首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 292 毫秒
1.
An in vitro perfused carotid body preparation was developed to study its chemosensory responses to physiological and pharmacological stimuli. The carotid bifurcation with the carotid body was vascularly isolated and excised from pentobarbital sodium-anesthetized cats. The CB was perfused in a chamber by gravity (80 Torr) with modified Tyrode's solution (N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid-NaOH at pH 7.40) equilibrated at a given Po2 and superfused with the same medium at (Po2 of 20 Torr). The temperature was maintained at 35.5 +/- 0.5 degrees C. The frequency of chemosensory discharges (CD) was recorded from the whole carotid sinus nerve (n = 24), and the responses were tested by repeated interruptions of perfusate flow (SF), perfusion with hypoxic medium, and injections of nicotine and cyanide (0.1 nmol to 1 mumol) and hypercapnic medium. During hyperoxic perfusion, SF resulted in a sigmoidal increase in CD, reaching a maximum that was 23.6 +/- 4.4-fold greater than the basal activity. Restoration of flow returned CD promptly to basal values. After normoxic perfusion, SF led to a similar maximal activity more rapidly, but the duration was shorter. Reduction of the perfusate PO2 (Po2 from 450 Torr to 150, 30, and less than 10 Torr) caused a nonlinear increase in CD. CO2 stimuli (PCo2 38-110 Torr) resulted in a linear increase in CD. Nicotine or cyanide increased CD in a dose-dependent manner. The preparation retained its initial responsiveness for 2-3 h, making extensive experimental studies feasible.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Somatostatin and gastrin release into the gastric lumen in rats   总被引:1,自引:0,他引:1  
Somatostatin and gastrin release into the gastric lumen was investigated in anaesthetized, vagally intact rats. The stomach was perfused at a flow rate of 0.5 mL.min-1. During perfusion with 0.1 M HCl or buffers of varying pH the somatostatin ans gastrin concentrations in the perfusate were less than 10 pg.mL -1 and approximately 30 pg.mL-1, respectively. Peptone caused a gastrin concentrations in the perfusate were less than 10 pg.mL-1 and approximately 30 pg.mL-1, respectively. Peptone caused a slight pH-independent increase in somatostatin release; gastrin release was unchanged despite an increase in serum gastrin from a basal of 15 +/- 4 to 155 +/- 34 pg.mL-1 during peptone stimulation. intravenous infusion of carbachol (1 microgram.kg-1.min-1) strongly stimulated luminal somatostatin and gastrin release (from 5 +/- 1 to 192 +/- 52 pg.mL-1 and from 27 +/- 5 to 198 +/- 41 pg.mL-1, respectively) during perfusion with 0.1 M HCl. Phosphate buffer perfusion at pH 7.5 abolished the cholinergic-mediated somatostatin release but the gastrin response was unaffected. It is suggested that changes of luminal hormone concentrations in the rat stomach do not reflect the secretory activity of the endocrine cells in the gastric mucosa.  相似文献   

3.
The proton Bohr factor (phi H = alpha log PO2/alpha pH), the carbamate Bohr factor (phi C = alpha log PO2/alpha log PCO2), the total Bohr factor (phi HC = d log PO2/dpH[base excess) and the CO2 buffer factor (d log PCO2/dpH) were determined in the blood of 12 healthy donors over the whole O2 saturation (SO2) range. All three Bohr factors proved to be dependent on SO2, although to a lesser extent than reported in some of the recent literature. At SO2 = 50% and 37 degrees C, we found phi H = -0.428 +/- 0.010 (SE), phi C = 0.054 +/- 0.006, and phi HC = -0.488 +/- 0.007. The values obtained for phi H, phi C, and d log PCO2/dpH were used to calculate phi HC. Calculated and measured values of phi HC proved to be in good agreement. In an additional series of 12 specimens of human blood we determined the influence of PCO2 on phi H and the influence of pH on phi C. At SO2 = 50%, phi H varied from -0.49 +/- 0.009 at PCO2 = 15 Torr to -0.31 +/- 0.010 at PCO2 = 105 Torr and phi C from 0.157 +/- 0.015 at pH = 7.80 to 0.006 +/- 0.009 at pH = 7.00. When on the basis of these data a second-order term is taken into account, a still slightly better agreement between measured and calculated values of phi HC can be attained.  相似文献   

4.
An analysis of basic parameters representative of the acid-base balance was made in arterial blood samples from 140 clinically healthy dogs, under a general intravenous Thiopental anaesthesia. The following mean values +/- S.E.M. were obtained: pH = 7.33 +/- 0.01; pCO2 = 47.16 +/- 0.95; base excess = -2.12 +/- 0.27; buffer base = 46.63 +/- 0.37. The results showed a prevalent trend of lower values of pH, base excess and buffer base and higher values of pCO2 than those found commonly in human clinical practice. Special attention was paid to the respiratory component of the acid-base balance (ABB) revealing certain undesirable side effect of Thiopental anaesthesia.  相似文献   

5.
Myocardial mean myoglobin oxygen saturation was determined spectroscopically from isolated guinea pig hearts perfused with red blood cells during increasing hypoxia. These experiments were undertaken to compare intracellular myoglobin oxygen saturation in isolated hearts perfused with a modest concentration of red blood cells (5% hematocrit) with intracellular myoglobin saturation previously reported from traditional buffer-perfused hearts. Studies were performed at 37 degrees C with hearts paced at 240 beats/min and a constant perfusion pressure of 80 cmH2O. It was found that during perfusion with a hematocrit of 5%, baseline mean myoglobin saturation was 93% compared with 72% during buffer perfusion. Mean myoglobin saturation, ventricular function, and oxygen consumption remained fairly constant for arterial perfusate oxygen tensions above 100 mmHg and then decreased precipitously below 100 mmHg. In contrast, mean myoglobin saturation, ventricular function, and oxygen consumption began to decrease even at high oxygen tension with buffer perfusion. The present results demonstrate that perfusion with 5% red blood cells in the perfusate increases the baseline mean myoglobin saturation and better preserves cardiac function at low oxygen tension relative to buffer perfusion. These results suggest that caution should be used in extrapolating intracellular oxygen dynamics from buffer-perfused to blood-perfused hearts.  相似文献   

6.
We examined the effects of hypoxia and pulsatile flow on the pressure-flow relationships in the isolated perfused lungs of Fitch ferrets. When perfused by autologous blood from a pump providing a steady flow of 60 ml/min, the mean pulmonary arterial pressure rose from 14.6 to 31.3 Torr when alveolar PO2 was reduced from 122 to 46 Torr. This hypoxic pressor response was characterized by a 10.1-Torr increase in the pressure-axis intercept of the extrapolated pressure-flow curves and an increase in the slope of these curves from 130 to 240 Torr X l-1 X min. With pulsatile perfusion from a piston-type pump, mean pulmonary arterial pressure increased from 17.5 to 36.3 Torr at the same mean flow. This hypoxic pressor response was also characterized by increases in the intercept pressure and slope of the pressure-flow curves. When airway pressure was raised during hypoxia, the intercept pressure increased further to 25 +/- 1 Torr with a further increase in vascular resistance to 360 Torr X l-1 X min. Thus, in contrast to the dog lung, in the ferret lung pulsatile perfusion does not result in lower perfusion pressures during hypoxia when compared with similar mean levels of steady flow. Since the effects of high airway pressure and hypoxia are additive, they appear to act at or near the same site in elevating perfusion pressure.  相似文献   

7.
The Bohr effect was measured in normal whole blood and in blood with low DPG concentration as a function of oxygen saturation. pH was changed by varying CO2 concentration (CO2 Bohr effect) or by addition of isotonic NaOH or HC1 at constant PCO2 (fixed acid Bohr effect). At nornal DPG concentration CO2 Bohr effect was -0.52 at 50% blood oxygen saturation, increasing in magnitude at lower saturation and decreasing in magnitude at higher saturation. In DPG depleted blood with base excess (BE) similar to 0 meq/1, there was similar dependence of CO2 Bohr effect on oxygen saturation. At BE similar to -10 meq/1, influence of saturation was comparable, but the magnitude of the Bohr effect was markedly increased at all saturations. Fixed acid Bohr effect at normal DPG concentration was -0.45 at saturations of 50-90% but decreased at lower saturations. In DPG-depleted blood fixed acid Bohr effect averaged about -0.33 with minimal variation with saturation. Influence of DPG on oxygen affinity was greater at intermediate saturations and less at saturations below 20% and above 80%. Effect of CO2, independent of pH, was many fold greater at lower oxygen saturations than at higher saturations. These results support the suggestion that the alpha chain of hemoglobin is the site of the initial oxygenation reaction. Physiologically they indicate that the relative contribution of CO2 and fixed acid, as well as the level of oxygen saturation and DPG concentration, may be important in determining PO2 of capillary blood and resulting oxygen delivery.  相似文献   

8.
The performance of isolated working rabbit hearts perfused with Krebs-Henseleit (KH) buffer was compared with those in which the buffer was supplemented with washed human red blood cells (KH + RBC) at a hematocrit of 15 percent. When perfused with KH alone at 70 cm H2O afterload and paced at 240 beats/minute, coronary flow was more than double, whereas aortic flow was 40-60 percent of that in hearts perfused with KH + RBC, regardless of left atrial filling pressures (LAFP). Peak systolic pressure reached a plateau at 120 mm Hg in KH + RBC, but at 95 mm Hg in the KH group. Stroke work, however, was similar in the two groups. Despite the high coronary flow, oxygen uptake by hearts perfused with KH was substantially less and did not respond to increases in LAFP as in those perfused with KH + RBC. There was a 20 percent drop in ATP and glycogen content after 90 minutes' perfusion. In contrast, isolated hearts perfused with RBC-enriched buffer remained stable for at least 150 minutes. Irrespective of the perfusate, triacylglycerol content of the muscle remained at similar levels throughout the course of study. Increasing RBC in the perfusate from 15 percent to 25 percent had no additional effect on cardiac performance or oxygen consumption. Our findings demonstrate that in the isolated working rabbit heart inclusion of RBC in the perfusate improves mechanical and metabolic stability by providing an adequate oxygen supply.  相似文献   

9.
The objective of this study was to establish an experimental model for extracorporeal perfusion of swine uterus. In order to validate this model, we examined some biochemical parameters and determined the effect of oxytocic drugs (Oxytoxin, Prostaglandin E (2)) on extracorporeal perfused swine uteri. Thirty swine uteri were perfused with Krebs-Ringer bicarbonate-glucose buffer for a period up to eleven hours with the aim to preserve a viable organ, which should be responsive to hormones. The intrauterine pressure was recorded after administration of various concentrations of oxytocin and prostaglandin E (2). Perfusate pH, perfusate lactate, partial oxygen and carbon dioxide tensions, oxygen saturation, and hydrogencarbonate levels in the perfusate, all indicators of tissue ischemia or cell necrosis, showed good preservation of the organ for up to seven hours. We examined the relation of intrauterine pressure to oxytocin and prostaglandin E (2). Both were able to induce contractions of the uterus, whereas prostaglandin E (2) produced rhythmical contractions of smaller amplitude and a higher frequency. We could demonstrate that our perfusion system was able to preserve the swine uterus in a functional condition appropriate for the study of physiological questions.  相似文献   

10.
A simple, sensitive HPLC method using fluorescence detection was developed for determination of adenosine in fetal venous perfusates of dual-perfused cotyledons from human term placentas. Maternal and fetal circuits of in vitro placental cotyledons were perfused with physiological salt solution containing dextrose and dextran (Earle's medium). Conditions were established for optimal formation of fluorescent 1,N6-ethenoadenosine from adenosine and chloroacetaldehyde in Earle's medium and for optimal resolution of 1,N6-ethenoadenosine by reversed-phase HPLC of the reaction mixture. The yield of 1,N6-ethenoadenosine was enhanced by dilution and acidification of the sample matrix. Perfusate samples in autosampler vials were diluted 40% with water and reacted with chloroacetaldehyde for 40 min at 100 degrees C; replicate 100-microliters injections were made automatically from each reaction mixture for HPLC analysis with fluorescence detection on a column packed with 3 microns octadecylsilica (Hypersil). Calibration curves were prepared similarly from 4-100 nM adenosine in Earle's medium. Alternatively, perfusate samples were diluted twofold with dilute phosphoric acid to give a final pH of 5.4 before reaction with chloroacetaldehyde, and replicate 50-microliters injections were made automatically for HPLC; calibration curves were prepared from 2-400 nM adenosine in Earle's medium. 1,N6-Ethenoadenosine was well resolved from Earle's-derived artifactual peaks on chromatography with either a linear or a concave gradient of methanol in ammonium phosphate buffer. Total run times were 15 and 19 min, respectively. Sensitivity of measurement of adenosine was 2-4 nM. Derivatization of adenosine using the acidified reaction mixture gave a limit of detection of 100 fmol of adenosine per injection. Application of the method to analysis of adenosine in fetal venous perfusates of eight dual-perfused cotyledons, each from a different placenta, gave a range of 3.5-52 nM adenosine. Ischemia, imposed by cessation of maternal perfusion, caused a two- to sixfold increase in fetal venous perfusate adenosine concomitant with an increase in fetoplacental perfusion pressure; perfusion pressure and perfusate adenosine returned to baseline levels on reperfusion of the maternal circuit. This facile method of determination of perfusate adenosine should allow investigation of the role of placental adenosine release in regulation of fetoplacental vascular resistance and should be applicable to study of adenosine released by other isolated perfused organs.  相似文献   

11.
Synthesis of stress-induced protein in isolated and perfused rat hearts   总被引:1,自引:0,他引:1  
Isolated and perfused rat hearts were examined by two-dimensional gel electrophoresis and liquid scintillation counting for alterations in protein synthesis following incubation with L-[3H]leucine at 0.5-2.5, 2.5-4.5, or 4.5-6.5 h of perfusion. When 35-mL volumes of three different buffers were recycled for a 2-h period from 0.5 to 2.5 h, by fluorography little effect was seen on the normal patterns of protein synthesis and there was a moderate synthesis of a stress-induced protein (heat-shock protein) with a molecular mass of 71 X 10(3) daltons (SP71). However, hearts perfused with Krebs-improved Ringer 1 bicarbonate had the highest incorporation of L-[3H]leucine. When buffers were recycled for 30-min periods from 0.5 to 2.5 h, SP71 was synthesized in hearts perfused with Krebs-Henseleit original Ringer bicarbonate. Hearts perfused in a similar fashion with Krebs-improved Ringer 1 bicarbonate had the lowest incorporation of label into SP71 and in fact SP71 was undetectable on fluorograms. Overall protein synthesis was decreased and the ratio of SP71 to the total synthesis was increased at 4.5-6.5 h of perfusion when 35-mL volumes of Krebs-improved Ringer 1 bicarbonate was recycled for 2-h periods. A similar result was observed at 2.5-4.5 h of perfusion when this buffer was recycled for either the duration of the experiment or 30-min periods.  相似文献   

12.
Facilitated Transport of Glucose from Blood into Peripheral Nerve   总被引:1,自引:1,他引:0  
D-Glucose is the major substrate for energy metabolism in peripheral nerve. The mechanism of transfer of glucose across the blood-nerve barrier is unclarified. In this study an in situ perfusion technique was utilized, in anesthetized rats, to examine monosaccharide transport from blood into peripheral nerve. Unidirectional influxes of D-[14C]glucose, L-[14C]glucose, and [14C]3-O-methyl-D-glucose across capillaries of the tibial nerve were measured at different perfusate concentrations of unlabelled D-glucose. The permeability-surface area product (PA) for D-[14C]glucose and [14C]3-O-methyl-D-glucose decreased, whereas the PA for L-[14C]glucose remained constant, as the perfusate concentration of D-glucose was increased. In the presence of no added unlabelled D-glucose in the perfusate, the PA for L-[14C]glucose equaled one-fifth the PA for D-[14C]glucose. These results demonstrate self-saturation, competitive inhibition, and stereospecificity of glucose transfer, and for the first time show a unidirectional facilitated transport mechanism for D-monosaccharides at capillaries of mammalian peripheral nerve. The data were fit to a model for facilitated transport and passive diffusion. The half-saturation constant and maximal rate of transport for the saturable component of D-glucose influx equaled 23 +/- 11 mumol X ml-1 and 6.6 +/- 3.2 X 10(-3) mumol X s-1 X g-1, respectively. The constant of nonsaturable glucose influx equaled 0.5 +/- 0.1 X 10(-4) s-1. At normal plasma glucose concentrations, the saturable component comprises about 80% of total D-glucose influx into nerve.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Liver from adult male rats were perfused in situ for 30 min with either undiluted, defibrinated rat blood (haematocrit value 38%) or the same blood diluted with buffer to give a haematocrit of 20%. Perfusion with diluted blood lowered the PO2 of the effluent perfusate but this was insufficient to prevent the fall in O2 consumption due to the reduction in haematocrit. Glucagon (5 X 10(-9) M) increased hepatic O2 consumption with whole blood but not with diluted blood. perfusate K+ was increased by perfusion with diluted blood and glucagon. Bile flow was depressed and biliary K+ increased by glucagon but only in experiments with whole blood. Perfusate glucose was raised by lowering of hepatic O2 consumption but the hormonal stimulation of glucose output was the same at both haematocrits. Net ketogenesis was increased with perfusion with diluted blood and by glucagon. In the absence of glucagon there was a net secretion of triacylglycerols which was depressed by lowering of the haematocrit. Glucagon inhibited triacylglycerol secretion and the effect was greater with whole blood so that there was net uptake. While effects of glucagon were obtained during perfusion at a lower haematocrit, it would appear that whole blood was the medium that allowed their fullest expression.  相似文献   

14.
The respiratory properties of the whole blood of the burrowing red band fish Cepola rubescens L. were investigated. Oxygen dissociation curves constructed at 15°C were found to be close to hyperbolic in shape with a mean value for the cooperativity coefficient at half-saturation (n50) of 1.56. Half-saturation oxygen tension (P50) for pH = 7.56 (mean in vivo pH of venous blood) was 27 Torr. The blood showed a marked Bohr effect (Δ log P50ΔpH = ?1.19) and also a Root effect which at the in vivo pH reduced oxygen carrying capacity by 20%. The PvCO2 was 3.2 Torr and the buffering power of the blood was low, the buffer value of true plasma averaging 5.43 mmol · 1?1 · pH?1. It is suggested that the large Bohr effect coupled with the low buffer value confers on the haemoglobin a flexibility, in terms of oxygen affinity, to withstand changes which occur in environmental oxygen tensions.  相似文献   

15.
The objectives of these experiments were 1) to describe the effect of maximum treadmill exercise on gas exchange, arterial blood gases, and arterial blood oxygenation in rats acclimated for 3 wk to simulated altitude (SA, barometric pressure 370-380 Torr) and 2) to determine the contribution of acid-base changes to the changes in arterial blood oxygenation of hypoxic exercise. Maximum O2 uptake (VO2max) was measured in four groups of rats: 1) normoxic controls run in normoxia (Nx), 2) normoxic controls run in acute hypoxia [AHx inspiratory PO2 (PIO2) approximately 70 Torr], 3) SA rats run in hypoxia (3WHx, PIO2 approximately 70 Torr), and 4) SA rats run in normoxia (ANx). VO2max (ml STPD.min-1.kg-1) was 70.8 +/- 0.9 in Nx, 46.4 +/- 1.9 in AHx, 52.6 +/- 1.1 in 3WHx, and 70.0 +/- 2.4 in ANx. Exercise resulted in acidosis, hypocapnia, and elevated blood lactate in all groups. Although blood lactate increased less in 3WHx and ANx, pH was the same or lower than in Nx and AHx, reflecting the low buffer capacity of SA. In AHx and 3WHx, arterial PO2 increased with exercise; however, O2 saturation of hemoglobin in arterial blood (SaO2) decreased. In vitro measurements of the Bohr shift suggest that SaO2 decreased as a result of a decrease in hemoglobin O2 affinity. The data indicate that several features of hypoxic exercise in this model are similar to those seen in humans, with the exception of the mechanism of decrease in SaO2, which, in humans, appears to be due to incomplete alveolar-capillary equilibration.  相似文献   

16.
Isolated rabbit hearts were perfused with Krebs-Henseleit buffer that contained 1.5 g/dl hemoglobin Ao [HbAo; PO2 at which half-saturation of hemoglobin occurs = 12 Torr], human hemoglobin cross-linked between alpha-chains with bis(3,5-dibromosalicyl)fumarate (alpha alpha-Hb; PO2 at which half-saturation of hemoglobin occurs = 30 Torr), or fatty acid-free bovine serum albumin (BSA). Myocardial performance and oxygen uptake were determined at different aortic PO2's [arterial PO2 (PaO2)] by use of an isovolumic Langendorff preparation. Function and oxygen uptake were comparable among the three different groups of hearts at an average mean PaO2 of 557 Torr. As PaO2 decreased, myocardial function was preserved better in hearts perfused with hemoglobin than in hearts perfused with Krebs-Henseleit buffer alone or with BSA. Hearts perfused with either HbAo or alpha alpha-Hb exhibited similar 10% decreases in left ventricular developed pressure and rate of change in left ventricular developed pressure at PaO2 of 141 Torr compared with a 58% decrease with BSA. However, corresponding venous PO2's were lower with HbAo (20 Torr) than with alpha alpha-Hb (35 Torr), and oxygen uptake decreased by 36% with HbAo but remained constant with alpha alpha-Hb. These data suggest that although myocardial function can be sustained over a fairly broad range of hemoglobin oxygen affinities, tissue oxygen gradients and myocardial oxygen uptake are maintained better by cell-free hemoglobin with an oxygen affinity in the normal physiological range.  相似文献   

17.
We investigated the effects of selective large changes in the acid-base environment of medullary chemoreceptors on the control of exercise hyperpnea in unanesthetized goats. Four intact and two carotid body-denervated goats underwent cisternal perfusion with mock cerebrospinal fluid (CSF) of markedly varying [HCO-3] (CSF [H+] = 21-95 neq/l; pH 7.68-7.02) until a new steady state of alveolar hypo- or hyperventilation was reached [arterial PCO2 (PaCO2) = 31-54 Torr]. Perfusion continued as the goats completed two levels of steady-state treadmill walking [2 to 4-fold increase in CO2 production (VCO2)]. With normal acid-base status in CSF, goats usually hyperventilated slightly from rest through exercise (-3 Torr PaCO2, rest to VCO2 = 1.1 l/min). Changing CSF perfusate [H+] changed the level of resting PaCO2 (+6 and -4 Torr), but with few exceptions, the regulation of PaCO2 during exercise (delta PaCO2/delta VCO2) remained similar regardless of the new ventilatory steady state imposed by changing CSF [H+]. Thus the gain (slope) of the ventilatory response to exercise (ratio of change in alveolar ventilation to change in VCO2) must have increased approximately 15% with decreased resting PaCO2 (acidic CSF) and decreased approximately 9% with increased resting PaCO2 (alkaline CSF). A similar effect of CSF [H+] on resting PaCO2 and on delta PaCO2/VCO2 during exercise also occurred in two carotid body-denervated goats. Our results show that alteration of the gain of the ventilatory response to exercise occurs on acute alterations in resting PaCO2 set point (via changing CSF [H+]) and that the primary stimuli to exercise hyperpnea can operate independently of central or peripheral chemoreception.  相似文献   

18.
The adequacy of intestinal perfusion during shock and resuscitation might be estimated from intestinal tissue acid-base balance. We examined this idea from the perspective of conventional blood acid-base physicochemistry. As the O(2) supply diminishes with failing blood flow, tissue acid-base changes are first "respiratory, " with CO(2) coming from combustion of fuel and stagnating in the decreasing blood flow. When the O(2) supply decreases to critical, the changes become "metabolic" due to lactic acid. In blood, the respiratory vs. metabolic distinction is conventionally made using the buffer base principle, in which buffer base is the sum of HCO(3)(-) and noncarbonate buffer anion (A(-)). During purely respiratory acidosis, buffer base stays constant because HCO(3)(-) cannot buffer its own progenitor, carbonic acid, so that the rise of HCO(3)(-) equals the fall of A(-). During anaerobic "metabolism," however, lactate's H(+) is buffered by both A(-) and HCO(3)(-), causing buffer base to decrease. We quantified the partitioning of lactate's H(+) between HCO(3)(-) and A(-) buffer in anoxic intestine by compressing intestinal segments of anesthetized swine into a steel pipe and measuring PCO(2) and lactate at 5- to 10-min intervals. Their rises followed first-order kinetics, yielding k = 0. 031 min(-1) and half time = approximately 22 min. PCO(2) vs. lactate relations were linear. Over 3 h, lactate increased by 31 +/- 3 mmol/l tissue fluid (mM) and PCO(2) by approximately 17 mM, meaning that one-half of lactate's H(+) was buffered by tissue HCO(3)(-) and one-half by A(-). The data were consistent with a lumped pK(a) value near 6.1 and total A(-) concentration of approximately 30 mmol/kg. We conclude that the respiratory vs. metabolic distinction could be made in tissue by estimating tissue buffer base from measured pH and PCO(2).  相似文献   

19.
Our previous report showed gastric mucosal surface pH was determined by alkali secretion at intragastric luminal pH 3 but by acid secretion at intragastric pH 5. Here, we question whether regulation of mucosal surface pH is due to the effect of luminal pH on net acid/base secretions of the whole stomach. Anesthetized rats with a gastric cannula were used, the stomach lumen was perfused with weakly buffered saline, and gastric secretion was detected in the gastric effluent with 1) a flow-through pH electrode and 2) a fluorescent pH-sensitive dye (Cl-NERF). During pH 5 luminal perfusion, both pH sensors reported the gastric effluent was acidic (pH 4.79). After perfusion was stopped transiently (stop-flow), net acid accumulation was observed in the effluent when perfusion was restarted (peak change to pH 4.1-4.3). During pH 3 luminal perfusion, both pH sensors reported gastric effluent was close to perfusate pH (3.0-3.1), but net alkali accumulation was detected at both pH sensors after stop-flow (peak pH 3.3). Buffering capacity of gastric effluents was used to calculate net acid/alkaline secretions. Omeprazole blocked acid secretion during pH 5 perfusion and amplified net alkali secretion during pH 3 perfusion. Pentagastrin elicited net acid secretion under both luminal pH conditions, an effect antagonized by somatostatin. We conclude that in the basal condition, the rat stomach was acid secretory at luminal pH 5 but alkaline secretory at luminal pH 3.  相似文献   

20.
High-density perfusion cultivation of mammalian cells can result in elevated bioreactor CO(2) partial pressure (pCO(2)), a condition that can negatively influence growth, metabolism, productivity, and protein glycosylation. For BHK cells in a perfusion culture at 20 x 10(6) cells/mL, the bioreactor pCO(2) exceeded 225 mm Hg with approximate contributions of 25% from cellular respiration, 35% from medium NaHCO(3), and 40% from NaHCO(3) added for pH control. Recognizing the limitations to the practicality of gas sparging for CO(2) removal in perfusion systems, a strategy based on CO(2) reduction at the source was investigated. The NaHCO(3) in the medium was replaced with a MOPS-Histidine buffer, while Na(2)CO(3) replaced NaHCO(3) for pH control. These changes resulted in 63-70% pCO(2) reductions in multiple 15 L perfusion bioreactors, and were reproducible at the manufacturing-scale. Bioreactor pCO(2) values after these modifications were in the 68-85 mm Hg range, pCO(2) reductions consistent with those theoretically expected. Low bioreactor pCO(2) was accompanied by both 68-123% increased growth rates and 58-92% increased specific productivity. Bioreactor pCO(2) reduction and the resulting positive implications for cell growth and productivity were brought about by process changes that were readily implemented and robust. This philosophy of pCO(2) reduction at the source through medium and base modification should be readily applicable to large-scale fed-batch cultivation of mammalian cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号