and initial Fv/Fm, and displayed a more gradual decline in Vcmax and Jmax with increasing water deficit compared to P. ponderosa. J. virginiana also invested more in roots relative to shoots compared to P. ponderosa. Fv/Fm showed high PSII resistance to dehydration in both species. Photoinhibition was observed at ~30% of field capacity. Soil water content was a better predictor of A and gs than Ψ, indicating that there are other growth factors controlling physiological processes under increased water stress. The two species followed different strategies to succeed in semiarid grasslands. P. ponderosa seedlings behaved like a drought‐avoidant species with strong stomatal control, while J. virginiana was more of a drought‐tolerant species, maintaining physiological activity at lower soil water content. Differences between the studied species and the ecological implications are discussed.  相似文献   

8.
Winter-induced inhibition of photosynthesis in Scots pine (Pinus sylvestris L.) needles is accompanied by a 65% reduction of the maximum photochemical efficiency of photosystem II (PSII), measured as F v/F m, but relatively stable photosystem I (PSI) activity. In contrast, the photochemical efficiency of PSII in bark chlorenchyma of Scots pine twigs was shown to be well preserved, while PSI capacity was severely decreased. Low-temperature (77 K) chlorophyll fluorescence measurements also revealed lower relative fluorescence intensity emitted from PSI in bark chlorenchyma compared to needles regardless of the growing season. Nondenaturating SDS-PAGE analysis of the chlorophyll–protein complexes also revealed much lower abundance of LHCI and the CPI band related to light harvesting and the core complex of PSI, respectively, in bark chlorenchyma. These changes were associated with a 38% reduction in the total amount of chlorophyll in the bark chlorenchyma relative to winter needles, but the Chl a/b ratio and carotenoid composition were similar in the two tissues. As distinct from winter pine needles exhibiting ATP/ADP ratio of 11.3, the total adenylate content in winter bark chlorenchyma was 2.5-fold higher and the estimated ATP/ADP ratio was 20.7. The photochemical efficiency of PSII in needles attached to the twig recovered significantly faster (28–30 h) then in detached needles. Fluorescence quenching analysis revealed a high reduction state of Q A and the PQ-pool in the green bark tissue. The role of bark chlorenchyma and its photochemical performance during the recovery of photosynthesis from winter stress in Scots pine is discussed.  相似文献   

9.
Wang  K.-Y.  Kellomäki  S.  Zha  T. 《Photosynthetica》2003,41(2):167-175
Changes in pigment composition and chlorophyll (Chl) fluorescence parameters were studied in 20 year-old Scots pine (Pinus sylvestris L.) trees grown in environment-controlled chambers and subjected to ambient conditions (CON), doubled ambient CO2 concentration (EC), elevated temperature (ambient +2−6 °C, ET), or a combination of EC and ET (ECT) for four years. EC did not significantly alter the optimal photochemical efficiency of photosystem 2 (PS2; Fv/Fm), or Chl a+b content during the main growth season (days 150–240) but it reduced Fv/Fm and the Chl a+b content and increased the ratio of total carotenoids to Chl a+b during the ‘off season’. By contrast, ET significantly enhanced the efficiency of PS2 in terms of increases in Fv/Fm and Chl a+b content throughout the year, but with more pronounced enhancement in the ‘off season’. The reduction in Fv/Fm during autumn could be associated with the CO2-induced earlier yellowing of the leaves, whereas the temperature-stimulated increase in the photochemical efficiency of PS2 during the ‘off season’ could be attributed to the maintenance of a high sink capacity. The pigment and fluorescence responses in the case of ECT showed a similar pattern to that for ET, implying the importance of the temperature factor in future climate changes in the boreal zone. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

10.
Experimental ecology methods and chlorophyll fluorescence technology were used to study the effects of different concentrations of manganese (10−12– 10−4 mol L−1) on the growth, photosystem II and superoxide dismutase (SOD) activity of Amphidinium sp. MACC/D31. The results showed that manganese had a significant effect on the growth rate, fluorescence parameters (maximal photochemical efficiency of PSII (F v /F m ), photochemical quenching (qP) and non-photochemical quenching (NPQ)) in the exponential stage (days 1–3) and SOD activity of Amphidinium sp. (P < 0.05). F v/F m in the exponential stage in 10−12 mol L−1 manganese concentration was significantly lower whilst qP and NPQ significantly higher than those in the other concentrations. F v /F m (days 6–9) in 10−4 mol L−1 manganese was significantly higher than those in the other concentrations. F v /F m (days 3–6) increased with increased concentration of manganese from 10−12 to 10−4 mol L−1. The values of qP and NPQ decreased with decreased concentrations of manganese, except for those in days 4–6. F v /F m under each concentration increased earlier and decreased later with culture stage whilst NPQ decreased earlier and increased later. The SOD activity increased with increased concentration of manganese from 10−12 to 10−8 mol L−1. The SOD activity in 10−4 mol L−1 manganese was significantly higher than those in the other concentrations and in 10−12 mol L−1 manganese, it was significantly lower than those in the other concentrations.  相似文献   

11.
Summary Recovery from winter depression of photosynthesis was studied in Pinus sylvestris, Pinus conforta and Picea abies by means of chlorophyll fluorescence and gas exchange measurements. During the winter 1986–1987 the fluorescence yield was low and no variable fluorescence was detectable before the end of March. In the field recovery of variable fluorescence/maximum fluorescence (Fv/Fm) during spring was slow for all three species studied. The temperature dependence of recovery was confirmed from measurements of the potential rate of recovery of Fv/Fm at different temperatures in the laboratory. At 20° C, Fv/Fm increased from 0.1 to 0.8 within 3 days. Recovery of Fv/Fm was paralleled by an increase in apparent photon yield. No significant differences could be demonstrated between the studied tree species in potential rate of recovery in the laboratory or in actual recovery in the field.  相似文献   

12.
The usefulness of fluorescence parameters as drought tolerance selection criteria for winter bread wheat in the highlands of Iran was studied. A population of 142 recombinant inbred lines, derived from a cross between two common wheat varieties, Azar2 (winter type) and 87Zhong291 (facultative type), was used to analyze the correlation between grain yield and chlorophyll fluorescence parameters at the grain-filling stage under drought stress and supplementary irrigation conditions during 2006–2007 and 2007–2008 seasons at Maragheh experiment station of the Dryland Agricultural Research Institute (DARI) using a RCBD with three replications. The results showed significant differences among the lines in the grain yield and all fluorescence parameters under rainfed and irrigation conditions. The values of chlorophyll content, F 0, F m, F v, F v/F m, LWP, YPEC, NPQ, and PI in the drought-tolerant genotypes were significantly higher than those in drought-sensitive genotypes under drought stress. Significant differences were observed between slope coefficients under drought, but not under supplementary irrigation conditions except NPQ (P = 5%). It was concluded that chlorophyll content, F 0, F m, F v, F v/F m, LWP, YPEC, NPQ, and PI could be used as additional indicators in screening wheat germplasm for drought tolerance.  相似文献   

13.
We show that rabbit skeletal RyR channels in lipid bilayers can be activated or inhibited by NO, in a manner that depends on donor concentration, membrane potential and the presence of channel agonists. 10 μm S-nitroso-N-acetyl-penicillamine (SNAP) increased RyR activity at −40 mV within 15 sec of addition to the cis chamber, with a 2-fold increase in frequency of channel opening (F o ). 10 μm SNAP did not alter activity at +40 mV and did not further activate RyRs previously activated by 2 mm cis ATP at +40 or −40 mV. In contrast to the increase in F o with 10 μm SNAP, 1 mm SNAP caused a 2-fold reduction in F o but a 1.5-fold increase in mean open time (T o ) at −40 mV in the absence of ATP. 1 mm SNAP or 0.5 mm sodium nitroprusside (SNP) induced ∼3-fold reductions in F o and T o at +40 or −40 mV when channels were activated by 2 mm cis ATP or in channels activated by 6.5 μm peptide A at −40 mV (peptide A corresponds to part of the II–III loop of the skeletal dihydropyridine receptor). Both SNAP-induced activation and SNAP/SNP-induced inhibition were reversed by 2 mm dithiothreitol. The results suggest that S-Nitrosylation or oxidation of at least three classes of protein thiols by NO each produced characteristic changes in RyR activity. We propose that, in vivo, initial release of NO activates RyRs, but stronger release increases [NO] and inhibits RyR activity and contraction. Received: 27 August 1999/Revised: 25 October 1999  相似文献   

14.
In January and February 2010, heavy sea ice formed along the coast of the Bohai Sea and the northern Yellow Sea, China. Intertidal organisms were subjected to serious freezing stress. In this study, we investigated the freezing tolerance of the upper intertidal economic seaweed Porphyra yezoensis. The maximum photochemical efficiency of PS II (F v/F m) in undehydrated thalli remained high after 24 h at −2°C and that in dehydrated thalli decreased in a proportion to thallial water loss. F v/F m dropped sharply after 24 h at −20°C, regardless of absolute cellular water content (AWC). The F v/F m in frozen thalli recovered rapidly at 0–20°C. A wide range of water loss in the thalli enhanced their tolerance to freezing. F v/F m values in undehydrated thalli dropped sharply after 3 d at −2°C or 10 d at −20°C while those in dehydrated thalli (20–53% AWCs) remained at high levels after 9 d at −2°C or 30 d at −20°C. These results indicate that P. yezoensis has high freezing tolerance by means of dehydration during the ebb tide and rapid recovery of F v/F m from freezing. A strategy of P. yezoensis industry to avoid heavy loss during freezing season is discussed based on these findings.  相似文献   

15.
The function of chloroplast ferredoxin quinone reductase (FQR)-dependent flow was examined by comparing a wild type tobacco and a tobacco transformant (ΔndhB) in which the ndhB gene had been disrupted with their antimycin A (AA)-fed leaves upon exposure to chilling temperature (4 °C) under low irradiance (100 μmol m−2 s−1 photon flux density). During the chilling stress, the maximum photochemical efficiency of photosystem (PS) 2 (Fv/Fm) decreased markedly in both the controls and AA-fed leaves, and P700+ was also lower in AA-fed leaves than in the controls, implying that FQR-dependent cyclic electron flow around PS1 functioned to protect the photosynthetic apparatus from chilling stress under low irradiance. Under such stress, non-photochemical quenching (NPQ), particularly the fast relaxing NPQ component (qf) and the de-epoxidized ratio of the xanthophyll cycle pigments, (A+Z)/(V+A+Z), formed the difference between AA-fed leaves and controls. The lower NPQ in AA-fed leaves might be related to an inefficient proton gradient across thylakoid membranes (ΔpH) because of inhibiting an FQR-dependent cyclic electron flow around PS1 at chilling temperature under low irradiance.  相似文献   

16.
To understand the interactive effects of O3 and CO2 on rice leaves; gas exchange, chlorophyll (Chl) fluorescence, ascorbic acid and glutathione were examined under acute (5 h), combined exposures of O3 (0, 0.1, or 0.3 cm3 m−3, expressed as O0, O0.1, or O0.3, respectively), and CO2 (400 or 800 cm3 m−3, expressed as C400 or C800, respectively) in natural-light gas-exposure chambers. The net photosynthetic rate (P N), maximum (Fv/Fm) and operating (Fq′/Fm′) quantum efficiencies of photosystem II (PSII) in young (8th) leaves decreased during O3 exposure. However, these were ameliorated by C800 and fully recovered within 3 d in clean air (O0 + C400) except for the O0.3 + C400 plants. The maximum PSII efficiency at 1,500 μmol m−2 s−1 PPFD (Fv′/Fm′) for the O0.3 + C400 plants decreased for all measurement times, likely because leaves with severely inhibited P N also had a severely damaged PSII. The P N of the flag (16th) leaves at heading decreased under O3 exposure, but the decline was smaller and the recovery was faster than that of the 8th leaves. The Fq′/Fm′ of the flag leaves in the O0.3 + C400 and O0.3 + C800 plants decreased just after gas exposure, but the Fv/Fm was not affected. These effects indicate that elevated CO2 interactively ameliorated the inhibition of photosynthesis induced by O3 exposure. However, changes in antioxidant levels did not explain the above interaction.  相似文献   

17.
Photosynthetic rates of green leaves (GL) and green flower petals (GFP) of the CAM plant Dendrobium cv. Burana Jade and their sensitivities to different growth irradiances were studied in shade-grown plants over a period of 4 weeks. Maximal photosynthetic O2 evolution rates and CAM acidities [dawn/dusk fluctuations in titratable acidity] were higher in leaves exposed to intermediate sunlight [a maximal photosynthetic photon flux density (PPFD) of 500–600 μmol m−2 s−1] than in leaves grown under full sunlight (a maximal PPFD of 1 000–1 200 μmol m−2 s−1) and shade (a maximal PPFD of 200–250 μmol m−2 s−1). However, these two parameters of GFP were highest in plants grown under the shade and lowest in full sun-grown plants. Both GL and GFP of plants exposed to full sunlight had lower predawn Fv/Fm [dark adapted ratio of variable to maximal fluorescence (the maximal photosystem 2 yield without actinic irradiation)] than those of shade-grown plants. When exposed to intermediate sunlight, however, there were no significant changes in predawn Fv/Fm in GL whereas a significant decrease in predawn Fv/Fm was found in GFP of the same plant. GFP exposed to full sunlight exhibited a greater decrease in predawn Fv/Fm compared to those exposed to intermediate sunlight. The patterns of changes in total chlorophyll (Chl) content of GL and GFP were similar to those of Fv/Fm. Although midday Fv/Fm fluctuated with prevailing irradiance, changes of midday Fv/Fm after exposure to different growth irradiances were similar to those of predawn Fv/Fm in both GL and GFP. The decreases in predawn and midday Fv/Fm were much more pronounced in GFP than in GL under full sunlight, indicating greater sensitivity in GFP to high irradiance (HI). In the laboratory, electron transport rate and photochemical and non-photochemical quenching of Chl fluorescence were also determined under different irradiances. All results indicated that GFP are more susceptible to HI than GL. Although the GFP of Dendrobium cv. Burana Jade require a lower amount of radiant energy for photosynthesis and this plant is usually grown in the shade, is not necessarily a shade plant.  相似文献   

18.
We investigated the relationships of photosynthetic capacity (P nsat, near light-saturated net photosynthetic rate measured at 1,200 μmol m−2 s−1 PPFD) to photosystem II efficiency (F v/F m) and to photochemical reflectance index [PRI = (R 531 − R 570)/(R 531 + R 570)] of Pinus taiwanensis Hay. needles at high (2,600 m a.s.l) and low-elevation (800 m a.s.l) sites through different seasons. Results indicate that at high-elevation site, P nsat, F v/F m and PRI (both measured at predawn) paralleled in general with the air temperature. On the coolest measuring day with the minimum air temperature dropping to −2°C, P nsat could decrease to ca. 15% of its highest value, which was measured in autumn. At low-elevation site, with the minimum air temperature of 10–12°C in cooler season and almost no seasonal variation of F v/F m, P nsat dropped to ca. 65% of its highest value and PRI decreased ca. 0.02 in winter. Even though seasonal variation of P nsat was affected by many factors, it was still closely related to PRI based on statistical analyses using data from both sites, through different seasons. On the contrary, seasonal variation of F v/F m of P. taiwanensis needles was influenced mainly by low temperature at high elevation. Therefore, the correlation of P nsat − F v/F m was lower than that of P nsat − PRI when data combined from both high- and low-elevation sites were analyzed. It is concluded that predawn PRI could be used as an indicator to estimate the seasonal potential of photosynthetic capacity of P. taiwanensis grown at low- and high-elevations of sub-tropical Taiwan.  相似文献   

19.
In the context of the search for future forestry species in Central Europe under climate change scenarios, the evergreen Mediterranean Quercus taxa Q. ilex ssp. ilex and Q. suber and the semideciduous hybrids. Q. × turneri and Q. × hispanica were studied in relation to their photochemical efficiency of photosystem II and to the activity of the xanthophyll cycle under Central European winter conditions. The evergreen taxa were remarkably insensitive to winter stress in the field and reacted towards frost periods with the phenomenon of “chronic photoinhibition”, i.e. a decrease in pre-dawn F v/F m and an increase in the deepoxidation state of the xanthophylls. Under dark and warmer conditions (room temperature), winter-acclimated leaves of the evergreen taxa except for Q. × turneri produced zea- and antheraxanthin and decreased F v/F m, possibly by creation of a chlororespiratory pH-gradient. It is suggested that the ability for dark violaxanthin deepoxidation may contribute to the winter hardiness of the evergreen taxa.  相似文献   

20.
The effect of high irradiance (HI, photosynthetically active photon flux density of 1 300 μmol m−2 s−1) on net photosynthetic rate (P N), chlorophyll fluorescence parameters, and xanthophyll cycle components were studied in fruit tree bayberry leaves. HI induced the photoinhibition and inactivation of photosystem 2 (PS2) reaction centres (RCs), which was characterized by decreased P N, maximum yield of fluorescence after dark adaptation (Fm), photochemical efficiency of PS2 (Fv/Fm) and quantum yield of PS2 (ΦPS2), and increased reduction state of QA (1-qP) and non-photochemical quenching (NPQ). Initial fluorescence (F0) showed a decrease after the first 2 h, and subsequently increased from the third hour exposure to HI. Furthermore, a greater increase in the ratio (Fi-F0)/(Fp-F0) which is an expression of the proportion of the QB non-reducing PS2 centres, whereas a remarked decrease in the slope of Fi to Fp which represents the rate of QA reduction was observed in leaves after HI exposure. Additionally, HI caused an increase in the pool size of the xanthophyll cycle pigments and sustained elevated contents of zeaxanthin (Z), antheraxanthin (A), and de-epoxidation state (DES) at the end of the irradiation period. During HI, decreased Fm, Fv/Fm, ΦPS2, NPQ, slope of Fi to Fp, V+A+Z, and DES, and increased F0, 1-qP, ratio (Fi-F0)/(Fp-F0), and V were observed in dithiothreitol (DTT)-fed leaves compared to control ones under the same conditions. Hence photoinhibition caused by HI in bayberry was probably attributed to inactivation of PS2 RCs, and photoprotection from photodamage were mainly related to the xanthophyll cycle-dependent heat dissipation in excess photons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号