首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aggregations of different-looking animals are frequently seen in nature, despite well-documented selection pressures on individuals to maintain phenotypically homogenous groups. Two well-known theories, the ‘confusion effect’ (reduced ability of a predator to accurately target an individual in a group) and the ‘oddity effect’ (preferential targeting of phenotypically distinct, ‘odd’, individuals) act together to predict the evolution of behaviours in prey that lead to groups of animals that are homogeneous in appearance. In contrast, a recently proposed mechanism suggests that mixed groups could be maintained if one species in a mixed group is more conspicuous against the habitat than the other, as confusion effects generated by the conspicuous species impede predator targeting of the cryptic species; thus, cryptic species benefit from association with conspicuous ones. We test these contrasting predictions from the perspective of both predators and prey, and show that cryptic individual Daphnia are at reduced risk of predation from three-spine sticklebacks Gasterosteus aculeatus when in mixed-phenotype groups, a risk that is reduced further as the number of conspicuous individuals increases, supporting the hypothesis for the evolution of mixed groups. In contrast, while the preference for associating with colour-matched conspecifics by mollies (Poecilia sphenops) was reduced when they were cryptic, we found no evidence for active association with conspicuous conspecifics. We conclude that prey animals must balance the relative risks of oddity and conspicuousness in their social decisions, and that this could potentially lead to the evolution of mixed-phenotype grouping as a response to predation risk alone.  相似文献   

2.
It is widely argued that defended prey have tended to evolve conspicuous traits because predators more readily learn to avoid defended prey when they are conspicuous. However, a rival theory proposes that defended prey have evolved such characters because it allows them to be distinguished from undefended prey. Here we investigated how the attributes of defended (unprofitable) and undefended (profitable) computer-generated prey species tended to evolve when they were subject to selection by foraging humans. When cryptic forms of defended and undefended species were similar in appearance but their conspicuous forms were not, defended prey became conspicuous while undefended prey remained cryptic. Indeed, in all of our experiments, defended prey invariably evolved any trait that enabled them to be distinguished from undefended prey, even if such traits were cryptic. When conspicuous mutants of defended prey were extremely rare, they frequently overcame their initial disadvantage by chance. When Batesian mimicry of defended species was possible, defended prey evolved unique traits or characteristics that would make undefended prey vulnerable. Overall, our work supports the contention that warning signals are selected for their reliability as indicators of defense rather than to capitalize on any inherent educational biases of predators.  相似文献   

3.
Theories of the evolution of warning signals are typically expressed using analytic and computational models, most of which attribute aspects of predator psychology as the key factors facilitating the evolution of warning signals. Sherratt provides a novel and promising perspective with a model that considers the coevolution of predator and prey populations, showing how predators may develop a bias towards attacking cryptic prey in preference to conspicuous prey. Here, we replicate the model as an individual-based simulation and find, in accordance with Sherratt, that predators evolve a bias towards attacking cryptic prey. We then use a Monte Carlo simulation to calculate the relative survivorships of cryptic and conspicuous prey and stress that, as it stands, the model does not predict the evolution or stability of warning signals. We extend the model by giving predators continuous attack strategies and by allowing the evolution of prey conspicuousness: results are robust to the first modification but, in all cases, cryptic prey always enjoy a higher survivorship than conspicuous prey. When conspicuousness is allowed to evolve, prey quickly evolve towards crypsis, even when runaway coevolution is enabled. Sherratt's approach is promising, but other aspects of predator psychology, besides their innate response, remain vital to our understanding of warning signals.  相似文献   

4.
We examine the evolution and maintenance of defence and conspicuousness in prey species using a game theoretic model. In contrast to previous works, predators can raise as well as lower their attack probabilities as a consequence of encountering moderately defended prey. Our model predicts four distinct possibilities for evolutionarily stable strategies (ESSs) featuring maximum crypsis. Namely that such a solution can exist with (1) zero toxicity, (2) a non-zero but non-aversive level of toxicity, (3) a high, aversive level of toxicity or (4) that no such maximally cryptic solution exists. Maximally cryptic prey may still invest in toxins, because of the increased chance of surviving an attack (should they be discovered) that comes from having toxins. The toxin load of maximally cryptic prey may be sufficiently strong that the predators will find them aversive, and seek to avoid similar looking prey in future. However, this aversiveness does not always necessarily trigger aposematic signalling, and highly toxic prey can still be maximally cryptic, because the increased initial rate of attack from becoming more conspicuous is not necessarily always compensated for by increased avoidance of aversive prey by predators. In other circumstances, the optimal toxin load may be insufficient to generate aversion but still be non-zero (because it increases survival), and in yet other circumstances, it is optimal to make no investment in toxins at all. The model also predicts ESSs where the prey are highly defended and aversive and where this defence is advertised at a cost of increased conspicuousness to predators. In many circumstances there is an infinite array of these aposematic ESSs, where the precise appearance is unimportant as long as it is highly visible and shared by all members of the population. Yet another class of solutions is possible where there is strong between-individual variation in appearance between conspicuous, poorly defended prey.  相似文献   

5.
Unpalatable species are often brightly coloured. Such aposematic coloration may have evolved because predators can learn to avoid conspicuous prey more readily than cryptic prey. Experiments on young male chicks are described and the results are consistent with this hypothesis.  相似文献   

6.
It is not clear which selective pressures balance the strong fecundity advantage associated with large female body size in insects. A positively size-dependent mortality risk could provide a solution. In aviary experiments with artificial larvae, we studied if larger larvae of folivorous insects are more readily found (= detectability) and/or attacked (= acceptability) by birds. As size and colouration are likely to interact in determining birds’ responses, both cryptic and conspicuous prey items were used. As detectability is likely to be context-dependent, both simple (smooth) and complex (plants) backgrounds were used in respective experiments. In the conspicuous larvae, acceptability correlated negatively with prey size. However, their detectability was context dependent, being positively correlated with size on the simple background, whereas no significant effect was found on the complex background. Surprisingly, cryptic larvae showed no correlation between detectability and size, and there was only a weak tendency for birds to attack large larvae more readily. On the basis of a quantitative model, we conclude that the effect of positively size dependent bird predation, as a single factor, is not likely to counterbalance the fecundity advantage in cryptic species, and may thus not be crucial in determining the optimum for body sizes in these insects. In conspicuous species, there is a potential for different outcomes, because detectability and acceptability affect survival in different directions. The net outcome is, therefore, likely to be highly context-dependent. Furthermore, our results provide an explanation for the recently reported absence of systematic body-size differences between cryptic and conspicuous Lepidopteran larvae: although conspicuous larvae benefit from increasing their warning signal when growing larger, they also suffer a much sharper rise in detectability. Estonian Science Foundation grant # 5746; Centre for International Mobility (Finland).  相似文献   

7.
Initially, aposematism, which is an unprofitable trait, e.g. noxiousness conspicuously advertised to predators, appears to be a paradox since conspicuousness should increase predation by naive predators. However, reluctance of predators for eating novel prey (e.g. neophobia) might balance the initial predation caused by inexperienced predators. We tested the novelty effects on initial predation and avoidance learning in two separate conspicuousness levels of aposematic prey by using a 'novel world' method. Half of the wild great tits (Parus major) were trained to eat cryptic prey prior to the introduction of an aposematic prey, which potentially creates a bias against the aposematic morph. Both prey types were equally novel for control birds and they should not have shown any biased reluctance for eating an aposematic prey. Knowledge of cryptic prey reduced the expected initial mortality of the conspicuous morph to a random level whereas control birds initially ate the conspicuous morph according to the visibility risk. Birds learned to avoid conspicuous prey in both treatments but knowledge of cryptic prey did not increase the rate of avoidance learning. Predators' knowledge of cryptic prey did not reduce the predation of the less conspicuous aposematic prey and additionally predators did not learn to avoid the less conspicuous prey. These results indicate that predator psychology, which was shown as reluctance for attacking novel conspicuous prey, might have been important in the evolution of aposematism.  相似文献   

8.
This review summarizes information on the behavioural ecology of mixed-species troops (interspecific associations) formed by different species of callitrichines, small New World monkeys, in western and central Amazonia. The formation of mixed-species troops is an integral part of the biology of several species of this subfamily. Niche separation between associated species is obtained through vertical segregation which results in differences in the prey spectrum. The degree of niche separation is a predictor for the stability of mixed-species troops. Individuals may benefit from the formation of mixed-species troops through increased safety from predators, increased foraging efficiency, and/or increased resource defence. Costs of mixed-species troop formation are probably very low and mainly relate to patterns of interspecific behavioural interactions. We point to gaps in our knowledge and suggest pathways for future research into mixed-species troops.  相似文献   

9.
In studies of habitat suitability at landscape scales, transferability of species-landscape associations among sites are likely to be critical because it is often impractical to collect datasets across various regions. However, limiting factors, such as prey availability, are not likely to be constant across scales because of the differences in species pools. This is particularly true for top predators that are often the target for conservation concern. Here we focus on gray-faced buzzards, apex predators of farmland-dominated landscapes in East Asia. We investigated context dependency of “buzzard-landscape relationship”, using nest location datasets from five sites, each differing in landscape composition. Based on the similarities of prey items and landscape compositions across the sites, we determined several alternative ways of grouping the sites, and then examined whether buzzard-landscape relationship change among groups, which was conducted separately for each way of grouping. As a result, the model of study-sites grouping based on similarities in prey items showed the smallest ΔAICc. Because the terms of interaction between group IDs and areas of broad-leaved forests and grasslands were selected, buzzard-landscape relationship showed a context dependency, i.e., these two landscape elements strengthen the relationship in southern region. The difference in prey fauna, which is associated with the difference in climate, might generate regional differences in the buzzard-landscape associations.  相似文献   

10.
Animals often announce their unprofitability to predators through conspicuous coloured signals. Here we tested whether the apparently conspicuous colour designs of the four European Coraciiformes and Upupiformes species may have evolved as aposematic signals, or whether instead they imply a cost in terms of predation risk. Because previous studies suggested that these species are unpalatable, we hypothesized that predators could avoid targeting them based on their colours. An experiment was performed where two artificial models of each bird species were exposed simultaneously to raptor predators, one painted so as to resemble the real colour design of these birds, and the other one painted using cryptic colours. Additionally, we used field data on the black kite’s diet to compare the selection of these four species to that of other avian prey. Conspicuous models were attacked in equal or higher proportions than their cryptic counterparts, and the attack rate on the four species increased with their respective degree of contrast against natural backgrounds. The analysis of the predator’s diet revealed that the two least attacked species were negatively selected in nature despite their abundance. Both conspicuous and cryptic models of one of the studied species (the hoopoe) received fewer attacks than cryptic models of the other three species, suggesting that predators may avoid this species for characteristics other than colour. Globally, our results suggest that the colour of coraciiforms and upupiforms does not function as an aposematic signal that advises predators of their unprofitability, but also that conspicuous colours may increase predation risk in some species, supporting thus the handicap hypothesis.  相似文献   

11.
The evolution of conspicuous colouration in prey is puzzling because such coloration attracts the attention of predators. Anti-apostatic selection, in which rare prey forms are predated disproportionately often, is a second potential obstacle to the evolution of conspicuous colouration in prey, as bright novel prey forms are likely to be very rare when they first appear in populations. It has recently been postulated that dietary conservatism in predators, an extended feeding avoidance of novel prey, would allow novel conspicuous prey to survive and multiply despite anti-apostatic and conspicuousness effects. We tested this hypothesis for a novel prey type arising in an otherwise cryptic population, providing a direct test of whether anti-apostatic selection or the predators’ wariness to attack the novel prey type is the more important force acting on the novel conspicuous prey. We conducted our experiment in the “Novel World”; an experimental system designed to test predators’ foraging decisions in a large landscape. We found that the conspicuous, novel prey suffered high initial costs of conspicuousness compared with cryptic prey, since most of these prey were attacked during the first “generation”, with no opportunity to “reproduce”. However, a subset of the 17 birds (24%) were following a dietary conservative foraging strategy and they were reluctant to eat the novel prey. Interestingly these birds were not more neophobic or less explorative. Our data demonstrate how difficult it is for the novel conspicuous prey to survive in cryptic populations, but they also highlight the importance of the predator’s foraging strategies in helping to promote the evolution and maintenance of aposematism.  相似文献   

12.
Prey that are unprofitable to attack are typically conspicuous in appearance. Conventional theory assumes that these warning signals have evolved in response to predator receiver biases. However, such biases might be a symptom rather than a cause of warning signals. We therefore examine an alternative theory: that conspicuousness evolves in unprofitable prey to avoid confusion with profitable prey. One might wonder why unprofitable prey do not find a cryptic means to be distinct from profitable prey, reducing both their risk of confusion with profitable prey and their rate of detection by predators. Here we present the first coevolutionary model to allow for Batesian mimicry and signals with different levels of detectability. We find that unprofitable prey do indeed evolve ways of distinguishing themselves using cryptic signals, particularly when appearance traits can evolve in multiple dimensions. However, conspicuous warning signals readily evolve in unprofitable prey when there are more ways to look different from the background than to match it. Moreover, the more unprofitable the prey species, the higher its evolved conspicuousness. Our results provide strong support for the argument that unprofitable species evolve conspicuous signals to avoid confusion with profitable prey and indicate that peak shift in conspicuousness-linked traits is a major factor in its establishment.  相似文献   

13.
Both theoretical and laboratory research suggests that many prey animals should live in a solitary, dispersed distribution unless they lack repellent defences such as toxins, venoms and stings. Chemically defended prey may, by contrast, benefit substantially from aggregation because spatial localization may cause rapid predator satiation on prey toxins, protecting many individuals from attack. If repellent defences promote aggregation of prey, they also provide opportunities for new social interactions; hence the consequences of defence may be far reaching for the behavioural biology of the animal species. There is an absence of field data to support predictions about the relative costs and benefits of aggregation. We show here for the first time using wild predators that edible, undefended artificial prey do indeed suffer heightened death rates if they are aggregated; whereas chemically defended prey may benefit substantially by grouping. We argue that since many chemical defences are costly to prey, aggregation may be favoured because it makes expensive defences much more effective, and perhaps allows grouped individuals to invest less in chemical defences.  相似文献   

14.
Insects use various types of behaviour, chemical defences, mimetic, aposematic or cryptic appearances as anti-predatory strategies. Among insects, carabid beetles of the genus Brachinus are distasteful prey because they discharge an irritating "cloud" of quinones when threatened. These beetles live in aggregations and adopt warning (conspicuous pattern) colours and chemicals to create a template that is easily learnt by predators. Another carabid beetle, Anchomenus dorsalis, mimics the colours and cuticular profile of Brachinus and is usually found in Brachinus aggregations. In this paper we report results from laboratory observations on feeding choice of the following natural predators - Crocidura leucodon (Insectivora: Soricidae), Ocypus olens (Coleoptera: Staphylinidae) and Podarcis sicula (Reptilia: Lacertidae) - on carabid beetle species. Comparing the number of attacks of predators towards aposematic and non-aposematic prey, there was a statistically significant preference towards non-aposematic prey.  相似文献   

15.
By forming larger sizes of groups, individuals benefit from a decrease in vigilance, but the collective vigilance of the group as a whole is not compromised. We examined whether this group size effect is apparent in mixed-species groups of red-bellied tamarins (S. labiatus) and saddleback tamarins (S. fuscicollis) which form stable and permanent associations in the wild. We studied general vigilance and responses to hidden threatening stimuli in five captive groups of each species, while they were housed in single- and mixed-species groups. For vigilance, the individual rate was lower in the larger mixed-species groups than in the smaller single-species groups. In addition, the amount of time when at least one individual was vigilant was higher in mixed-species groups. This suggests that the tamarins alter their vigilance behavior in the presence of the other species. In response to hidden threats, both species performed brief vigilance checks and frequencies of checking did not differ in single- and mixed-species groups. However, both species had a significant reduction in the mean duration per check, and there was a reduced total amount of time spent vigilance checking in the mixed-species groups compared to the single-species groups, demonstrating the group size effect. Overall the mixed-species groups had a higher number and mean duration of checking than the smaller single-species groups. Given that the two species share a common set of predators, and respond to each other's alarm calls, these findings provide strong evidence that individuals of both tamarin species may be able to benefit from forming mixed-species groups via improved vigilance and monitoring of threats.  相似文献   

16.
Recently there has been debate over the importance of innateavoidance of aposematic prey by predators, particularly birds.There is evidence that the predators have innate or unlearned,thus, inherited avoidance against certain colors, but whetherthere is any innate avoidance against gregariousness or conspicuousnessis unclear. Previously predator behavior toward these charactersof aposematic prey have been tested in separate experiments.We designed an experiment to separate inheritance toward color,gregariousness, and conspiucuosness. We simultaneously offeredthe predators warningly colored and nonwarningly colored preyitems, both aggregated and solitary, on white (conspicuous)or brown (cryptic) backgrounds. The predators we used were naive (handraised), wild-caught yearling and adult great tits (Parus major L.).The results confirm previous results regarding the innate avoidanceof color. Naive predators seemed to have a genetically or culturallytransmitted avoidance of yellow and black prey compared to brownprey. Surprisingly, yearling wild-caught great tits were moreselective than adults, which did not show as strong avoidanceof yellow and black prey. More importantly, birds did not findgregarious prey more aversive than single prey, which indicatesthat grouping alone does not serve as an innate avoidance signal.Conspicuousness itself was not aversive to the predators. Ourresults suggest that the avoidance against a particular colorpattern probably has an inherited basis, whereas gregariousand conspicuous characters of prey presumably aid the avoidancelearning.  相似文献   

17.
The initial evolution of conspicuous warning signals presents an evolutionary problem because selection against rare conspicuous signals is presumed to be strong, and new signals are rare when they first arise. Several possible solutions have been offered to solve this apparent evolutionary paradox, but disagreement persists over the plausibility of some of the proposed mechanisms. In this paper, we construct a deterministic numerical simulation model that allows us to derive the strength of selection on novel warning signals in a wide range of biologically relevant situations. We study the effects of predator psychology (learning, rate of mistaken attacks, and neophobia) on selection. We also study the how prey escape, predation intensity, number of predators, and abundance of different prey types affects selection. The model provides several important results. Selection on novel warning signals is number rather than frequency dependent. In most cases, there exists a threshold number of aposematic individuals below which aposematism is selected against and above which aposematism is selected for. Signal conspicuousness (which increases detection rate) and distinctiveness (which allows predator to distinguish defended from nondefended prey) have opposing effects on evolution of warning signals. A more conspicuous warning signal cannot evolve unless it makes the prey more distinctive from palatable prey, reducing mistaken attacks by predators. A novel warning signal that is learned quickly can spread from lower abundance more easily than a signal that is learned more slowly. However, the relative rate at which the resident signal and the novel signal are learned is irrelevant for the spread of the novel signal. Long-lasting neophobia can facilitate the spread of novel warning signals. Individual selection via the ability of defended prey to escape from predator is not likely to facilitate evolution of conspicuous warning signals if both the resident (cryptic) morph and the novel morph have the same escape probability. Predation intensity (defined as the proportion of palatable prey eaten by the predator) has a strong effect on selection. More intense predation results in strong selection against rare signals, but also strong selective advantage to common signals. The threshold number of aposematic individuals is lower when predation is intense. Thus, the evolution of warning signals may be more likely in environments where predation is intense. The effect of numbers of predators depends on whether predation intensity also changes. When predation intensity is constant, increasing numbers of predators raises the threshold number of aposematic individuals, and thus makes evolution of aposematism more difficult. If predation intensity increases in parallel with number of predators, the threshold number of aposematic individuals does not change much, but selection becomes more intense on both sides of the threshold.  相似文献   

18.
Aposematism is a well known and widely used strategy for reducing predation by conspicuous signalling of unprofitability. However, the increased conspicuousness could make this strategy costly if there are no secondary defences to back the signal up. This has made the elucidation of the evolutionary mechanisms for aposematism and that of the closely‐related Batesian and Mullerian mimicry difficult. The present study aims to test whether cryptic and nondefended prey could reduce their predation risk by grouping with aposematic and defended prey. To do this, we used groups of artificial baits that were either cryptic and palatable or conspicuous and unpalatable, along with the corresponding control treatments. These were then presented in mixed and homogeneous treatment groups within a field setting and the local wild bird assemblage was allowed to select and remove baits at will. The results obtained show that undefended non‐aposematic prey can benefit by grouping with aposematic prey, with no evidence that predation rates for aposematic prey were adversely affected by this association. These results provide insights into the evolution of Batesian mimicry. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 106 , 81–89.  相似文献   

19.
Chemically defended species often have conspicuous signals that warn potential predators of these defences. Recent evidence suggests that some such aposematic prey are not as conspicuous as possible, even though increased conspicuousness would bring additional anti-predator benefits. Here we present a simple model to explore the generality of these observations. Our model predicts that optimal fitness will often be achieved at an intermediate level of conspicuousness and not simply by maximising conspicuousness. This comes about because of the ubiquitous trade-off that increased conspicuousness has an ecological cost in increasing the encounter rate with predators, as well as a benefit in terms of enhancing learned aversion by predators of defended prey. However, importantly, we also predict that a small deviation away from maximal crypsis generally causes a decrease in fitness, even if a larger deviation would lead to an intermediate level of conspicuousness that maximises fitness. Hence, further consideration of whether intermediate levels of aposematism are as common in nature as predicted in this model will require consideration of the underlying evolution of appearance, and the plausibility of evolution across the fitness trough, from maximal crypsis to an intermediate level of aposematism.  相似文献   

20.
Animals that are brightly colored have intrigued scientists since the time of Darwin, because it seems surprising that prey should have evolved to be clearly visible to predators. Often this self-advertisement is explained by the prey being unprofitable in some way, with the conspicuous warning coloration helping to protect the prey because it signals to potential predators that the prey is unprofitable. However, such signals only work in this way once predators have learned to associate the conspicuous color with the unprofitability of the prey. The evolution of warning coloration is still widely considered to be a paradox, because it has traditionally been assumed that the very first brightly colored individuals would be at an immediate selective disadvantage because of their greater conspicuousness to predators that are naive to the meaning of the signal. As a result, it has been difficult to understand how a novel conspicuous color morph could ever avoid extinction for long enough for predators to become educated about the signal. Thus, the traditional view that the evolution of warning coloration is difficult to explain rests entirely on assumptions about the foraging behavior of predators. However, we review recent evidence from a range of studies of predator foraging decisions, which refute these established assumptions. These studies show that: (1) Many predators are so conservative in their food preferences that even very conspicuous novel prey morphs are not necessarily at a selective disadvantage. (2) The survival and spread of novel color morphs can be simulated in field and aviary experiments using real predators (birds) foraging on successive generations of artificial prey populations. This work demonstrates that the foraging preferences of predators can regularly (though not always) result in the increase to fixation of a novel morph appearing in a population of familiar-colored prey. Such fixation events occur even if both novel and familiar prey are fully palatable and despite the novel food being much more conspicuous than the familiar prey. These studies therefore provide strong empirical evidence that conspicuous coloration can evolve readily, and repeatedly, as a result of the conservative foraging decisions of predators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号