首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Summary The elasmobranch nucleus sacci vasculosi was studied by means of electron microscopy (in the dogfish) and immunocytochemistry (in the dogfish and the skate) by using antibodies against tyrosine hydroxylase, alpha-melanocyte-stimulating hormone, somatostatin, serotonin, and substance P. Ultrastructural study of the dogfish nucleus sacci vasculosi shows the presence of medium-sized cells that possess numerous mitochondria but that have no dense-core vesicles in the cytoplasm or in cell processes. Fibres of the conspicuous tractus sacci vasculosi have a beaded appearance and form conventional synapses with dendrites and cell perikarya of the nucleus sacci vasculosi. The perikarya of this hypothalamic nucleus were not immunoreactive to any of the antibodies tested, and fibres immunopositive to tyrosine hydroxylase, alpha-melanocyte-stimulating hormone, somatostatin, serotonin, and substance P were scarce within this nucleus, in both the dogfish and the skate. Dorsal to the nucleus sacci vasculosi, there are numerous positive neuronal processes in addition to many small neurons that show immunoreactivity to alpha-melanocyte-stimulating hormone, somatostatin and tyrosine hydroxylase. Two types of neuron occur in this dorsal region, displaying dense-core vesicles of either 100–160 nm or 60–100 nm diameter in their cytoplasm; they were identified as peptide-containing and monoamine-containing neurons, respectively. The neuropil of this region has a significantly different ultrastructure from that of the nucleus sacci vasculosi, with many processes containing dense-core vesicles. This group of neurons, located dorsal to the nucleus sacci vasculosi and showing (a) immunoreactivity to neuropeptides or to monoamine-synthesizing enzyme, and (b) cytoplasm with dense-core vesicles, was considered not to be a part of the nucleus sacci vasculosi but rather part of the nucleus tuberculi posterioris. These results support the non-peptidergic and non-aminergic character of the nucleus sacci vasculosi.  相似文献   

2.
Summary The pineal organ of the killifish, Fundulus heteroclitus, was investigated by electron microscopy under experimental conditions; its general and characteristic features are discussed with respect to the photosensory and secretory function. The strongly convoluted pineal epithelium is usually composed of photoreceptor, ganglion and supporting cells. In addition to the well-differentiated photosensory apparatus, the photoreceptor cell contains presumably immature dense-cored vesicles (140–220 nm in diameter) associated with a well-developed granular endoplasmic reticulum in the perinuclear region and the basal process. These dense-cored vesicles appear rather prominent in fish subjected to darkness. The ganglion cell shows the typical features of a nerve cell; granular endoplasmic reticulum, polysomes, mitochondria and Golgi apparatus are scattered in the electron-lucent cytoplasm around the spherical or oval nucleus. The dendrites of these cells divide into smaller branches and form many sensory synapses with the photoreceptor basal processes. Lipid droplets appear exclusively in the supporting cell, which also contains well-developed granular endoplasmic reticulum and Golgi apparatus. Cytoplasmic protrusions filled with compact dense-cored vesicles (90–220 nm in diameter) are found in dark-adapted fish. The origin of these cytoplasmic protrusions, however, remains unresolved. Thus, the pineal organ of the killifish contains two types of dense-cored vesicles which appear predominantly in darkness. The ultrastructural results suggest that the pineal organ of fish functions not only as a photoreceptor but also as a secretory organ.We thank Dr. Grace Pickford for the fishes.  相似文献   

3.
Summary The hypothalamus of the teleost fish Leuciscus rutilus was investigated with the Falck-Hillarp technique. The nucleus preopticus (NPO) and the nucleus lateralis tuberis (NLT) contain no fluorescent, i.e. catecholaminergic cells. Green fluorescent fibers probably originating from the paraventricular organ and/or the preoptic recess organ, are intermingled with the cells.The electron microscopical study was based on the three fixatives glutaraldehyde-osmium tetroxide, osmium tetroxide and potassium permanganate. In the NPO two cell types are recognized, characterized mainly by dense core vesicles (dcv) with measured diameter of 130 nm and 170 nm across respectively. The endoplasmic reticulum in the former cell type generally has large dark inclusions measuring from 175 to 375 nm across, which are also found in the neurite. In the NLT, four different cell types are identified, some of which are subject to considerable variations. The rostral and the medial parts of the nucleus include a large cell type (I) with dcv of diameter 170 nm. The medial part also has a small cell type (II) with dcv of 80 nm. The lateral part is characterized by two cell types (III, IV). Cell type III occurs in three forms with dcv of about 140 nm. The fourth cell type (IV) is rare and contains irregularly formed granules, the most circular ones measuring about 130 nm and the most elongated ones 110 nm×210 nm. The ventrolateral part contains the same cell types (except for type II) as those found in the lateral and medial parts.The morphological differentiation of the NLT as well as its different cell types strongly indicates its functional diversity.After permanganate fixation the secretory granules of the different cell types in the NPO and the NLT appear as empty vesicles. This method also reveals that the cell types of the two nuclei have dcv of about 90 nm. The possible monoaminergic content and the role of these dcv are discussed.Supported by grants from the Swedish Natural Science Research Council (No 2502-1-7).I should like to express my gratitude to Doctor Gunnar Fridberg for initiating this work and for many stimulating discussions.  相似文献   

4.
Immuno-electron-microscopic investigations of cerebrospinal fluid (CSF)-contacting neurons immunoreactive to vasoactive intestinal peptide in the duck lateral septum have revealed that this cell type gives rise to an adventricular dendrite terminating with a bulbous swelling in the lateral ventricle. The swelling bears a cilium and contains mitochondria and immunolabeled dense-core vesicles. Two types of processes emerge from the basal part of the perikaryon. The first has a large diameter, contains diffusely distributed immunoreaction, and receives synaptic input, indicating that this process is a basal dendrite. The other type is of a beaded appearance, displays immunolabeled dense-core vesicles, and represents the axon of the CSF-contacting neuron. VIP-immunoreactive terminal formations are located within the neuropil of the lateral septum and the nucleus accumbens. Some of them form synaptic contacts with immunonegative profiles. No VIP-immunoreactive terminal formations are seen in the perivascular spaces of the lateral septum. Tracer experiments with horseradish peroxidase have revealed that the blood-brain barrier is lacking in the lateral septal organ and nucleus accumbens of the duck. Capillaries, arterioles, and venoles of this region are coated by nonfenestrated endothelial cells connected by leaky junctions, allowing the tracer to penetrate from the lumen into the perivascular space and further into the intercellular clefts of the neuropil. Our immuno-electron-microscopic investigations show that VIP-immunoreactive CSF-contacting neurons of the lateral septum closely resemble CSF-contacting neurons occurring in other brain regions, e.g., the hypothalamus. The arrangement of VIP-immunoreactive terminal formations suggests that, in the lateral septum, the VIP-like neuropeptide serves as a neurotransmitter (-modulator). The lack of a blood-brain barrier in the lateral septal organ and the nucleus accumbens raises the possibility that this region is a window in the avian brain allowing exchange of information between the central nervous system and the bloodstream; it thus resembles a circumventricular organ.  相似文献   

5.
Summary The effects of coitus on the ultrastructure of neurons in the suprachiasmatic nucleus of the rabbit were studied. Changes first became apparent 1/2 h after coitum in neurons located near capillaries. More pronounced ultrastructural changes were observed in large neurons removed at 1 h post-coitus. These changes, characterized by well developed Golgi systems and rough endoplasmic reticulum, the presence of large dense-core vesicles and a significant increase in both neuronal and nuclear size, were also evident in neurons observed at 2 to 10 h post coitum. Similar ultrastructural features were not observed in the neurons of the control animals. The post-coital ultrastructural changes observed within these neurons suggest high synthetic activity which may concern the production sites of the neurohormone LH-RF. Two populations of dense-core vesicles were observed: a) those with a mean diameter of 849 Å, and b) those with a mean diameter of 1542 Å. The small dense-core vesicle is probably monoamine in nature; the larger vesicle may contain the neurohormone LH-RF. A third vesicle type with a mean diameter of 1836 Å and characterized by a granular content of low electron density was also observed. That this vesicle represents the immature form of the large (1542 Å) dense-core vesicle is suggested; however, morphological evidence supporting this hypothesis is inconclusive. There is also no evidence for the storage of secreted materials within the soma of these neurons. Immediate transport toward the median eminence is suggested.This investigation was supported by grants to the two senior authors from the Medical Research Council of Canada.  相似文献   

6.
Fine structure of nerve cells in a planarian   总被引:2,自引:0,他引:2  
The fine structure of the nerve cell types in the white planarian Procotyla fluviatilis were described. Ganglion cells comprise the major portion of the brain. These cells are irregular in shape with several cytoplasmic processes and contain ribosomes, a sparse endoplasmic reticulum, microtubules, lysosomes, and a Golgi apparatus with numerous small vesicles. Granule-containing cells are situated in the peripheral regions of the brain and along the nerve cords. These cells contain ribosomes, rough-surfaced endoplasmic reticulum and a Golgi apparatus with associated dense granules. The granules occupy most of the cytoplasm and are ~ 750A in diameter with moderately dense contents, ~ 750A with opaque contents, and ~ 1000A with contents of medium density. These granules are similar to those in the nervous systems of higher animals that contain epinephrine, norepinephrine, and neurosecretory substance, respectively. Each cell contains predominantly one type of granule although there is some intermixing of granules and intermediate types between the three most abundant granules. Small clear vesicles, resembling cholinergic synaptic vesicles, and all types of dense granules occur in the neuropil and within nerve endings.  相似文献   

7.
Summary The ultrastructural and transmitter development of lumbar sympathetic ganglia was studied in embryonic day-6 through-18 chick embryos. At embryonic day 6, ganglia are populated by two morphologically distinct types of neuronal cells and Schwann cell precursors. The neuronal populations basically comprise a granule-containing cell and a developing principal neuron. Granule-containing cells have, an irregularly shaped or oval nucleus with small clumps of chromatin attached to the inner nuclear membrane and numerous large (up to 300 nm) membrane-limited granules. Developing principal neurons display a more rounded vesicular nucleus with evenly distributed chromatin, prominent nucleoli, more developed areas of Golgi complexes, and rough endoplasmic reticulum and large dense-core vesicles up to 120 nm in diameter. There are granule-containing cells with fewer and smaller granules which still display the nucleus typical for granule-containing cells. These granule-containing cells may develop toward developing principal neurons or the resting state of granule-containing cells found in older ganglia. Both granule-containing cells and developing principal neurons proliferate and can undergo degeneration. At embryonic day 9 there are far more developing principal neurons than granule-containing cells. Most granule-containing cells have very few granules. Mitotic figures and signs of cell degeneration are still apparent. Synapse-like terminals are found on both developing principal neurons and granule-containing cells. Ganglionic development from embryonic day 11 through 18 comprises extensive maturation of developing principal neurons and a numerical decline of granule-containing cells. Some granule-containing cells with very few and small granules still persist at embryonic day 18. The mean catecholamine content per neuron increases from 0.044 femtomol at embryonic day 7 to 0.22 femtomol at embryonic day 15. Concomitantly, there is a more than 6-fold increase in tyrosine hydroxylase activity. Adrenaline has a 14% share in total catecholamines at embryonic day 15. Somatostatin levels are relatively high at embryonic day 7 (1.82 attomol per neuron) and are 10-fold reduced by embryonic day 15. Our results suggest the presence of two morphologically distinct sympathetic neuronal precursors at embryonic day 6: one with a binary choice to become a principal neuron or to die, the other one, a granule-containing cell, which alternatively may develop into a principal neuron, acquire a resting state or die.  相似文献   

8.
Summary The chief cells of the aortic body (subclavian body) of adult New Zealand white rabbits were examined by ultrastructural stereological analysis. The chief cell nuclei occupy 26.5% of the total volume. Dense-core vesicles account for 16.5% of the cytoplasmic volume, followed by mitochondria (11.6%), endoplasmic reticulum (3.3%), and Golgi apparatus (0.6%). The dense-core vesicles measure approximately 131.6nm in diameter (corrected) and exhibit a heterogeneous size distribution. Both perivascular adrenergic nerve terminals and presumptive afferent terminals presynaptic to the chief cells are observed. The mean synaptic vesicle size of the terminals adjacent to chief cells is 54 nm. The heterogeneous size distribution of the dense-core vesicles of chief cells may indicate the storage of different biogenic amines and/or different secretion or maturation states within the chief cells.Supported by a Grant-in-Aid from the American Heart Association (77630) and with funds contributed in part by the Texas Affiliate. The author wishes to thank Ms. Teri Heitman for her excellent technical assistance  相似文献   

9.
Summary Numerous secretory parvocellular perikarya were found in the preoptic region of the domestic fowl (Gallus gallus). The dense-core secretory vesicles belong to two categories: vesicles with a diameter of (i)80–90 nm and (ii) 110–140nm. Scattered magnocellular elements display larger dense-core granules. The parvocellular neurons form unit-like clusters, showing also zones of direct apposition of neuronal membranes. The surrounding neuropil is rich in synaptic structures, formed by at least three types of axon terminals, distinguishable on the basis of vesicular morphology. These observations confirm the findings in other avian species. The hypothetical function of this system of peptidergic neurons in the rostral hypothalamus of birds is discussed.  相似文献   

10.
Vasoactive intestinal peptide (VIP)-like immunoreactive terminal fields were examined in the lateral septum of the pigeon by means of immunocytochemistry. According to light-microscopic observations, these projections originated from VIP-like immunoreactive cerebrospinal fluid (CSF)-contacting neurons, which are located in the ependymal layer of the lateral septum and form a part of the lateral septal organ. The processes of these cells gave rise to dense terminal-like structures in the lateral septum. Pre-embedding immuno-electron microscopy revealed that VIP-like immunoreactive axon terminals had synaptoid contacts with perikarya of small VIP-immunonegative neurons of the lateral septum, which were characterized by an invaginated nucleus, numerous mitochondria, a well-developed Golgi apparatus, endoplasmic reticulum and a small number of dense-core vesicles (about 100 nm in diameter). VIP-like immunoreactive axons were also seen in contact with immunonegative dendrites in the lateral septum. In both axosomatic and axodendritic connections, VIP-like immunoreactive presynaptic terminals contained large dense-core vesicles, clusters of small vesicles and mitochondria. These findings suggest that VIP-immunoreactive neurons of the lateral septal organ project to small, presumably peptidergic nerve cells of the lateral septum and that the VIP-like neuropeptide serves as a neuromodulator (-transmitter) in this area.  相似文献   

11.
Summary The central body in the median protocerebrum of the brain of the crayfish Cherax destructor is a distinctive area of dense neuropile, the nerve fibres of which contain three main types of vesicles: electronlucent vesicles (diameter 35 nm), dense-core vesicles (diameter 64 nm), and large structured dense-core vesicles (diameter 98 nm, maximum 170 nm). Different vesicle types were found together in the same neurons. Electronlucent vesicles were seen at presynaptic sites and rarely observed in the state of exocytosis. Exocytosis of densecore and structured dense-core vesicles was a regular feature on non-synaptic release sites either close to, or at some distance from pre- and subsynaptic sites. Non-synaptic exocytotic sites are more often observed than chemical synapses. Different forms of exocytosis seen at non-synaptic sites included the release of single densecore vesicles, packets of dense-core vesicles, and rows of dense-core vesicles lined up along cell membranes and around fibre invaginations. Swelling and the enhanced electron density of extracellular non-synaptic spaces may mark the positions of prior exocytotic events. In vitro treatment of the brain with tannic acid buffer solution followed by conventional double fixation resulted in the augmentation of non-synaptic exocytosis. Electron microscopy of proctolin- and serotonin-immunoreactive nerve fibres shows them to contain dense-core and electron-lucent vesicles and to be surrounded by many unlabelled profiles similarly laden with dense-core vesicles and electron-lucent vesicles, indicating the presence of other, not yet identified, neuroactive compounds.  相似文献   

12.
Summary Processes of magnocellular neurosecretory cells (MNCs) are easily identifiable on the basis of their content in neurosecretory granules in the neuropil of the rostral division of the paraventricular nucleus (PVN) of the domestic fowl. In specimens sacrificed during the winter the synaptic organization of the neuropil and the pattern of synapses ending on neurosecretory processes were studied at the ultrastructural level. Synapses in the rostral part of the PVN neuropil may be divided into three main categories on the basis of their morphology and their content of clear and dense-core synaptic vesicles. These different types of terminals can be attributed to aminergic, peptidergic or other types of synapses. The percent distribution of synapses within these categories differs when all synapses observed in the neuropil or only those ending on MNC processes are compared. Present ultrastructural data obtained in birds support two physiological hypotheses already suggested for mammals, i.e., the probable existence of a recurrent pathway to MNCs via an interneuron, and the importance of aminergic and peptidergic input in regulating the electrical activity of MNCs.This work was partly supported by a CNR grant (n. 81.00377.04)  相似文献   

13.
Summary The nervous system (NS) of Microstomum lineare (Turbellaria, Macrostomida) was studied by electron and light microscopy, combined with fluorescence histochemistry (Falck-Hillarp method for biogenic monoamines). The NS is primitively organized, with a bilobed brain, two lateral nerve cords lacking commissures, and peripheral nerve cells scattered along the nerve cords. The stomatogastric NS, with a pharyngeal nerve ring, is joined to the central NS by a pair of connective ganglia. A green fluorescence in all parts of the NS indicates catecholaminergic neurons as the dominant neuron type.Ultrastructurally, two types of neurons were identified on the basis of their vesicle content: 1. Aminergic (catecholaminergic) neurons containing densecore vesicles of varying electron-density and size, i.e., small dense-core vesicles (diameter 50–100 nm), vesicles with a highly electron-dense core (60–140 nm), and vesicles with an eccentric dense-core. 2. Presumed peptidergic neuro-secretory neurons containing large granular vesicles (diameter about 200 nm) in the stomatogastric NS and peripheral parts of the central NS. In light microscopy, paraldehyde-thionin stained neurons were observed in the same areas.  相似文献   

14.
Summary In the rostral hypothalamus of the domestic fowl, the magnocellular neurosecretory nuclei show a peculiar differentiation. Golgi studies of the supraoptic and paraventricular nuclei of the fowl reveal at least two major cell types: 1) large multipolar neurons, and 2) small interneurons. Golgi impregnations provide a detailed cytoarchitectural picture of the large-sized cells; the latter may well correspond to the neurosecretory cells demonstrated in the same regions by selective staining, and immunocytochemical and electron microscopical techniques.Electron microscopically, neuronal perikarya are observed to contain variable amounts of neurosecretory granules (100–200 nm in diameter; mean diameter of 160 nm) scattered throughout the cytoplasm. The diameters of these granules do not differ statistically in the two principal nuclear areas examined. The perikarya of these neurons display only a few axosomatic synapses containing electron-lucent and dense-cored vesicles (70–90 nm in diameter). Numerous nerve terminals of this type also end on the dendritic ramifications in the surrounding neuropil.  相似文献   

15.
Summary Rat dorsal spinal nerve roots were cut; 20 h later the axons in the vicinity of the cut were examined by light and electron microscopy. The changes in the cut tip distant from the ganglion were largely degenerative. On the ganglionic side of the cut a cap of free unmyelinated sprouts was formed. These sprouts contained clear and dense-core vesicles 40–150 nm in diameter, smooth endoplasmic reticulum and mitochondria. Some of the unmyelinated sprouts were extensions of myelinated axons, others arose from myelinated axons by lateral budding. In both myelinated and non-myelinated axons there was an accumulation of mitochondria, tubulo-vesicular smooth endoplasmic reticulum and large and small dense-core vesicles for a distance of approximately 500 m behind the tip. Dense-core vesicles were more common in nonmyelinated axons than in their myelinated counterparts. In areas of intense accumulation the non-myelinated fibres were grossly swollen and distorted. The myelinated axons and some of the sprouts contained an unusual type of mitochondrion. The similarity between these sprouts and pre-synaptic terminals is discussed.I.R.D. is supported by the Medical Research Council; P.K. thanks the Mental Health Trust for a project grant  相似文献   

16.
The neurons of the pars caudalis nuclei tuberomammillaris (pc-NTM) were studed light-microscopically and electron-microscopically in sheep and rams of Merino breed. In our study we observed: In the regarded neural nucleus, there is the majority of the great neurons (up to 60 microns in diameter) rich in the NISSL's bodies. When stained with the cresyl violet, the NISSL's substance is apparently stored mainly in peripheral area of the cell body and in the distant parts of numerous protoplasmic processes, what evokes an impression of the "jagged" surface of these cells. After staining with paraldehyde fuchsin, we found purple coloured lumps of irregular shape stored outside the cell bodies, in the neuropil. The less extended cells, usually with lower content of NISSL bodies, are in pc-NTM less frequent. In the electron-microscopic study we identified 3 types of neurons: Cells rich in rough endoplasmic reticulum; "light" cells, "dark" cells. The cells of the 1st type were the most frequent ones. Cisterns of rough endoplasmic reticulum in the 1st type of cells are often dilated. The protoplasmic processes of these cells are frequently stepped over by flat tubuli of endoplasmic reticulum. The 2nd type of cells is characterized by the light cytoplasmic matrix, low quantity of endoplasmic reticulum and frequent occurrence of lipofuscin bodies. The 3rd type of cells are characterized by the high density of cytoplasmic matrix, well developed GOLGI complex, and very broad cisterns of endoplasmic reticulum, forming a labyrinth, and it is bound to a broad perinuclear space.  相似文献   

17.
The ultrastructure of neurons of the diffuse supraoptic nucleus of the hamster has been studied. These neurons show two specializations of the endoplasmic reticulum: annulate lamellae and whorl bodies. From one to three whorl bodies are found in the same neuron. The annulate lamellae and the whorl body cisterns are continuous with the cisterns of the rough endoplasmic reticulum. These neurons present an extraordinarily developed rough endoplasmic reticulum, small mitochondria, neurosecretory vesicles and a Golgi complex filled with electron-dense material. Astrocytic processes of different thickness surround the neurosecretory cells.  相似文献   

18.
Summary Axon profiles in thyroid glands obtained from adult male Wistar rats were studied electron-microscopically, using common and serial thin sections.Bouton profiles of nerve fibers, resembling the terminal or en passant type, often appeared closely associated with vascular smooth muscle cells via basement membranes. These structures are probably adrenergic, since they contained mainly small-core vesicles (mean diameter: 41.2 nm), in addition to a few large-core (mean diameter: 88.4 nm) and flattened vesicles.Nerve fibers containing microtubules and sometimes mitochondria and vesicles were seen lying between basement membranes and follicular cells. The incidence of nerve fiber contacts on profiles of follicular cells was 0.0177±0.0092 (S.D.). Using serial sections, follicles were seen to have up to two nerve endings, separated from the plasma membranes of the follicular cells by a gap of 22 nm. They contained mainly flattened vesicles and several large-core vesicles (mean diameter: 95.1 nm). Small-core vesicles were rarely seen in these nerve endings. Furthermore, subsurface cistern-like rough endoplasmic reticulum was found immediately under the plasma membranes of follicular cells facing membranes of nerve endings. These results suggest that the nerve fibers in contact with follicular cells are different from the adrenergic type.  相似文献   

19.
Summary In the toad Bufo arenarum Hensel the following regions of the hypothalamic — neurohypophyseal system were studied under the electronmicroscope: preoptic and paraventricular nuclei, median eminence and infundibular process of the neurohypophysis.Neuronal perikarya of the preoptic nucleus are loaded with typical neurosecretory granules of peptidergic nature having a mean diameter of 1660 Å. While most neurons of the winter toad are in a storage stage a few show signs of a more active synthetic activity. A distinctive feature of preoptic neurons is the presence of large lipid droplets. The paraventricular nucleus contains small neurons containing granulated vesicles with a mean diameter of 800-1000 Å. In the region extending between these two nuclei and the median eminence axons containing either neurosecretory elementary granules or granulated vesicles are observed.The inner zone of the median eminence is occupied by axons of the preoptic neurohypophyseal tract; two types of axons, according to the size and density of the neurosecretory granules, may be recognized. The outer zone of the median eminence contains mainly axons and nerve terminals containing granulated vesicles of probable monoaminergic nature and only a few with granules of peptidergic type.The neurohypophysis contains two kinds of axons: one with more dense granules of 1800 Å and the other with granules of lesser electron density and 2100 Å. At the ending proper small clear vesicles of synaptic type are found.A progressive increase in volume of the peptidergic granules along the axon is demonstrated. This is of the order of 218% from the preoptic perikarya down to the infundibular process. The physiological significance of the two neurosecretory systems — i.e. the monoaminergic and the peptidergic — and the probable nature of the two types of peptidergic axons is discussed.Supported by grants from the Consejo Nacional de Investigaciones Científicas y Técnicas and by the Air Force Office of Scientific Research (AF-AFOSR 963-67).The authors want to express their gratitude to Mrs. Defilippi-Novoa and Mr. Alberto Sáenz for their skillful assistance.  相似文献   

20.
Summary The sensory epithelium of the lateral line organ of the common eel consists of two types of cells, (sensory and supporting). The sensory cell bears a kinocilium together with about 40 to 60 stereocilia on its surface. The kinocilium is situated either at rostral or at caudal margin of this cilial group. Such polarity of the cilial group of one cell is inverse to that of an adjacent cell.Two types of crystal-like inclusions exist in the sensory cells, consisting of granules 100 Å in diameter. Granules in one type are arranged regularly whereas those in the other rather irregularly.Two types of nerve endings exist at the base of sensory cells: one is predominant in number and contains few vesicles, accompanied by a dense spherical body surrounded by small vesicles in the sensory cell and the other is rare in number and contains many vesicles, accompanied by a small flat sac just beneath the plasma membrane of the sensory cell.The supporting cells contain numerous mitochondria, a well developed Golgi apparatus and rough-surfaced endoplasmic reticulum, and surround a sensory cell completely. Physiologic significance of some of these components is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号