首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The effect of water on the primary photosynthetic activity of purple bacterium Rhodospirillum rubrum was studied in Hexadecane-Tween-Spane (HTS)- and phospholipid (PLC)-reverse micelles. Reverse micelles offer the possibility of modulating the amount of water to which enzymes and multienzymatic complexes are exposed. Fast bacteriochlorophyll (BChl) fluorescence induction kinetics and reaction centre absorption changes at 820 nm were used as an assay for the functional transfer of bacterial cells into HTS-reverse micelles and bacterial photosynthetic complexes (BPC) into PLC-reverse micelles. Both the bacterial cells and BPC showed an increase in the rate of primary photosynthetic activity by increasing the concentration of water in the reverse micelles. The bacterial cells could be kept viable for many hours in HTS-reverse micelles in presence of 6% (v/v) water. NMR studies indicated that the photosynthetic activity was affected by the availability of water in reverse micelles. The bacterial cells in HTS or BPC in PLC reverse micelles could be used to further understand the influence of water on the organisation and function of photosynthetic complexes. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

2.
Microemulsions provide an interesting alternative to classical methods for the conversion of less water-soluble substrates by alcohol dehydrogenase, but until now stability and activity were too low for economically useful processes. The activity and stability of the enzymes are dependent on the microemulsion composition, mostly the water and the surfactant concentration. Therefore, it is necessary to know the exact phase behavior of a given microemulsion reaction system and the corresponding enzyme behavior therein. Because of their economic and ecologic suitability polyethoxylated fatty alcohols were investigated concerning their phase behavior and their compatibility with enzymes in ternary mixtures. The phase behavior of Marlipal O13-60 (C13EO6 in industrial quality)/cyclohexane/water and its effect on the activity and stability of alcohol dehydrogenase from Yeast (YADH) and horse liver (HLADH) and the carbonyl reductase from Candida parapsilosis (CPCR) is presented in this study. Beside the macroscopic phase behavior of the reaction system, the viscosity of the system indicates structural changes of aggregates in the microemulsion. The changes of the enzyme activities with the composition are discussed on the basis of transitions from reverse micelles to swollen reverse micelles and finally, the transition to the phase separation. The formate dehydrogenase from Candida boidinii was used for the NADH-regeneration during reduction reactions. While the formate dehydrogenase did not show any kinetic effect on the microemulsion composition, the other enzymes show significant changes of activity and stability varying the water or surfactant concentration of the microemulsion. Under certain conditions, stability could be maintained with HLADH for several weeks. Successful experiments with semi-batch processes including cofactor regeneration and product separation were performed.  相似文献   

3.
Some new aspects of microbiology in water-in-oil microemulsions are investigated using Candida pseudotropicalis in a hexadecane solution containing Tween85/Span80 (each 5% wt:wt) as surfactant, and limited amount of water (up to 3%, vol:vol), Microemulsion solutions containing cells up to 10 mg fresh weight per milliliter can be prepared, which display a greater time stability and a much smaller light scattering than aqueous suspensions having the same cell concentration. This is ascribed to a lower aggregation tendency of the cells in the microemulsion environment. It is also shown that C. pseudotropicalis cells are able to grow (up to a factor of approximately 6-7 within a few days) in the microemulsion system containing nutrient medium in the aqueous microphase; but they are also able to grow at the expense of the hexadecane. This is proved with radioactive-labeled hexadecane by measuring the increase of radioactivity in the cells as well as the emission of (14)CO(2). The growth rate of the cells is then compared with the growth rate of cellular proteins during cell reproduction in the microemulsion system. Two regimes are observed: a first one, in which cells growth rate and protein growth rate proceed parallel to each other; and a second one (established after 0.5-1 day) characterized by depletion of proteins in the microemulsion system. The implications of these findings for cell metabolism in microemulsion and for possible biotechnological applications are discussed.  相似文献   

4.
The anti-yeast activities of a food-grade dilution-stable microemulsion against Candida albicans and Saccharomyces cerevisiae have been studied. The weight ratio of the formulated microemulsion is glycerol monolaurate (GML)/propionic acid/Tween 80/sodium benzoate (SB)/water = 3:9:14:14:24. Results of anti-yeast activity on solid medium by agar diffusion method showed that the anti-yeast activity of the microemulsion at 4.8 mg/ml was comparable to that of natamycin at 0.1 mg/ml as positive control. Results of anti-yeast activity in liquid medium by broth dilution method showed that the growth of both C. albicans and S. cerevisiae was completely inhibited when the liquid medium containing 106 cfu/ml was treated with 1.2 mg/ml microemulsion, which was determined as minimum fungicidal concentration. The kinetics of killing results showed that the microemulsion killed over 90% yeast cells rapidly within 15 min and caused a complete loss of viability in 120 min. Among the components, SB and GML had a similar anti-yeast activity, followed by propionic acid, while Tween 80 exhibited no activity and could not enhance the anti-yeast activities of these components, and it was revealed that the anti-yeast activity of the microemulsion was attributed to a combination of propionic acid, GML, and SB. The anti-yeast activity of the microemulsion was in good agreement with the leakage of 260-nm absorbing materials and the observation of transmission electron microscopy, indicating that the microemulsion induced the disruption and dysfunction of the cell membrane.  相似文献   

5.
Abstract: Pseudomonas diminuta and P. vesicularis , two obligate aerobes isolated from laboratory algal cultures, stimulated the growth of the green microalgae Scenedesmus bicellularis and Chlorella sp., without releasing any growth promoting substance. An intimate contact between both microorganisms was necessary for significant algal growth enhancement. The possibility of algal growth stimulation by bacterial attenuation of photosynthetic oxygen tension was indirectly examined by simulating the effect of bacteria through a physical removal of oxygen (air suction). Vacuum-treated cultures showed an increase in growth rate and photosynthetic activity as compared to the control, a result which cannot be explained by differences in CO2/HCO3 pump activity. In the presence of P. diminuta , the photosynthetic activity of S. bicellularis was more strongly stimulated under a limited concentration of inorganic carbon. It is suggested that, apart from a CO2 supply, aerobic bacteria can promote algal growth by reducing the photosynthetic oxygen tension within the microenvironment of the algal cells, thereby creating more favorable conditions for optimal photosynthetic algal growth.  相似文献   

6.
Abstract In water-in-oil microemulsion the membrane-associated F420-hydrogenase of Methanobacterium thermoautotrophicum (strain Marburg) and the membrane-bound hydrogenase of Alcaligenes eutrophus H 16 (MBH) showed prolonged activity at elevated temperatures (measured as hydrogen production) as compared to aqueous buffer solution. The temperature optimum of the reactions was about 15°C higher than in aqueous buffer solution. Activity of the almost completely inactivated F420-hydrogenase could be partially recovered by transfer into microemulsion.  相似文献   

7.
The enzymatic conversion of cholesterol to cholestenone by cholesterol oxidase (Brevibacterium sp.)in reversed micelles in a system composed of AOT/isooctane/water/cholesterol has been examined. The catalytic activity of the enzyme was correlated with the physicochemical properties of water in water-in-oil (w/o) microemulsion systems. In a system consisting of 3 wt % AOT in isooctane, reversed micelles started to form as the [H(2)O]/[AOT] (e.g., the w(0)) ratio increased above 4-5. The formation of reversed micelles with a core of neat (bulk) water was verified from determinations of both the partial molar volume of water and the scissors vibration of water [with Fourier transform infrared (FTIR) spectroscopy] in the w/o microemulsion systems. A plot of enzyme activity vs. w(0) indicated that the hydration of enzyme molecules per se was not sufficient to give rise to catalytic activity. Instead, it appeared that the formation of an aqueous micellar core was necessary for full activation of the enzyme. Based on micelle size distribution analysis, it was estimated that about one micelle per one thousand contained an enzyme molecule. Since the apparent reaction rate could be markedly enhanced by increasing the enzyme/water ratio, we conclude that the number of enzyme-containing micelles was an important rate-limiting factor in the system.  相似文献   

8.
The stomata and green cells in wheat ears were observed by electron microscopy, and the photosynthetic activity of the ears was measured with an infra-red gas analyser. 1. The awn, glume, palea, lemma, and axis were photosynthetic organs on the wheat ears. Stomata, however, only existed at the green parts in these organs. The ears which had longer awns and higher content of chlorophyll usually showed relatively high photosynthetic rates. 2. The structure and photochemical activity of the chloroplasts in the awns were similar to those in the leaves. 3. The photosynthetic rate of ears could be promoted by increasing light intensity and CO2 concentration. The CO2 compensation point (110 ppm) and the light compensation point (200μE·m-2 · s-1)of ears were higher than those of leaves. 4. The wheat ears had photoresplration. The CO2-releasing rate of the ears under light could be promoted by high O3 concentration. The CO2 outburst and the oscillation in photosynthesis in the awns could be measured. These results suggested that the photosynthetic pathway in the wheat ears was Cspathway. 5. The highest photosynthetic rate of ears emerged at flowering stage. Thereafter, the photosynthetic activity of the ears fell down as the chlorophyll content declined and the grains were filled up.  相似文献   

9.
M. J. Hills 《Planta》1986,169(1):38-45
Intact mesophyll cells can be rapidly isolated from the cladophylls ofAsparagus officinalis by gentle scraping with a plastic card, the yield being higher than 80% on a chlorophyll basis. The cells can be stored for at least 24h without loss of photosynthetic capacity and were found to be stable under a variety of conditions. In contrast to cell preparations from other plant species, photosynthetic activity was little affected by the presence of sorbitol as an osmoticum up to a concentration of 1.5 M. Similarly, the pH value of the medium influenced photosynthesis to only a small extent at a constant [CO2] of 200 M. The response of the cells' photosynthetic capacity to light, temperature and CO2 concentration was similar to those reported for isolated cells from other plant species. Isolated cells ofA. officinalis can be used under a large range of conditions which gives them a measure of flexibility not possible with most plant cells which have sharply defined optimal conditions for photosynthesis. The isolated cells have a photosynthetic capacity of 40–60% of that of the intact cladophyll. The loss of photosynthetic activity observed upon isolation could not be accounted for by breakage of the cells. Virtually all of the cells were shown to be intact on the basis of Evans Blue exclusion and more than 80% of the cells contained intact chloroplasts and vacuoles. The entire loss of photosynthetic activity could be accounted for by a decrease in sucrose synthesis rather than by an equal decrease in the synthesis in all products. A six- to seven fold increase in the level of14C in hexose phosphates in the isolated cells supports the notion of inhibition of the sucrose-synthesis pathway.  相似文献   

10.
About 90% of the radioactive Cs in the sediment mud of a school's swimming pool in Fukushima, Japan was removed by treatment for 3 d using the alginate immobilized photosynthetic bacterium Rhodobcater sphaeroides SSI. Even though batch treatment was carried out 3 times repeatedly, the activity of immobilized cells in removing Cs was maintained at levels of about 84% (second batch) and 78% (third batch). Cs was strongly attached to the sediment mud because, even with HNO(3) treatment at pH of 2.00-1.60 for 24 h, it was not eluted into the water. Furthermore, more than 75% of the Cs could be removed without solubilization with HNO(3). This suggests that the Cs attached to the sediment mud was transformed into immobilized cells via the Cs(+) ion by the negative charge of the immobilized cell surface and/or the potassium transport system of the photosynthetic bacterium.  相似文献   

11.
Protein extraction and activity in reverse micelles of a nonionic detergent   总被引:2,自引:0,他引:2  
We describe, for the first time, the ability of a polyoxyethylene sorbitan trioleate-isopropanol microemulsion in hexane to solubilize pure proteins. The dependences of cytochrome c extraction and buffer solubilization by the reverse micellar system on ionic strength of the aqueous phase, detergent concentration, and cosurfactant concentration result in increased extraction. In addition, subtilisin (a serine protease) is shown to be active in this microemulsion. Further the activity of the enzyme can be regulated by the water content of the micelles, enabling control of enzyme activity by "solvent engineering."  相似文献   

12.
The aim of this work was to test innovative approach for enhancing ascorbyl palmitate stability in microemulsions for topical application by addition of newly synthesized co-antioxidant 4-(tridecyloxy)benzaldehyde oxime (TDBO) and to investigate its antioxidant activity and finally to evaluate cytotoxicity of TDBO-loaded microemulsions on keratinocyte cells. TDBO significantly increased ascorbyl palmitate stability in oil-dispersed-in-water (o/w) microemulsions, most presumably due to reduction of ascorbyl palmitate radical back to ascorbyl palmitate, since TDBO free-radical scavenging activity was confirmed. Cytotoxicity experiments demonstrated no significant change in cell viability or morphology in the presence of TDBO-loaded microemulsions regarding unloaded microemulsions, although greater cytotoxicity was observed with increased microemulsion concentrations. Therefore, the incorporation of TDBO as non-cytotoxic co-antioxidant in o/w microemulsions is a promising new strategy for enhancing ascorbyl palmitate stability that could be used to support antioxidant network in the skin.  相似文献   

13.
Plectonema boryanum exhibits temporal separation of photosynthesis and nitrogen fixation under diazotrophic conditions. During nitrogen fixation, the photosynthetic electron transport chain becomes impaired, which leads to the uncoupling of the PSII and PSI activities. A 30-40% increase in PSI activity and continuous generation of ATP through light-dependent processes seem to support the nitrogen fixation. The use of an artificial electron carrier that shuttles electrons between the plastoquinone pool and plastocyanin, bypassing cytochrome b/f complex, enhanced the photosynthetic electron transport activity five to six fold during nitrogen fixation. Measuring of full photosynthetic electron transport activity using methyl voilogen as a terminal acceptor revealed that the photosynthetic electron transport components beyond plastocyanin might be functional. Further, glycolate can act as a source of electrons for PSI for the nitrogen fixing cells, which have residual PSII activity. Under conditions when PSI becomes largely independent of PSII and glycolate provides electrons for PSI activity, the light-dependent nitrogen fixation also was stimulated by glycolate. These results suggest that during nitrogen fixation, when the photosynthetic electron transport from PSII is inhibited at the level of cytochrome b/f complex, an alternate electron donor system for PSI may be required for the cells to carry out light dependent nitrogen fixation.  相似文献   

14.
The effects of light-harvesting pigments (LHP) inmicroalgal cells on photosynthetic activity in adense cell suspension were examined. The results suggest that a lower LHP content should result in higher photosynthetic productivity under high light intensity. The idea was first proposed by Lien and San Pietro in 1975 that photosynthesis could be improved by reducing the LHP content in microalgal cells, but this has not been demonstrated in detail. Experiments to evaluate the idea were conducted with Synechocystis PCC6714 and Chlorellapyrenoidosa. In the experiments with PCC 6714, photosynthesis of a phycocyanin-deficient mutant was compared with that of the wild type. In the experiments with C. pyrenoidosa, the LHP content was controlled by the light intensity in the algalculture. The maximum photosynthetic activity was 20–30% higher in the dense suspension of cells having a lower LHP content with both organisms. These results indicate that the idea of reducing the LHP contentcould be applicable to a wide variety of photosynthetic organisms. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

15.
Photosynthetic activity in terms of O2 evolution and the growth of Spirulina platensis was stimulated by adding 5-aminolevulinic acid (ALA, 500 mg/l) to photoautotrophically growing cells. After ALA was added to the medium, intracellular accumulations of phycocyanin and chlorophyll were stimulated simultaneously, followed by enhancement of the photosynthetic activities of photosystems I and II, and lastly, growth was promoted. ALA did not directly activate the photosynthetic electron transport system. However, during a 3-h incubation of intact cells with ALA, photosynthetic activity was enhanced.  相似文献   

16.
Chlamydomonas reinhardi y-1 cells grown in the dark in the presence of chloramphenicol (CD cells) are depleted of photosynthetic membranes and 70S translates. These cells were found to be unable to synthesize chlorophyll in the light until chloroplast protein synthesis was resumed. On the other hand, CD cells acquired the capacity to partially green in the presence of cycloheximide. This greening was characterized by the development of photosynthetic activity, as demonstrated by light- dependent oxygen evolution of whole cells and by measurements of ribulose-1,5-bisphosphate carboxylase and fluorescence kinetics. The chlorophyll synthesized de novo during greening in the absence of 80S ribosomal activity was organized in chlorophyll-protein complexes, as ascertained by low-temperature fluorescence-emission spectra. The morphology of these cells appeared to be normal. A model has been proposed as a working hypothesis, which could account for the phenomena described above and previously reported data pertaining to chloroplast development.  相似文献   

17.
斜生栅藻中虾青素的积累过程及其光合活性变化   总被引:1,自引:1,他引:0  
分析了斜生栅藻(Scenedesmus obliquus)在光温(30℃,180 μmol/m2·s)胁迫条件下积累虾青素的过程,观察了该过程中细胞形态及细胞光合生理的变化。胁迫条件下,细胞在48h内生成并积累了包括海胆酮、角黄素、金盏花黄素和金盏花红素在内的多种次生类胡萝卜素,并合成了虾青素及其酯。该过程中,细胞形态由两端尖细变得不规则、膨大,原来由4、8个细胞组成的定形群体变为游离的单个细胞或2个细胞组成的群体。藻细胞光合速率在24h内先下降后上升,而后又呈现下降趋势,从34.29 μmol O2/mg Chla/h迅速下降为5.21 μmol O2/mg Chla/h;呼吸速率在前24h内升高至60.37 μmol O2/mg Chla/h,而后缓慢下降到38.40 μmol O2/mg Chla/h;光合系统Ⅱ的活性随着胁迫时间的延续而逐步下降,较初始值降低了63.9%。结果表明,斜生栅藻细胞在高光照条件下可以合成虾青素,并通过调节光合速率、呼吸速率以及光合系统Ⅱ的效率来应对胁迫。  相似文献   

18.
Non-regulated enzymes in the Calvin cycle are generally presumed to be less important for the regulation of photosynthetic yield. Here, to investigate the relationship between the activity of non-regulated enzymes and photosynthetic yield, two non-regulated enzymes in the Calvin cycle—a rice cytosolic fructose-1,6-bisphosphate aldolase (FBA) and a spinach chloroplast triosephosphate isomerase (TPI)—were cloned and co-expressed in cells of the cyanobacterium Anabaena sp. strain PCC 7120. The activity of FBA and TPI and the photosynthetic yield reflected by photosynthetic O2 evolution and cell dry weight were measured and compared between wild-type and transgenic cells. Our results demonstrated that the activity of FBA and TPI were increased in transgenic cells relative to wild-type cells, and that activity was further increased in a transgenic strain harboring two sets of FBA-TPI tandem genes relative to cells containing one copy of the FBA-TPI tandem gene. The increased activity of FBA and TPI in Anabaena sp. strain PCC 7120 increased photosynthetic yield, with increased activity levels correlating closely with the degree of changes in photosynthetic yield. This implies that the photosynthetic yield is limited by the activity of the non-regulated enzymes FBA and TPI, and that the endogenous activity of non-regulated enzymes is not sufficient to increase photosynthetic yield. We discuss the various roles of FBA and TPI, and regulated and non-regulated enzymes, in modulating photosynthetic yield. W. Ma and L. Wei contributed equally to this work.  相似文献   

19.
Keren N  Kidd MJ  Penner-Hahn JE  Pakrasi HB 《Biochemistry》2002,41(50):15085-15092
Manganese is an essential micronutrient for many organisms. Because of its unique role in the water oxidizing activity of photosystem II, manganese is required for photosynthetic growth in plants and cyanobacteria. Here we report on the mechanism of manganese uptake in the cyanobacterium Synechocystis sp. PCC 6803. Cells grown in 9 microM manganese-containing medium accumulate up to 1 x 10(8) manganese atoms/cell, bound to the outer membrane (pool A). This pool could be released by EDTA treatment. Accumulation of manganese in pool A was energized by photosynthetic electron flow. Moreover, collapsing the membrane potential resulted in the immediate release of this manganese pool. The manganese in this pool is mainly Mn(II) in a six-coordinate distorted environment. A distinctly different pool of manganese, pool B ( approximately 1.5 x 10(6) atoms/cell), could not be extracted by EDTA. Transport into pool B was light-independent and could be detected only under limiting manganese concentrations (1 nM). Evidently, manganese uptake in Synechocystis 6803 cells occurs in two steps. First, manganese accumulates in the outer membrane (pool A) in a membrane potential-dependent process. Next, manganese is transported through the inner membrane into pool B. We propose that pool A serves as a store that allows the cells to overcome transient limitations in manganese in the environment.  相似文献   

20.
The regulation of photosynthetic yield at the genetic level has largely focused on manipulation of the catalytic enzymes in the Calvin cycle by genetic engineering. In order to investigate the contribution of increased enzymatic activity in the Calvin cycle on photosynthetic yield, the rice fructose-1,6-bisphosphate aldolase (FBA), spinach triosephosphate isomerase (TPI) and wheat fructose-1,6-bisphosphatase (FBPase) genes were cloned in tandem and co-overexpressed in cyanobacterium Anabaena sp. strain PCC 7120 cells. The enzymatic activities of FBA, TPI and FBPase, as well as sedoheptulose-1,7-bisphosphatase (SBPase), were remarkably increased in transgenic cells relative to the wild-type. The photosynthetic yield, as reflected by photosynthetic O2 evolution and dry cellular weight, was also markedly increased in transgenic cells versus wide-type cells. The activity of SBPase is considered the most important factor for ribulose-1,5-bisphosphate (RuBP) regeneration in the Calvin cycle, and increased activity of TPI alone in transgenic cells does not stimulate photosynthetic yield. Thus, the increased activity of FBA and FBPase, but not TPI, significantly improved photosynthetic yield in transgenic cells by stimulating SBPase activity and consequently accelerating the RuBP regeneration rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号