首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Aunapuu M  Roosaar P  Suuroia T  Arend A 《Tsitologiia》2007,49(10):824-831
The course of reparative regeneration after 5/6 nephrectomy and use of low-dose radiation has been studied by means of light and electron microscopy. The experiments were performed on 30 male Wistar rats. All animal procedures were conducted after approval of the protocol by the animal Studies Ethics Committee of the University of Tartu. Renal ablation was then accomplished by right nephrectomy and selective ligation of extrarenal branches of the left renal artery such that approximately 2/3 of the left kidney was infracted. All together 30 rats were randomised after the surgery and divided into two groups matched for age and body weight at week 0 and studied during 2, 4 and 8 weeks: groups I (nephrectomized, n = 15), groups II (nephrectomized and irradiated, n = 15). Left kidney of II groups rats was irradiated (60Co) 24 h after surgery in anaesthetized (Brietal) animals with 3 Gy in a single dose. As a result of experimentally induced ischemia destruction of renal corpuscles, perishing of tubular epithelial cells and and proliferation of connective tissue is followed. Reparative regeneration is based on aseptic inflammation, duration of its phases depends on the extent of organ impairment. In nephrectomized rats parallel to reparative regeneration, necrosis and deposition of calcium is found in the cortical substance. Calcium plays important role in kidney metabolism and its increased content is characteristic to degenerative changes. The experiments reveal that use of low-dose radiation does not accelerate process of reparative regeneration in rat kidney.  相似文献   

5.
6.
7.
Renal hypoxia and dysoxia after reperfusion of the ischemic kidney   总被引:2,自引:0,他引:2  
Ischemia is the most common cause of acute renal failure. Ischemic-induced renal tissue hypoxia is thought to be a major component in the development of acute renal failure in promoting the initial tubular damage. Renal oxygenation originates from a balance between oxygen supply and consumption. Recent investigations have provided new insights into alterations in oxygenation pathways in the ischemic kidney. These findings have identified a central role of microvascular dysfunction related to an imbalance between vasoconstrictors and vasodilators, endothelial damage and endothelium-leukocyte interactions, leading to decreased renal oxygen supply. Reduced microcirculatory oxygen supply may be associated with altered cellular oxygen consumption (dysoxia), because of mitochondrial dysfunction and activity of alternative oxygen-consuming pathways. Alterations in oxygen utilization and/or supply might therefore contribute to the occurrence of organ dysfunction. This view places oxygen pathways' alterations as a potential central player in the pathogenesis of acute kidney injury. Both in regulation of oxygen supply and consumption, nitric oxide seems to play a pivotal role. Furthermore, recent studies suggest that, following acute ischemic renal injury, persistent tissue hypoxia contributes to the development of chronic renal dysfunction. Adaptative mechanisms to renal hypoxia may be ineffective in more severe cases and lead to the development of chronic renal failure following ischemia-reperfusion. This paper is aimed at reviewing the current insights into oxygen transport pathways, from oxygen supply to oxygen consumption in the kidney and from the adaptation mechanisms to renal hypoxia. Their role in the development of ischemia-induced renal damage and ischemic acute renal failure are discussed.  相似文献   

8.
Reparative regeneration in different periods following nephrectomy and the application of low-dose radiation has been studied by means of light and electron microscopy. Experimentally induced ischemia resulted in the destruction of renal corpuscles, the perishing of tubular epithelial cells, and the proliferation of connective tissue. Reparative regeneration is based on aseptic inflammation and its phase duration depends on the extent of organ injury. In nephrectomized rats, reparative regeneration is accompanied by necrosis and the deposition of calcium in the cortical substance. Calcium plays an important role in kidney metabolism and its increased content is characteristic of degenerative changes. The experiments showed that the use of low-dose radiation does not accelerate the process of reparative regeneration in rat kidney.  相似文献   

9.
10.
11.
近年来研究发现细胞间黏附分子-1和单核细胞趋化蛋白-1等炎症因子、核因子-κB及中性粒细胞、单核/巨噬细胞等炎症细胞参与了急性缺血性肾损伤的发生发展,抑制急性缺血性肾损伤时肾脏的炎症反应具有保护肾脏作用.  相似文献   

12.
The frequency of nuclear pores/μ2 in isolated nuclei from ischemic rat kidneys decreased by half after 20 min of occlusion of the blood supply to the kidney. The decrease in pore number remained constant through 120 min ischemia. Particles in the concave fracture face of the outer nuclear membrane changed from a random distribution in control nuclei to a reticular pattern after 20 min ischemia, becoming more sparse and clustered through 120 min ischemia. Deterioration of the pore structure also was noted after 120 min ischemia. It is suggested that these changes are related to loss of nuclear function.  相似文献   

13.
Despite advancements in renal replacement therapy, the mortality rate for acute kidney injury (AKI) remains unacceptably high, likely due to remote organ injury. Kidney ischemia-reperfusion injury (IRI) activates cellular and soluble mediators that incite a distinct pulmonary proinflammatory and proapoptotic response. Tumor necrosis factor receptor 1 (TNFR1) has been identified as a prominent death receptor activated in the lungs during ischemic AKI. We hypothesized that circulating TNF-α released from the postischemic kidney induces TNFR1-mediated pulmonary apoptosis, and we aimed to elucidate molecular pathways to programmed cell death. Using an established murine model of kidney IRI, we characterized the time course for increased circulatory and pulmonary TNF-α levels and measured concurrent upregulation of pulmonary TNFR1 expression. We then identified TNFR1-dependent pulmonary apoptosis after ischemic AKI using TNFR1-/- mice. Subsequent TNF-α signaling disruption with Etanercept implicated circulatory TNF-α as a key soluble mediator of pulmonary apoptosis and lung microvascular barrier dysfunction during ischemic AKI. We further elucidated pathways of TNFR1-mediated apoptosis with NF-κB (Complex I) and caspase-8 (Complex II) expression and discovered that TNFR1 proapoptotic signaling induces NF-κB activation. Additionally, inhibition of NF-κB (Complex I) resulted in a proapoptotic phenotype, lung barrier leak, and altered cellular flice inhibitory protein signaling independent of caspase-8 (Complex II) activation. Ischemic AKI activates soluble TNF-α and induces TNFR1-dependent pulmonary apoptosis through augmentation of the prosurvival and proapoptotic TNFR1 signaling pathway. Kidney-lung crosstalk after ischemic AKI represents a complex pathological process, yet focusing on specific biological pathways may yield potential future therapeutic targets.  相似文献   

14.
The release of gamma-glutamyltransferase from renal tubule cells was studied in situ following 30 minutes of ischemia. The ischemic kidney enzyme level fell 33 percent after 15 minutes of reflow of which only 1.2 percent was recovered in the urine; none was released into the renal vein. At this time the overwhelming majority of the enzyme appears bound to membranes in both the kidney and the urine. In the subsequent 15 minutes renal levels continue to decline while urinary excretion accounts for 5 percent of that disappearing from the kidney. Interestingly the form of the enzyme present in kidney and urine shifts to a soluble form coinciding with cellular alkalosis, urinary alkalinization and a rise in ATP levels. Alkalinization of renal homogenates result in a 2-fold increase in the soluble enzyme form. The results are consonant with the immediate loss of brush border enzyme via uptake into the cell or release into the urine with the former pathway predominating; subsequent appearance of the soluble enzyme appears to reflect intracellular alkaline proteinase activity and exocytosis. The form in which the enzyme is excreted may provide a useful clinical index: membranous reflecting cellular necrosis and soluble reflecting cellular recovery.  相似文献   

15.
Patients with acute kidney injury (AKI) have increased serum proinflammatory cytokines and an increased occurrence of respiratory complications. The aim of the present study was to examine the effect of renal and extrarenal cytokine production on AKI-mediated lung injury in mice. C57Bl/6 mice underwent sham surgery, splenectomy, ischemic AKI, or ischemic AKI with splenectomy and kidney, spleen, and liver cytokine mRNA, serum cytokines, and lung injury were examined. The proinflammatory cytokines IL-6, CXCL1, IL-1β, and TNF-α were increased in the kidney, spleen, and liver within 6 h of ischemic AKI. Since splenic proinflammatory cytokines were increased, we hypothesized that splenectomy would protect against AKI-mediated lung injury. On the contrary, splenectomy with AKI resulted in increased serum IL-6 and worse lung injury as judged by increased lung capillary leak, higher lung myeloperoxidase activity, and higher lung CXCL1 vs. AKI alone. Splenectomy itself was not associated with increased serum IL-6 or lung injury vs. sham. To investigate the mechanism of the increased proinflammatory response, splenic production of the anti-inflammatory cytokine IL-10 was determined and was markedly upregulated. To confirm that splenic IL-10 downregulates the proinflammatory response of AKI, IL-10 was administered to splenectomized mice with AKI, which reduced serum IL-6 and improved lung injury. Our data demonstrate that AKI in the absence of a counter anti-inflammatory response by splenic IL-10 production results in an exuberant proinflammatory response and lung injury.  相似文献   

16.
TGF-β1 contributes to chronic kidney disease, at least in part, via Smad3. TGF-β1 is induced in the kidney following acute ischemia, and there is increasing evidence that TGF-β1 may protect against acute kidney injury. As there is a paucity of information regarding the functional significance of Smad3 in acute kidney injury, the present study explored this issue in a murine model of ischemic acute kidney injury in Smad3(+/+) and Smad3(-/-) mice. We demonstrate that, at 24 h after ischemia, Smad3 is significantly induced in Smad3(+/+) mice, whereas Smad3(-/-) mice fail to express this protein in the kidney in either the sham or postischemic groups. Compared with Smad3(+/+) mice, and 24 h following ischemia, Smad3(-/-) mice exhibited greater preservation of renal function as measured by blood urea nitrogen (BUN) and serum creatinine; less histological injury assessed by both semiquantitative and qualitative analyses; markedly suppressed renal expression of IL-6 and endothelin-1 mRNA (but comparable expression of MCP-1, TNF-α, and heme oxygenase-1 mRNA); and no increase in plasma IL-6 levels, the latter increasing approximately sixfold in postischemic Smad3(+/+) mice. We conclude that genetic deficiency of Smad3 confers structural and functional protection against acute ischemic injury to the kidney. We speculate that these effects may be mediated through suppression of IL-6 production. Finally, we suggest that upregulation of Smad3 after an ischemic insult may contribute to the increased risk for chronic kidney disease that occurs after acute renal ischemia.  相似文献   

17.
De novo CD44 and ligand expression at wound margins accompanies cellular proliferation and migration that effect repair of injured mucosal and vascular endothelial tissues. To determine whether CD44 could play a role in recovery from acute ischemic renal injury, we characterized its renal expression and those of two of its ligands, hyaluronic acid and osteopontin. Although no expression is detectable in nonischemic kidneys, several mRNAs for CD44 are present within 1 day after injury. CD44 mRNA is expressed in proximal tubules undergoing repair. CD44 peptide is present in basal and lateral cell membranes. Hyaluronic acid is normally expressed in the interstitium of the renal papilla only. By 1 day postischemia, hyaluronic acid can be detected, in addition, in the interstitium surrounding regenerating tubules. Osteopontin, not normally expressed in the renal proximal tubule, is expressed in regenerating tubules by 3 days after induction of acute ischemic injury. Immunoreactive osteopontin peptide continues to be localized in those tubules still undergoing repair for as long as 7 days after the injury. Our data are consistent with a role for CD44-ligand interactions in the regenerating proximal tubule participating in the process of recovery after ischemic injury.  相似文献   

18.
We investigated the role of apoptosis signal-regulating kinase 1 (ASK1) in ischemia/reperfusion (I/R)-induced acute kidney injury (AKI). Blood urea nitrogen (BUN) and serum creatinine were significantly higher in ASK1+/+ mice than in ASK1−/− mice after I/R injury. Renal histology of ASK1+/+ mice showed significantly greater tubular necrosis and degradation. In ASK1−/− mice, phosphorylation of ASK1, JNK, and p38K, and the number of TUNEL-positive cells and infiltrated leukocytes decreased after I/R injury. Apoptotic changes were significantly decreased in cultured renal tubular epithelial cells (TECs) from ASK1−/− mice under hypoxic condition. Transfection with dominant-active ASK1 induced apoptosis in TECs. Protein expression of monocyte chemoattractant protein-1 (MCP-1) was significantly weaker in ASK1−/− mice after I/R injury. Transfection with dominant negative-ASK1 significantly decreased MCP-1 production in TECs. These results demonstrated that ASK1 is activated in I/R-induced AKI, and blockage of ASK1 attenuates renal tubular apoptosis, MCP-1 expression, and renal function.  相似文献   

19.
Serum IL-6 is increased in acute kidney injury (AKI) and inhibition of IL-6 reduces AKI-mediated lung inflammation. We hypothesized that circulating monocytes produce IL-6 and that alveolar macrophages mediate lung inflammation after AKI via chemokine (CXCL1) production. To investigate systemic and alveolar macrophages in lung injury after AKI, sham operation or 22 min of renal pedicle clamping (AKI) was performed in three experimental settings: 1) systemic macrophage depletion via diphtheria toxin (DT) injection to CD11b-DTR transgenic mice, 2) DT injection to wild-type mice, and 3) alveolar macrophage depletion via intratracheal (IT) liposome-encapsulated clodronate (LEC) administration to wild-type mice. In mice with AKI and systemic macrophage depletion (CD11b-DTR transgenic administered DT) vs. vehicle-treated AKI, blood monocytes and lung interstitial macrophages were reduced, renal function was similar, serum IL-6 was increased, lung inflammation was improved, lung CXCL1 was reduced, and lung capillary leak was increased. In wild-type mice with AKI administered DT vs. vehicle, serum IL-6 was increased. In mice with AKI and alveolar macrophage depletion (IT-LEC) vs. AKI with normal alveolar macrophage content, blood monocytes and lung interstitial macrophages were similar, alveolar macrophages were reduced, renal function was similar, lung inflammation was improved, lung CXCL1 was reduced, and lung capillary leak was increased. In conclusion, administration of DT in AKI is proinflammatory, limiting the use of the DTR-transgenic model to study systemic effects of AKI. Mice with AKI and either systemic mononuclear phagocyte depletion or alveolar macrophage depletion had reduced lung inflammation and lung CXCL1, but increased lung capillary leak; thus, mononuclear phagocytes mediate lung inflammation, but they protect against lung capillary leak after ischemic AKI. Since macrophage activation and chemokine production are key events in the development of acute lung injury (ALI), these data provide further evidence that AKI may cause ALI.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号