首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Measurements of algal carbon metabolism in the light and the dark were conducted in (1) short-term (3-h) light and dark incubations, (2) a diel (24-h) experiment, and (3) a longer-term (4-d) carbon accumulation experiment to examine the relationship between photosynthetic rates, photosynthetic carbon metabolism in the light, and respiration and carbon metabolism in the ensuing dark period in natural assemblages of freshwater phytoplankton. High rates of photosynthesis and polysaccharide synthesis in the light were followed by high rates of respiration and polysaccharide utilization in the dark. Polysaccharide was the major respiratory substrate in the dark, and small molecular weight metabolites, lipids, and protein were less important sources of metabolic energy. The protein pool accumulated carbon during dark incubations, but more slowly than during active photosynthesis in the light. Because the intracellular macromolecular pools turn over at very different rates (polysaccharide > protein and lipid), patterns of short-term photosynthetic carbon metabolism are not necessarily indicative of the biochemical composition of the phytoplankton.  相似文献   

2.
Light-dependent photosynthesis of Chlorella vulgaris was investigated by using a novel photosynthesis measurement system that could cover wide ranges of incident light and cell density and reproduce accurate readings. Various photosynthesis models, which have been reported elsewhere, were classified and/or reformulated based upon the underlying hypotheses of the light dependence of the algal photosynthesis. Four types of models were derived, which contained distinct light-related variables such as the average or local photon flux density (APFD or LPFD) and the average or local photon absorption rate (APAR or LPAR). According to our experimental results, the LPFD and LPAR models could predict the experimental data more accurately although the APFD and APAR models have been widely used for the kinetic study of microalgal photosynthesis.  相似文献   

3.
In the green alga Chlorella vulgaris UAM 101, a CO2-concentrating mechanism is induced when the cells are growing under low CO2 conditions. We have investigated the effect of glucose on the induction of this mechanism. Cells adapted to low CO2 in the presence of glucose showed a reduced ability to transport and fix external inorganic carbon. This reduction was correlated with a decrease in internal carbonic anhydrase activity. 3- O -methyl-glucose, a nonmetabolizable analog of glucose, caused a more dramatic repression of these phenomena. Immunoblot analyses of total cell protein of Chlorella vulgaris UAM 101 against large subunit of ribulose-1.5-bisphosphate carboxylase/oxygenase and ribulose 1.5-bisphosphate-carboxylase/oxygenase activase polyclonal antibodies showed that the expression of these two polypeptides was affected by neither CO2 level, nor glucose or 3- O -methyl-glucose. Ultrastructure studies showed that the low CO2-induced development of the pyrenoid was also affected by glucose. Immunocytochemical data demonstrated that ribulose-1.5-bisphosphate carboxylase/oxygenase was exclusively located in the pyrenoid matrix. This localization and the density of labeling of the pyrenoid region were affected by neither CO2 level nor the presence of glucose.  相似文献   

4.
Chlorella vulgaris strain UAM 101 has been isolated from the effluent of a sugar refinery. This alga requires glucose to achieve maximal growth rate even under light saturating conditions. The growth rate of cultures grown on light + CO2 + glucose (3.16 per day) reaches the sum of those grown on light + CO2 (1.95 per day) and on dark + glucose (1.20 per day). Unlike other Chlorella strains, uptake of glucose (about 2 micromoles per milligram dry weight per hour) was induced to the same extent in the light and dark and was not photosensitive. The rate of dark respiration was not affected by light and was strongly stimulated by the presence of glucose (up to about 40% in 4 hours). The rate of photosynthetic O2 evolution was measured as a function of the CO2 concentration. These experiments were conducted with cells which experienced different concentrations of CO2 or glucose during growth. The maximal photosynthetic rate was inhibited severely by growing the cells in the presence of glucose. A rather small difference in the apparent photosynthetic affinity for extracellular inorganic carbon (from 10-30 micromolar) was found between cells grown under low and high CO2. Growth with glucose induced a reduction in the apparent affinity (45 micromolar) even though cells had not been provided with CO2. Experiments performed at different pH values indicate CO2 as the major carbon species taken from the medium by Chlorella vulgaris UAM 101.  相似文献   

5.
In order to develop an effective CO2 mitigation process using microalgae for potential industrial application, the growth and physiological activity of Chlorella vulgaris in photobioreactor cultures were studied. C. vulgaris was grown at two CO2 concentrations (2 and 13% of CO2 v/v) and at three incident light intensities (50, 120 and 180 μmol m?2 s?1) for 9 days. The measured specific growth rate was similar under all conditions tested but an increase in light intensity and CO2 concentration affected the biomass and cell concentrations. Although carbon limitation was observed at 2% CO2, similar cellular composition was measured in both conditions. Light limitation induced a net change in the growth behavior of C. vulgaris. Nitrogen limitation seemed to decrease the nitrogen quota of the cells and rise the intracellular carbon:nitrogen ratio. Exopolysaccharide production per cell appeared to be affected by light intensity. In order to avoid underestimation of the CO2 biofixation rate of the microalgae, exopolysaccharide production was taken into account. The maximum CO2 removal rate (0.98 g CO2 L?1 d?1) and the highest biomass concentration (4.14 g DW L?1) were determined at 13% (v/v) CO2 and 180 μmol m?2 s?1. Our results show that C. vulgaris has a real potential for industrial CO2 remediation.  相似文献   

6.
本实验通过研究缺氮、缺锰和缺硫对蛋白核小球藻Chlorella pyrenoidosa产氢的影响,发现缺氮、缺锰及缺硫条件下该藻均能产氢,但在缺氮条件下产氢量最高,约为88.613μL H2/mgChla,分别是对照组、缺锰和缺硫实验组产氢量的4.61倍、1.92倍和3.63倍。通过对光合、呼吸及生长的比较研究,发现缺锰对该藻光合、呼吸及生长的影响要小于缺氮和缺硫;与正常培养条件相比,缺锰、缺硫抑制藻细胞的光合放氧和生长,对呼吸影响小,而缺氮不仅最大程度抑制光合放氧和生长,同时使呼吸作用增强,这为进一步优化该藻产氢条件及研究其产氢机制提供了线索。  相似文献   

7.
In N-sufficient cells of Chlorella sorokiniana Shihira and Krauss strain 211/8K (CCAP of Cambridge University), assimilation of ammonium was strictly dependent on light and CO2, and was severely inhibited by 100 μ M atrazine or 10 μ M 3-(3,4-dichlorophenyl)-1, l-dimethylurea (DCMU). In N-limited cells, assimilation of NH4+ took place at similar rates in both light and darkness, which were 1.6-fold higher than the rate of light-dependent assimilation by N-sufficient cells. Assimilation by N-limited cells was inhibited by l -methionine- dl -sulfoximine (MSX), but not by atrazine or DCMU.
The rate of photosynthetic O2 evolution was 2.9±0.9 mmol ml−1 packed cell volume (PCV) h−1 in N-sufficient cells, and 0.64±0.12 mmol ml−1 PCV h−1 in N-limited cells. In the latter resupply of ammonium resulted in a rapid activation by 22%;, followed by a time-dependent increase of the photosynthetic O2 evolution, which after 12 h reached the same rate as in N-sufficient cells.
Respiratory consumption of oxygen in darkness in N-sufficient and N-limited cells was 0.10±0.03 and 0.11±0.02 mmol ml−1 PCV h−1, respectively. Addition of ammonium was without effect on respiration of N-sufficient cells, but resulted in a 4-fold stimulation of respiration of N-limited cells. Such stimulation took place also in cells treated with DCMU, atrazine, or MSX, and it was also promoted by methylammonium. The stimulation of respiration lasted for several hours.  相似文献   

8.
为了进一步了解光照下植物呼吸作用的内在机理以及呼吸作用和光合作用的关系,该文研究了在光照下菜豆(Phaseolus vulgaris)叶片抗氰呼吸与光合作用的关系。研究发现,将黑暗下生长的菜豆幼苗叶片转到光照下10 h,总呼吸、抗氰呼吸以及抗氰呼吸在总呼吸中的比例均逐步上升;光照也导致了叶片叶绿体光合放氧和CO2固定的出现及其速率的增加,但光合放氧和CO2固定速率的增加均滞后于抗氰呼吸的增加。将黑暗下生长的叶片转到光照下之前用抗氰呼吸的抑制剂水杨基氧肟酸(SHAM)处理叶片,发现用SHAM处理并没有导致叶片在光照下光合放氧和CO2固定速率的明显变化,这也提示了黑暗下生长的叶片转至光照的过程中,抗氰呼吸和光合作用没有产生偶联。进一步研究发现,在黑暗中对叶片施加短时间的光照能够增加抗氰呼吸在总呼吸中的比例,但短时间的光照对叶片光合CO2固定速率没有影响。这些结果表明了光照对抗氰呼吸的诱导可以不依赖于光合作用,光照可能是作为一种直接的信号去诱导抗氰呼吸。  相似文献   

9.
10.
11.
不同光质对小球藻光自养培养积累油脂的影响   总被引:1,自引:0,他引:1  
研究了5种光质对小球藻(Chlorella vulgaris)M209256生长和产油的影响。结果表明:蓝光为小球藻的最适生长和产油光质;与其他光质相比,蓝光培养的小球藻生物量和油脂含量均较高,为2.40×107个/mL和28%;红光培养的小球藻生长最慢且油脂含量最低,为1.32×107个/mL和15.13%,表现出明显的"红降"现象。在GCMS分析的基础上,对油脂甲酯化后的十六烷值进行评估,结果发现:蓝光的十六烷值最高;5种光质培养的小球藻所产油脂,甲酯十六烷值均在47以上。因此,小球藻油脂所制备的生物柴油具有较好的燃烧性能。  相似文献   

12.
为了进一步了解光照下植物呼吸作用的内在机理以及呼吸作用和光合作用的关系, 该文研究了在光照下菜豆(Phaseolus vulgaris)叶片抗氰呼吸与光合作用的关系。研究发现, 将黑暗下生长的菜豆幼苗叶片转到光照下10 h, 总呼吸、抗氰呼吸以及抗氰呼吸在总呼吸中的比例均逐步上升; 光照也导致了叶片叶绿体光合放氧和CO2固定的出现及其速率的增加, 但光合放氧和CO2固定速率的增加均滞后于抗氰呼吸的增加。将黑暗下生长的叶片转到光照下之前用抗氰呼吸的抑制剂水杨基氧肟酸(SHAM)处理叶片, 发现用SHAM处理并没有导致叶片在光照下光合放氧和CO2固定速率的明显变化, 这也提示了黑暗下生长的叶片转至光照的过程中, 抗氰呼吸和光合作用没有产生偶联。进一步研究发现, 在黑暗中对叶片施加短时间的光照能够增加抗氰呼吸在总呼吸中的比例, 但短时间的光照对叶片光合CO2固定速率没有影响。这些结果表明了光照对抗氰呼吸的诱导可以不依赖于光合作用, 光照可能是作为一种直接的信号去诱导抗氰呼吸。  相似文献   

13.
The microalga Chlorella pyrenoidosa is cultivated extensively for its constituents, which are of significant economic worth. Large-scale growth of C. pyrenoidosa in outdoor environments is subject to various stressors such as elevated temperature. The purpose of this study was to assess the protective effects of exogenous 24-epibrassinolide (EBL) on C. pyrenoidosa under high-temperature conditions. Compared to a temperature of 30°C, increasing the temperature to 43°C reduced the enzymatic capacity for carbon assimilation and resulted in the buildup of reactive oxygen species (ROS), thus reducing photosynthesis and proliferation. It was observed that exogenous EBL protected C. pyrenoidosa cells against high temperatures, with an optimal EBL concentration of 100 nM, resulting in enhanced capacity for photosynthetic carbon assimilation with a notable reduction in the imbalance between the absorption of light and energy used under high-temperature conditions. The addition of 100 nM EBL resulted in a 25.4% increase in cell density when exposed to elevated temperatures for 7 days. In addition, exogenous EBL reduced ROS production and increased the activities of critical antioxidant enzymes. This, in turn, mitigated heat-induced oxidative damage, resulting in advantageous outcomes in terms of cellular development and maintenance.  相似文献   

14.
Photosynthetic organisms are subjected to frequent changes in light quality and quantity and need to respond accordingly. These acclimatory processes are mediated to a large extent through thylakoid protein phosphorylation. Recently, two major thylakoid protein kinases have been identified and characterized. The Stt7/STN7 kinase is mainly involved in the phosphorylation of the LHCII antenna proteins and is required for state transitions. It is firmly associated with the cytochrome b6f complex, and its activity is regulated by the redox state of the plastoquinone pool. The other kinase, Stl1/STN8, is responsible for the phosphorylation of the PSII core proteins. Using a reverse genetics approach, we have recently identified the chloroplast PPH1/TAP38 and PBPC protein phosphatases, which counteract the activity of STN7 and STN8 kinases, respectively. They belong to the PP2C-type phosphatase family and are conserved in land plants and algae. The picture that emerges from these studies is that of a complex regulatory network of chloroplast protein kinases and phosphatases that is involved in light acclimation, in maintenance of the plastoquinone redox poise under fluctuating light and in the adjustment to metabolic needs.  相似文献   

15.
Comparisons were made of photosynthesis in three light limited cyclostat cultures (LD = 8:16, dilution rate 0.7 d–1) of Chlorella pyrenoidosa, differing only in the dynamics of irradiance supply: as a constant rate, i.e. a block culture; as a sine function of the light period, i.e. a sinusoidal culture; as an 8 h sine function superimposed by an 1 h sine function, i.e. an oscillating culture. The sinusoidal culture had a constant minimum quantum requirement for oxygen evolution (QR) of 10.8 over the photoperiod. The OR of the oscillating culture increased from 24 to 37 during the photoperiod. From changes in and P max we suggest that: (1) photosynthetic units (PSU) of the block and sinusoidal sulture increased in number; (2) increasingly fewer chlorophyll molecules participated in oxygenic photosynthesis with a decreasing turnover time of the PSU's during an oscillating photoperiod. Values of I k decreased slightly in the block culture, increased slightly in the sinusoidal culture and showed a twofold increase in the oscillating culture. From the ratio of in situ oxygen production (qO2) and P max we infer a balanced equilibrium between photosystem activity and electron transport capacity for the block and sinusoidal culture. We hypothesize that the qO2 values of the oscillating culture underestimated true oxygen production rates due to a nonlinear response at peak light intensities. The results show that a dynamical photoperiod provoked significantly different photosynthetic responses, even though the overall growth rate was unaffected.  相似文献   

16.
Growth of Chlorella vulgaris and its lipid production were investigated under autotrophic, heterotrophic, and mixotrophic conditions. Cheap agricultural waste molasses and corn steep liquor from industries were used as carbon and nitrogen sources, respectively. Chlorella vulgaris grew remarkably under this agricultural waste medium, which resulted in a reduction in the final cost of the biodiesel production. Maximum dry weight of 2.62 g L?1 was obtained in mixotrophic growth with the highest lipid concentration of 0.86 g L?1. These biomass and lipid concentrations were, respectively, 140% and 170% higher than autotrophic growth and 300% and 1200% higher than heterotrophic growth. In mixotrophic growth, independent or simultaneous occurrence of autotrophic and heterotrophic metabolisms was investigated. The growth of the microalgae was observed to take place first heterotrophically to a minimum substrate concentration with a little fraction in growth under autotrophic metabolism, and then the cells grew more autotrophically. It was found that mixotrophic growth was not a simple combination of heterotrophic and autotrophic growth.  相似文献   

17.
植物激素在小球藻异养培养中的作用   总被引:8,自引:0,他引:8  
本文研究了几种植物激素对小球藻异养培养的影响。结果表明 ,IAA、IBA及 6_BA三种植物激素均不同程度地促进了小球藻的异养生长 ,培养≤ 36h时 ,IAA或IBA以 2 0mg/L的促进小球藻异养生长的效应最大 ,1 0 0mg/LIAA或IBA则抑制了藻的生长 ;>36h时 ,1 0 0mg/LIAA或IBA表现出促进小球藻生长的效应 ,并最终获最大净A540 增长量 ;6_BA以 0 1mg/L的促进作用最大。IBA与 6_BA组合同样表现出促进小球藻异养生长的效应 ,但并非IBA和 6_BA简单的加合效应 ,5mg/LIBA与 6_BA组合的效应维持 6_BA单因子的作用趋势 ,2 0mg/LIBA与 1mg/L 6_BA组合的效应大于与 0 .1mg/L 6_BA组合的 ,1 0 0mg/LIBA与 0 .1mg/L 6_BA组合的效应在≤ 36h时大于与 1mg/L 6_BA组合的 ,>36h时则相反。另外 ,高浓度IBA(≥ 2 0mg/L)与 6_BA组合抑制了前中期异养藻对葡萄糖的吸收 ,但加速了中后期葡萄的吸收。再者 ,IBA与 6_BA组合加速了异养小球藻对NO_3 的吸收。  相似文献   

18.
1. Discharge patterns of streams and rivers may be substantially affected by changes in water management, land use, or climate. Such hydrological alterations are likely to influence biotic processes, including overall ecosystem metabolism (photosynthesis and respiration). One regulator of aquatic ecosystem metabolism directly tied to hydrology is movement of bed sediments. 2. We propose that ecosystem metabolism can be reconstructed or predicted for any suite of hydrological conditions through the use of quantitative relationships between discharge, bed movement and metabolism. We tested this concept on a plains reach of the South Platte River in Colorado. 3. Movement of bed sediments was predicted from river discharge and the Shields stress, a ratio of velocity‐induced stress to sediment grain size. Quantitative relationships were established empirically between metabolic response to bed movement and recovery from bed movement, thus linking metabolism to hydrology. 4. The linkage of metabolism to hydrology allowed us to reconstruct daily photosynthesis and respiration over the 70‐year period for which discharge is known at our study site on the South Platte River. The reconstruction shows major ecological change caused by hydrological manipulation: the river has lost two‐thirds of its photosynthetic potential, and the ratio of photosynthesis to respiration is now much lower than it was prior to 1960. 5. The same approach could be used to anticipate ecological responses to proposed hydrological manipulations, to quantify benefits of hydrological restoration, or to illustrate potential effects of change in climate or land use on flowing‐water ecosystems.  相似文献   

19.
为了探究铀对藻类生长及光合作用的影响,筛选新的基于光合作用的水体铀污染生态风险评价指标,本试验采用不同浓度铀(0、0.5、1、5、10、20mg U·L-1)分别处理普通小球藻(Cholorella vulgaris)和黄龙普通小球藻两种来自不同生境的微藻,在处理后的第3、5、7、10、14d进行相对生长速率、光合放氧速率、叶绿素含量和叶绿素荧光动力学参数等指标的测定。结果表明:(1)0.5mg·L-1低浓度铀处理显著促进两种小球藻的生长和光合作用效率,表现为两种微藻的相对生长速率、光合放氧速率、光系统II最大光化学量子产量Fv/Fm、实际光化学量子产量Y(Ⅱ)、相对电子传递速率rETR等叶绿素荧光参数等指标均显著高于对照, 而5-20 mg·L-1高浓度铀处理则显著抑制两种小球藻的生长和光合作用;(2)黄龙普通小球藻比普通小球藻对铀处理更敏感,在1mg·L-1处理浓度下生长与光合作用就受到显著抑制,可以用来作为水体铀污染生物监测的指示生物;(3)回归分析表明,不同浓度铀处理下,叶绿素荧光参数Y(II)和rETR的响应速度快于相对生长速率、光合放氧速率、叶绿素含量和Fv/Fm等指标的变化,可以作为水体铀污染生态风险评价的敏感指标。  相似文献   

20.
Intact chloroplasts isolated from spinach were illuminated in the absence of inorganic phosphate (Pi) or with optimum concentrations of Pi added to the reaction medium. In the absence of Pi photosynthesis declined after the first 1–2 min and was less than 10% of the maximum rate after 5 min. Export from the chloroplast was inhibited, with up to 60% of the 14C fixed being retained in the chloroplast, compared to less than 20% in the presence of Pi. Despite the decreased export, chloroplasts depleted of Pi had lower levels of triose phosphate while the percentage of total phosphate in 3-phosphoglycerate was increased. Chloroplast ATP declined during Pi depletion and reached dark levels after 3–4 min in the light without added Pi. At this point, stromal Pi concentration was 0.2 mM, which would be limiting to ATP synthesis. Addition of Pi resulted in a rapid burst of oxygen evolution which was not initially accompanied by net CO2 fixation. There was a large decrease in 3-phosphoglycerate and hexose plus pentose monophosphates in the chloroplast stroma and a lesser decrease in fructose-1,6-bisphosphate. Stromal levels of triose phosphate, ribulose-1,5-bisphosphate and ATP increased after resupply of Pi. There was an increased export of 14-labelled compounds into the medium, mostly as triose phosphate. Light activation of both fructose-1,6-bisphosphatase and ribulose-1,5-bisphosphate carboxylase was decreased in the absence of Pi but increased following Pi addition.It is concluded that limitation of Pi supply to isolated chloroplasts reduced stromal Pi to the point where it limits ATP synthesis. The resulting decrease in ATP inhibits reduction of 3-phosphoglycerate to triose phosphate via mass action effects on 3-phosphoglycerate kinase. The lack of Pi in the medium also inhibits export of triose phosphate from the chloroplast via the phosphate transporter. Other sites of inhibition of photosynthesis during Pi limitation may be located in the regeneratige phase of the reductive pentose phosphate pathway.Abbreviations FBP Fructose-1,6-bisphosphate - FBPase Fructose-1,6-bisphosphatase - MP Hexose plus pentose monophosphates - PGA 3-phosphoglycerate - Pi inorganic orthophosphate - RuBP ribulose-1,5-bisphosphate - RuBPCase ribulose-1,5-bisphosphate carboxylase - TP Triose Phosphate  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号