首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: Choline mustard aziridinium is a potent, irreversible and selective blocker of sodium-dependent, high-affinity transport of choline into rat forebrain synaptosomes; it was found to be 30 times less potent against low-affinity transport of choline. The IC50 value for high-affinity transport was 0.94 μM, compared to 29 μM for low-affinity uptake. The inhibitory action of choline mustard aziridinium ion on high-affinity transport of choline was graded with respect to time; a 12-fold increase in potency was obtained by increasing the inhibitor preincubation times from 1 to 30 min. Low concentrations of choline mustard aziridinium ion could produce significant blockade of choline carriers providing the exposure time was prolonged. The characteristics of the blockade of synaptosomal high-affinity choline transport by choline mustard aziridinium ion also changed depending upon preincubation time. The kinetics of inhibition of high-affinity choline transport by choline mustard aziridinium ion showed apparent competitive inhibition initially, followed by noncompetitive characteristics at longer preincubations with inhibitor. The rate of irreversible inhibition of carriers by this nitrogen mustard analogue would appear to be rapid; the rate constant was determined to be 5 × 10?2 s?1for micromolar concentrations of inhibitor. This action may preclude the transport of the mustard analogue into the nerve terminal, although initially some reversible binding with the carrier may result in the translocation of some choline mustard aziridinium ion into the presynaptic ending. The progressive alkylation of high-affinity carriers by the analogue could indicate the presence of excess carrier sites in the presynaptic membrane, or subpopulations of carriers in an inactive state in equilibrium with active carriers. A model is described for the inhibitory action of choline mustard aziridinium ion on synaptosomal high-affinity choline carriers.  相似文献   

2.
The objectives of the present study were to validate the presence of cytoplasmic and membrane-associated pools of choline acetyltransferase (ChAT) in rat brain synaptosomes, and to evaluate inhibition of these different forms of the enzyme by the nitrogen mustard analogue of choline, choline mustard aziridinium ion (ChM Az). The relative distribution of ChAT and lactate dehydrogenase (LDH) was followed in subfractions of synaptosomes to establish whether ChAT activity associated with salt-washed presynaptic membranes represents membrane-bound protein rather than cytosolic enzyme trapped within undisrupted synaptosomes or revesiculated membrane fragments. The percentage of total synaptosomal ChAT activity (14%) recovered in the final membrane pellet always exceeded that of LDH (6%), lending support to the hypothesis that much of the ChAT associated with the membranes was a membrane bound form of the enzyme. Incubation of purified synaptosomes with ChM Az led to irreversible inhibition of ChAT activity; this loss of enzyme activity could not be accounted for by lysis of nerve terminals during incubation in the presence of the mustard analogue. Subfractionation of the ChM Az-treated nerve terminals revealed that the membrane-bound form of ChAT was inhibited to the greatest extent, followed by the ionically membrane-associated enzyme, with the activity of the water-solubilized enzyme not differing significantly from control. Preparation of the synaptosomal ChAT subfractions from untreated nerve terminals prior to incubation with varying concentrations of ChM Az or naphthylvinylpyridine revealed that under these conditions water-solubilized, ionically membrane-associated, and detergent-solubilized membrane-bound pools of ChAT were not differentially inhibited by either compound.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The effect of ethylcholine aziridinium ion (AF64A) on choline transport in hippocampal, striatal, and cerebrocortical synaptosomes was studied. Synaptosomes prepared from these three brain regions were equally sensitive to AF64A. Low concentrations of AF64A produced a reversible inhibition (IC50 values = 1.35-2.25 microM), whereas higher concentrations produced an irreversible inhibition (IC50 values = 25-30 microM), which started as competitive. The irreversible component of the inhibition was independent of extracellular Na+ concentration, a finding suggesting that the choline transporter is alkylated at its outward position. The kinetics of the inhibition were rapid and similar in the three brain regions examined. The high-affinity choline transport was more sensitive to the toxin than the low-affinity choline transport. Based on these results, we propose a kinetic model that explains the reversible and the irreversible inhibitions induced by AF64A. The possible relationships between the concentrations that in vitro produce reversible and irreversible inhibition and those that in vivo produce selective and nonselective cholinergic hypofunction are discussed.  相似文献   

4.
Choline uptake into cholinergic neurons for acetylcholine (ACh) synthesis is by a specific, high-affinity, sodium- and temperature-dependent transport mechanism (HAChU). To assess the role of choline availability in regulation of ACh synthesis, the structure-activity relationships of several hemicholinium (HC) and quinuclidinyl analogs were evaluated in a dose response manner. As confirms previous studies, the HCs, e.g., HC-3, acetylsecohemicholinium, and HC-15 are potent inhibitors of HAChU, HC-3 being the most potent (I50 = 6.1 X 10(-8) M). In the present study, the most potent quinuclidinyl derivative was the N-methyl-3-quinuclidinone (I50 = 5.6 X 10(-7) M). This compound had approximately 100-fold greater inhibitory activity than the corresponding racemic alcohol, suggesting that the 3-hydroxyl functional group is not absolutely essential for activity. Increasing the size of the N-functional group from a methyl to an allyl in the alcohol led to a 10-fold increase in activity. However, removal of the quaternizing N-methyl group yielding the tertiary amine, 3-quinuclidinol hydrochloride, greatly reduced its capacity to inhibit HAChU. Of the 2-benzylidene-3-quinuclidinone derivatives studied, only the m-chloro derivative significantly reduced HAChU.  相似文献   

5.
Abstract: A series of choline analogues and nitrogen mustard derivatives were evaluated as inhibitors of high-affinity transport of choline in rat forebrain synaptosomes. When synaptosomes were preincubated for 10 min with choline mustard aziridinium ion, monoethylcholine and monoethylcholine mustard aziridinium ion, the agents appeared to be equipotent as inhibitors of high-affinity uptake (Ki=2.63, 3.15 and 2.72 μm , respectively). Acetylcholine mustard aziridinium ion was less potent than these compounds (Ki= 27.8 μm ), but it was more potent than ethoxycholine and ethoxycholine mustard aziridinium ion (Ki= 500 and 403 μm ) as a blocker of choline transport. From study with these compounds it was concluded that the high-affinity choline transport mechanism shows specificity for hydroxylated compounds over those in which the same hydroxyl has been acetylated (10-fold) and that the carbonyl oxygen of the acetylated analogues is important, as its removal (to form the ethylether derivative) decreased affinity another 20-fold. The presence of an aziridinium ring on the quaternary nitrogen in place of two methyl groups did not affect the blocking of transport at 10 min of inhibitor preincubation and replacement of a methyl group on the nitrogen by an ethyl group did not alter affinity for the high-affinity carrier. The aziridinium ring on the nitrogen of the mustard analogues was important, however, in determining the extent of reversibility of the binding of these agents to the carrier protein. Choline transport was not restored by washing synaptosomes that were incubated with choline mustard aziridinium ion or monoethylcholine mustard aziridinium ion, but was readily obtained in washed synaptosomes preincubated with monoethylcholine, hemicholinium-3, or pyrrolcholine. The results indicate that the mustard analogues may be potent alkylators of the high-affinity choline carrier and thus, useful agents in monitoring acetylcholine turnover in systems where the carrier is blocked.  相似文献   

6.
Although a potent irreversible inhibitor of high-affinity choline transport in rat brain synaptosomes, choline mustard aziridinium ion (ChM Az) appeared to be a relatively weak inhibitor of choline acetyltransferase (ChAT) in rat brain homogenates, and evidence for irreversible binding of this compound to the enzyme had not been established. Accordingly, the irreversible inactivation of partially purified rat brain ChAT by ChM Az was studied. This compound is a rather weak inhibitor of the enzyme, with 50% inhibition of ChAT activity achieved following 30 min incubation at 37 degrees C with 0.6 mM ChM Az. This result indicates that although ChM Az has affinity for many nucleophiles there was little diluting effect of the inhibitor in the crude brain homogenate which could be attributed to such reactions (50% inhibition caused by 1.8 mM ChM Az following 10 min incubation). Although the initial binding of ChM Az to ChAT may be of a competitive nature, irreversible bond formation resulted. The time-dependent alkylation reaction conformed to pseudo-first-order kinetics with an observed forward rate constant (kobs) of 0.173 min-1; the half-time (t 1/2) for irreversible binding was about 4 min. The irreversible inactivation of ChAT by ChM Az would appear to be slower than the alkylation of high-affinity choline carriers in synaptosomes by this compound, and the relatively weak inhibitory action of ChM Az against either partially purified ChAT or ChAT activity in crude rat brain homogenates is in striking contrast to previous evidence that ChAT in intact synaptosomes was inhibited irreversibly by lower concentrations of the inhibitor.  相似文献   

7.
8.
Abstract: Intracerebroventricular administration of N6, 2′-O-dibutyryladenosine 3′,5′-cyclic monophosphate (db-cyclic AMP) to mice increased high-affinity choline transport (HAChT) into synaptosomal preparations from the hippocampus, striatum, and frontal cortex in a time-dose-, and brain region-dependent manner. Similar observations were made when the cyclic AMP analogue 8-bromo-cyclic AMP, the adenylyl cyclase activator forskolin, and the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine were administered. Inhibition of phosphatase 1 and 2A, with okadaic acid, increased basal choline transport and enhanced the response to db-cyclic AMP. The early increase of HAChT activity induced by db-cyclic AMP was blocked by H-7 and H-89, protein kinase A inhibitors, but not by cycloheximide, a protein synthesis inhibitor. Kinetic analysis of the early changes of HAChT revealed an increase in the apparent Vmax without a change of the Km for choline. Hemicholinium-3 (HC-3) binding was not altered when studied 1 h after db-cyclic AMP administration. In contrast, HC-3 binding and HAChT activity were both elevated when estimated 3 h after the treatment, and pretreatment with cycloheximide partially prevented the db-cyclic AMP-induced HAChT rise. As evidence that enhanced HAChT is associated with a direct action of cyclic AMP-dependent pathways on the cholinergic nerve terminals, addition of 8-bromocyclic AMP to isolated hippocampal synaptosomes induced an increase of HAChT that was prevented by H-89. Choline acetyltransferase activity was not affected at any time during the studies. The synthesis of acetylcholine, however, was enhanced 1 h after db-cyclic AMP addition. Our studies show that cyclic AMP-mimetic compounds appear to modulate the choline carrier by a dual mode: an early increase of the maximal velocity without a change of the number of HC-3 binding sites and a late rise of transport that is accompanied by an increase of HC-3 binding. We postulate that HAChT and consequently acetylcholine synthesis in vivo is modulated, in part, by protein kinase A.  相似文献   

9.
The sensitivity of choline transport to inhibition by ethylcholine mustard aziridinium (ECMA) was studied in several tissues. Choline transport was found to be inhibited irreversibly by ECMA in guinea pig and rat synaptosomes but not inhibited in erythrocytes or kidney slices. If this finding can be extended to other tissues ECMA sensitivity may provide a simple criterion for identifying the choline carrier associated with cholinergic tissue.  相似文献   

10.
Abstract: Choline uptake in hippocampal synaptosomes was not inhibited by pentobarbital administration when rats were decapitated immediately upon loss of the righting reflex (3–4 min) even though it was inhibited at later times post-injection, when the rats were still unable to right themselves. Choline uptake was increased when the animals were decapitated at convulsion after an injection of picrotoxin, high doses of bicuculline, or one of the convulsant barbiturates. However, another convulsant barbiturate, as well as strychnine and lower doses of bicuculline, did not increase choline uptake even though the animals also convulsed. Thus loss of righting reflex or convulsion is not directly correlated with changes in choline uptake. At 7 min after injection, levels of pentobarbital in the hippocampus (and other brain regions) were correlated with the degree of inhibition of choline uptake up to about 50% inhibition; however, greater inhibition could not be achieved with much higher brain levels of the drug. Although hippocampal uptake was partially inhibited at 1 h after septal lesions, 3 h after the lesion the inhibition was no longer apparent. Inhibition was almost complete 10–12 days after the lesion. These results suggest that other factors in addition to impulse flow influence choline uptake.  相似文献   

11.
The Independency of Choline Transport and Acetylcholine Synthesis   总被引:3,自引:2,他引:1  
The coupling of choline transport to acetylcholine synthesis has been investigated by measurement of the isotopic dilution of a pulse of [3H]choline during its incorporation into the recently synthesised acetylcholine of cerebral cortex synaptosomes. Recently synthesised acetylcholine was identified as that containing 14C-labelled precursors introduced by a preincubation before the pulse. When [14C]glucose was used to label acetyl-CoA coupling ratios (calculated as the inverse of the dilution of extracellular [3H]choline during its incorporation into [3H]acetylcholine) of about 0.05-0.2 were found at a choline concentration of 1 microM, rising to 0.5 at choline concentrations of 10-50 microM. Experiments using [14C]choline as a precursor gave similar results, and it was shown that the isotopic dilution did not occur extrasynaptosomally and was not affected by low glucose concentrations. Coupling ratios were always less than unity and rose as the choline concentration increased. It is concluded that choline transported into the nerve terminal has no privileged access to choline acetyltransferase. The results can be explained by a rate-controlling transport of choline into the terminal followed by its rapid acetylation rather than any linkage or coupling of the two processes.  相似文献   

12.
High-affinity choline transport sites specifically bind [3H]hemicholinium-3. Hemicholinium-3 binding sites are regulated by in vivo drug treatments in the same manner as these drugs alter acetylcholine release and high-affinity choline transport. The current study examines regulation of binding sites by in vivo drug administration for adult, day 15, and day 5 rats. Drugs or saline were administered intraperitoneally, and striatal and cortical membrane preparations were assayed. Control [3H]hemicholinium-3 binding increases twofold between postnatal days 5 and 15 only in striatum. After day 15, binding increases 2.7-fold in cortex and striatum. Nicotine treatment increases striatal and cortical hemicholinium-3 binding at all three ages, with greater percent increases at day 5. Haloperidol increases binding only in striatum, again with larger effects at day 5. Both striatal and cortical binding are reduced by oxotremorine; however, the magnitude of this effect is unchanged during development. Pentobarbital reduces binding only in striatum, with no developmental change. Atropine and apomorphine do not change binding from control values. In summary, all drug treatments effective in adults were already effective by day 5. Cholinergic terminals present early in development are regulated by similar nicotinic and muscarinic cholinergic, dopaminergic, and sedative-hypnotic mechanisms as the adult. Changes in magnitude may be due to changes in drug metabolism or to developmental differences in regulation.  相似文献   

13.
14.
Abstract: In a previous report, we showed that the enantiomers of α- and β-methylcholine inhibited choline uptake with Stereoselectivity, but that their transport by the choline carrier of nerve terminals showed stereospecificity. The present experiments used the same choline analogues to determine if either of the above characteristics pertains to their ability to interact with the [3H]-hemicholinium-3 binding site present on striatal membranes and synaptosomes. [3H]Hemicholinium-3 binding to striatal membranes could be inhibited stereoselectively by the enantiomers of β-methylcholine, but R (+)-α-methyl-choline was little better than its enantiomer in this test. However, [3H]hemicholinium-3 binding to striatal synaptosomes was inhibited stereoselectively by the enantiomers of both α- and β-methylcholine. This difference between the properties of [3H]hemicholinium-3 binding to membranes or to synaptosomes appears related to the presence of two ligand binding states. The [3H]hemicholinium-3 binding site could be shifted to a low-affinity state by ATP treatment and to a high-affinity state by EDTA washing. When the [3H]hemicholinium-3 binding site existed in its low-affinity state, binding was inhibited stereoselectively by the enantiomers of both a- and β-methylcholine, but when shifted to its high-affinity state, it was inhibited stereoselectively only by the enantiomers of β–methylcholine. We conclude that hemicholinium-3 interacts with the substrate recognition site of the high-affinity choline transporter, but that the Stereoselectivity of this site changes depending on its affinity state.  相似文献   

15.
Abstract: Nerve growth factor (NGF) treatment of primary cultures of embryonic day 17 rat basal forebrain differentially altered activity of choline acetyltransferase (ChAT) and high-affinity choline transport; ChAT specific activity was increased by threefold in neurons grown in the presence of NGF for between 4 and 8 days, whereas high-affinity choline transport activity was not changed relative to control. Dose-response studies revealed that enhancement of neuronal ChAT activity occurred at low concentrations of NGF with an EC50 of 7 ng/ml, with no enhancement of high-affinity choline transport observed at NGF concentrations up to 100 ng/ml. In addition, synthesis of acetylcholine (ACh) and ACh content in neurons grown in the presence of NGF for up to 6 days was increased significantly compared with controls. These results suggest that regulation of ACh synthesis in primary cultures of basal forebrain neurons is not limited by provision of choline by the high-affinity choline transport system and that increased ChAT activity in the presence of NGF without a concomitant increase in high-affinity choline transport is sufficient to increase ACh synthesis. This further suggests that intracellular pools of choline, which do not normally serve as substrate for ACh synthesis, may be made available for ACh synthesis in the presence of NGF.  相似文献   

16.
Abstract: High-affinity choline transport (HAChT), the rate-limiting and regulatory step in acetylcholine (ACh) synthesis, is selectively localized to cholinergic neurons. Hemicholinium-3 (HC3), a potent and selective inhibitor of HAChT, has been used as a specific radioligand to quantify HAChT sites in membrane binding and autoradiographic studies. Because both HAChT velocity and [3H]HC3 binding change as in vivo activity of cholinergic neurons is altered, these markers are also useful measures of cholinergic neuronal activity. Evidence that [3H]HC3 is a specific ligand for HAChT sites on cholinergic terminals is reviewed. The ion requirements of HAChT and [3H]HC3 binding indicate that sodium and chloride are required for recognition of both choline and [3H]HC3. A common recognition site is also indicated by the close correspondence of the potency of HC3 and choline analogues for inhibiting both HAChT and [3H]HC3 binding. The parallel regional distributions of both markers in adult brain, during development and after specific lesions, all indicate specific cholinergic localization. The close association of HAChT and [3H]HC3 binding sites is also supported by parallel regulatory changes occurring after in vivo drug treatments and in vitro depolarization. Overall, the data indicate a close association between HAChT and [3H]HC3 binding and are consistent with the sites being identical. Methodologic considerations in using [3H]HC3 as a ligand and considerations in interpretation of results are also discussed.  相似文献   

17.
Abstract: The activity of choline acetyltransferase was used as an index of cholinergic structures in regions of rat brain. The activities of ATP citrate lyase and choline kinase correlated poorly with cholinergic activity in whole tissue fractions, contrasting with the good correlation between acetylcholinesterase and choline acetyltransferase. Choline acetyltransferase was preferentially localised in synaptosomes prepared from regions of high (striatum) or intermediate (cortex, medulla oblongata/pons) cholinergic activity. In general, this was not true for either choline kinase or ATP citrate lyase.  相似文献   

18.
Abstract: The accumulation of choline, homocholine, and 4-hydroxybutyl-trimethylammonium by rat brain synaptosomes was measured; the choline uptake mechanism transported homocholine but not hydroxybutyltrimethylammonium, which, in addition, did not block choline accumulation. In cats'superior cervical ganglia, preganglionic nerve stimulation increased the accumulation of homocholine, but not that of hydroxybutyltrimethylammonium. It is concluded that the substrate specificity of the choline transport mechanism is such that increasing the N-O atom distance by one methylene group retains affinity, but increasing this distance by two methylene groups does not.  相似文献   

19.
In Saccharomyces cerevisiae, choline enters the cell via a single high-affinity transporter, Hnmlp. hnm1delta cells lacking HNM1 gene are viable. However, they are unable to transport choline suggesting that no additional active choline transporters are present in this organism. A complementation study of a choline auxotrophic mutant, ctrl-ise (hnm1-ise), using a cDNA library from Torpedo marmorata electric lobe identified a membrane protein named Torpedo marmorata choline transporter-like, tCtl1p. tCtllp was proposed to mediate a high-affinity choline transport (O'Regan et al., 1999, Proc. Natl. Acad. Sci.). Homologs of tCtl1p have been identified in other organisms, including yeast (Pns1p, YOR161c) and are postulated to function as choline transporters. Here we provide several lines of evidence indicating that Ctlp proteins are not involved in choline transport. Loss of PNS1 has no effect on choline transport and overexpression of either PNS1 or tCTL1 does not restore choline uptake activity of choline transport-defective mutants. The data presented here call into question the role of proteins of the CTL family in choline transport and suggest that the mechanism by which tCTL1 complements hnm1-ise mutant is independent of its ability to transport choline.  相似文献   

20.
Abstract: Choline uptake by cholinergic nerve terminals is increased by depolarization; the literature suggests that this results from either the appearance of occult transporters or the increased activity of existing ones. The present experiments attempt to clarify the mechanism by which choline transport is regulated by testing if the preexposure of synaptosomes to choline mustard aziridinium ion prevents the stimulation-induced appearance of hemicholinium-3 binding sites and/or choline transport activity. Choline mustard inhibited irreversibly most of the “ground-state” (basal) high-affinity choline transport but only 50% of “ground-state” hemicholinium-3 binding sites. Exposure of both striatal and hippocampal synaptosomes to the mustard, before stimulation, inhibited K+-stimulated increases in choline transport and of [3H]hemicholinium-3 binding. We conclude that the mechanism by which choline transport is regulated involves the increased activity of a pool of transport sites that are occluded to hemicholinium-3 but are available to choline mustard aziridinium ion, and presumably to choline, before stimulation. However, the concentration of mustard needed to inhibit the stimulation-induced increase of [3H]hemicholinium-3 binding and choline transport was lower for striatal synaptosomes than for hippocampal synaptosomes. In the absence of extracellular Ca2+ or presence of high Mg2+ levels, the choline mustard did not prevent the appearance of extra striatal hemicholinium-3 binding sites. Also, high Mg2+ levels removed the ability of the mustard to inhibit K+-stimulated increases of either [3H]hemicholinium-3 binding or choline transport by hippocampal synaptosomes. In contrast, the preexposure of hippocampal synaptosomes to the mustard in the presence of a calcium ionophore (A23187) reduced the concentration of inhibitor needed to prevent the activation of [3H]hemicholinium-3 binding and choline uptake. Thus, we conclude that the ability of the choline mustard to alkylate the pool of choline transporters that are activated by stimulation appears dependent on the entry of extracellular Ca2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号