首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using an antiserum generated in rabbits against synthetic galanin (GA) and the indirect immunofluorescence method, the distribution of GA-like immunoreactive cell bodies and nerve fibers was studied in the rat central nervous system (CNS) and a detailed stereotaxic atlas of GA-like neurons was prepared. GA-like immunoreactivity was widely distributed in the rat CNS. Appreciable numbers of GA-positive cell bodies were observed in the rostral cingulate and medial prefrontal cortex, the nucleus interstitialis striae terminalis, the caudate, medial preoptic, preoptic periventricular, and preoptic suprachiasmatic nuclei, the medial forebrain bundle, the supraoptic, the hypothalamic periventricular, the paraventricular, the arcuate, dorsomedial, perifornical, thalamic periventricular, anterior dorsal and lateral thalamic nuclei, medial and central amygdaloid nuclei, dorsal and ventral premamillary nuclei, at the base of the hypothalamus, in the central gray matter, the hippocampus, the dorsal and caudoventral raphe nuclei, the interpeduncular nucleus, the locus coeruleus, ventral parabrachial, solitarii and commissuralis nuclei, in the A1, C1 and A4 catechaolamine areas, the posterior area postrema and the trigeminal and dorsal root ganglia. Fibers were generally seen where cell bodies were observed. Very dense fiber bundles were noted in the septohypothalamic tract, the preoptic area, in the hypothalamus, the habenula and the thalamic periventricular nucleus, in the ventral hippocampus, parts of the reticular formation, in the locus coeruleus, the dorsal parabrachial area, the nucleus and tract of the spinal trigeminal area and the substantia gelatinosa, the superficial layers of the spinal cord and the posterior lobe of the pituitary. The localization of the GA-like immunoreactivity in the locus coeruleus suggests a partial coexistence with catecholaminergic neurons as well as a possible involvement of the GA-like peptide in a neuroregulatory role.  相似文献   

2.
Summary The anterograde Phaseolus vulgaris-leucoagglutinin (PHA-L) tracing technique was used to determine the distribution of efferent fibers originating in the lateral septal nucleus of the guinea pig. For complementary detection of the chemical identity of the target neurons, double-labeling immunocytochemistry was performed with antibodies to PHA-L and to vasopressin, oxytocin, vasoactive intestinal polypeptide, serotonin or dopamine -hydroxylase, respectively. The hypothalamus received the majority of the PHA-L-stained septofugal fibers. Here, a specific topography was observed. (1) The medial and lateral preoptic area, (2) the anterior, lateral, dorsal, posterior hypothalamic and retrochiasmatic area, (3) the supraoptic, paraventricular, suprachiasmatic, dorsomedial, caudal ventromedial and arcuate nuclei, and (4) the tuberomammillary, medial and lateral supramammillary, dorsal and ventral premammillary nuclei always contained PHA-L-labeled fibers. The rostral portion of the ventromedial nucleus and the medial and lateral mammillary nucleus only occasionally showed weak terminal labeling. In other diencephalic areas, termination of PHA-L-labeled fibers was observed in the epithalamus and the nuclei of the midline region of the thalamus. In the mesencephalon, terminal varicosities occurred in the ventral tegmental area, interfascicular and interpeduncular nucleus, and periaqueductal gray. In addition, the dorsal and medial raphe nuclei of the metencephalon, together with the locus coeruleus and the dorsal tegmental nucleus, received lateral septal efferents.  相似文献   

3.
Immunoreactivity corresponding to the C-terminus of the rat μ opiate receptor can be detected by light microscopy in fiber- and terminal-like patterns in a number of rat brain and spinal cord regions, and in immunoreactive perikarya in several of these regions. Especially abundant fiber- and terminal-like patterns were localized to superficial layers of the spinal cord dorsal horn and nucleus caudalis of the spinal tract of the trigeminal, the nucleus of the solitary tract, nucleus ambiguous, locus coeruleus, interpeduncular nucleus, medial aspect of the lateral habenular nucleus, presumed “striasomes” of the caudate-putamen and nucleus accumbens. Moderate fiber and terminal densities were found in the ventral tegmental area, more medial aspects of the thalamus and hypothalamus, and several amygdaloid nuclei. Immunostained perikarya were prominent in the nucleus accumbens and also observed in the middle layers of the cerebral cortex, septum and diagonal band, preoptic area, medial thalamic and habenular nuclei, locus coeruleus, nucleus ambiguous, nucleus of the solitary tract, trigeminal nucleus caudalis and spinal cord substantia gelatinosa zones. Many of these localizations correspond well with the previously-determined autoradiographic distributions of μ opiate receptor ligand binding, and with reports of μ opiate receptor immunoreactivity determined using other antisera. Electron microscopic immunohistochemical studies reveal details of the membrane distribution of the μ receptor in nucleus accumbens, caudate/putamen, locus coeruleus, and spinal cord. These results suggest largely neuronal and largely extrasynaptic distributions of μ receptors that show differential patterns of perikaryal, dendritic, and/or axonal immunostaining in different central nervous system zones. Identification of these distributions adds substantially to data identifying the cellular localization of the principal opiate receptor involved in both analgesic and addictive processes. Special issue dedicated to Dr. Eric J. Simon.  相似文献   

4.
Daily late afternoon injections of melatonin (25 micrograms/day s.c.) were found to reduce the number of cells expressing estrogen receptor immunoreactivity in the medial preoptic area of ovariectomized inbred (LSH/SsLak) golden hamsters. Employing immunocytochemical analysis with the H222 monoclonal antibody to the human estrogen receptor, we examined the effects of melatonin on estrogen receptor expression in the hypothalamus, particularly the medial preoptic area, of ovariectomized virgin female hamsters. Analysis of the results showed that melatonin administration induced a 50-70% decrease in numbers of estrogen receptor-immunoreactive neurons in the medial preoptic area of ovariectomized female hamsters. Furthermore, an overall qualitative decrease in the intensity of estrogen receptor immunoreactivity was observed. In intact regularly cycling female hamsters used to monitor the efficacy of melatonin treatment, there were significant reductions in the serum levels of FSH, LH, and prolactin as measured by radioimmunoassay and in uterine and pituitary weights after 8 wk of melatonin treatment. These results suggest that melatonin may exert its anti-reproductive effects in hamsters by modulating estrogen receptor levels in medial preoptic area neurons, thus influencing steroid feedback mechanisms.  相似文献   

5.
6.
Hypocretins are recently discovered neuropeptides produced by a small group of posterior hypothalamic neurons which project widely over the neuroaxis. In this study, we note that hypocretin neuron perikarya in the human brain are localized to the perifornical region of the posterior hypothalamus, extending into the lateral hypothalamus. These neurons lightly innervate all areas of cerebral cortex studied in a variable pattern with denser innervation of association cortex than primary motor or sensory cortex. There is a dense innervation of hypothalamus, locus coeruleus, raphe nuclei, midline thalamus and nucleus of the diagonal band-nucleus basalis complex of the forebrain. This pattern of projections from the hypocretin neurons is compatible with an important role in arousal and the maintenance of the waking state.  相似文献   

7.
In order to study structural bases of central mechanisms of thermoregulation, a comparative electron microscopic analysis of various cellular groups in one of thermosensitive zones of the cat hypothalamic area--the medial preoptic area--have been carried out under conditions of experimental fever. The latter is produced by injection of pyrogen of bacterial origin--pyrogenal--to the animals. Pyrogenal, increasing the body temperature, produces a stimulatory effect on various cellular elements, first of all on leucocytes, monocytes and macrophages in the medial preoptic area, as well as on endotheliocytes of the terminal vessels. Under pyrogenal effect activation of microglial cells and pericytes also takes place, and as a result of the rearrangements, occurring in the structure, they change into macrophages. This is an evidence of their active participation in the immune protection of the brain. According to the data from other investigations, all these activated cells produce peptide interleukin-1, one of the mediators of fever and stimulator of the immune system. Pyrogenal is stated to produce a stimulating effect on the astroglia and on some neurons of the medial preoptic area, that respond with cytoplasm increase and accumulation of numerous organelles. The reactive changes at fever in some neurons of the medial preoptic area can demonstrate that they belong to the thermosensitive pool. A conclusion is made, concerning a complex effect of pyrogenal, that results in a cooperative response of a number of cellular systems of the organism.  相似文献   

8.
Topography of catecholamine-containing (CA) neurons of the cat locus coeruleus was studied using a combination of the catecholamine histofluorescence method and rapid embedding of the brain tissue into the paraffin wax. The distribution of CA neurons was examined at frontal and sagittal sections of the brain stem. Unlike that shown previously the quantity of CA neurons in the rostral pole of the locus coeruleus was somewhat higher while at the frontal level of P--2.0-P--4.0 the significant number of CA cells of the locus coeruleus was localized more ventromedially.  相似文献   

9.
The distribution of luteinizing hormone-releasing hormone (LHRH)-immunostained perikarya and processes was examined in the forebrains of six sexually mature female pigs by use of indirect biotin-avidin horseradish peroxidase immunocytochemistry. Two primary antisera (Drs. Y.F. Chen and V.D. Ramirez CRR11B73 and Miles-Yeda UZ-4) yielded positive staining. Adjacent sections treated either primary antiserum preabsorbed with LHRH or with normal rabbit serum substituted for primary antiserum lacked positive staining. The greatest proportion of LHRH-immunostained perikarya were found in the medial preoptic area adjacent to the organum vasculosum of the lamina terminalis. The LHRH-immunostained perikarya were also scattered rostrally in the diagonal band of Broca, and within the lateral hypothalamic area, paraventricular nucleus, periventricular zone, suprachiasmatic nucleus, and medial basal hypothalamus. LHRH-immunostained processes, which extended from the medial preoptic area, coursed either along the ventral surface to the median eminence or medially and ventrally along the third ventricular wall ventrally to the median eminence and caudally to the level of the mammillary bodies. Extrahypothalamic processes were located adjacent to the lateral ventricular floor and the third ventricle from the lateral septal area (stria terminalis) to the level of the habenular nucleus. LHRH-immunostained neurons were unipolar, bipolar, and multipolar. Close associations between individual LHRH-immunostained neurons were observed.  相似文献   

10.
众所周知,肉食动物和大白鼠的脚内核,相当于灵长类的内侧苍白球(Nagy et al.1978;Fox and Schmitz 1944);它们的细胞形态、传入及传出均相同。早期以及近年来的一些研究工作者,虽然在研究其他核团的投射时,联系到一些本核团的传入,但是尚缺乏对本核团传人的系统研究。本实验即是应用辣根过氧化物酶的逆行传递法来研究大白鼠脚内核的传入性联系。  相似文献   

11.
Neurons of the medial preoptic area were studied in the brain of the female rat by means of ultrastructural immunocytochemistry using a monoclonal antibody generated against purified estrogen receptor (ER), in order to delineate the morphological correlates of estrogen feedback mechanisms. In addition to the preoptic area, the bed nucleus of the stria terminalis, the arcuate and ventromedial nuclei of the hypothalamus exhibited an intense labelling for estrogen receptor. At the light microscopic level, the cell nuclei were immunoreactive. No major alterations were detected in the ER expression of medial preoptic neurons sampled during the estrous cycle, but proestrous rats did exhibit a slightly increased intensity of staining. At the ultrastructural level, the ER immunoreactivity was primarily confined to the nuclei and associated with the chromatin. Long term steroid deprivation elicited by either ovariectomy or ovariectomy plus adrenalectomy resulted in a marked intensity of nuclear labelling. This pattern was not influenced by acute estradiol replacement. These morphological data indicate that neurons of the medial preoptic area have the capacity to detect estrogens via receptor mechanisms and that changes in the level of the circulating ligand are manifested in an alteration in the staining for the estrogen receptor. The study also supports the revised concept of estrogen receptor action by demonstrating the presence of receptors in the nuclei of the cells, whether or not they are occupied by their ligand.  相似文献   

12.
Sexual behavior in female rats depends on the action of estradiol on estrogen receptors (ERs) found in particular brain regions. While hormonal regulation of female sexual behavior requires ERalpha, the possible functions of ERbeta remain to be clarified. Mating stimulation has several behavioral and physiological consequences and induces Fos expression in many brain areas involved in the regulation of reproductive behavior and physiology. In addition, some cells in which mating induces Fos expression coexpress ERalpha. To determine whether cells in which Fos is induced by a particular mating stimulus coexpress ERalpha, ERbeta, or both, we used a triple-label immunofluorescent technique to visualize ERalpha-, ERbeta-, and mating-induced Fos-immunoreactivity (Fos-ir) in neurons in which mating stimulation reliably increases Fos expression. Ovariectomized, hormone-primed rats were either unmated, received 15 mounts, or received 15 intromissions. In the rostral medial preoptic area, Fos-ir was induced by mounts alone primarily in cells coexpressing ERalpha-ir, while Fos-ir was induced by intromissions mainly in cells coexpressing both ERalpha-ir and ERbeta-ir (ERalpha/ERbeta-ir). In the dorsal part of the posterodorsal medial amygdala, Fos-ir was induced by intromissions in cells coexpressing ERalpha-ir and ERalpha/ERbeta-ir. However, in the ventral part of the posterodorsal medial amygdala, Fos-ir was induced by intromissions primarily in cells coexpressing only ERbeta-ir. These data suggest that qualitatively different sexual stimuli may be integrated through distinct ER-containing circuits in the rostral medial preoptic area and posterodorsal medial amygdala. The diversity in coexpression of type of ER in cells in different brain areas after various mating stimuli suggests a role for both ERalpha and ERbeta in the integration of hormonal information and information related to mating stimuli.  相似文献   

13.
Abstract: Apolipoprotein E (apoE)-deficient mice provide a useful system for studying the role of apoE in neuronal maintenance and repair. Previous studies revealed specific memory impairments in these mice that are associated with presynaptic derangements in projecting forebrain cholinergic neurons. In the present study we examined whether dopaminergic, noradrenergic, and serotonergic projecting pathways of apoE-deficient mice are also affected and investigated the mechanisms that render them susceptible. The densities of nerve terminals of forebrain cholinergic projections were monitored histochemically by measurements of acetylcholinesterase activity, whereas those of the dopaminergic nigrostriatal pathway, the noradrenergic locus coeruleus cortical projection, and the raphe-cortical serotonergic tract were measured autoradiographically using radioligands that bind specifically to the respective presynaptic transporters of these neuronal tracts. The results obtained revealed that synaptic densities of cholinergic, noradrenergic, and serotonergic projections in specific brain regions of apoE-deficient mice are markedly lower than those of controls. Furthermore, the extent of presynaptic derangement within each of these tracts was found to be more pronounced the further away the nerve terminal is from its cell body. In contrast, the nerve terminal density of the dopaminergic neurons that project from the substantia nigra to the striatum was unaffected and was similar to that of the controls. The rank order of these presynaptic derangements at comparable distances from the respective cell bodies was found to be septohippocampal cholinergic > nucleus basalis cholinergic > locus coeruleus adrenergic > raphe serotonergic ? nigrostriatal dopaminergic, which interestingly is similar to that observed in Alzheimer's disease. These results suggest that two complementary factors determine the susceptibility of brain projecting neurons to apoE deficiency: pathway-specific differences and the distance of the nerve terminals from their cell body.  相似文献   

14.
The role of glial cell-line derived neurotrophic factor (GDNF) and neurotrophins in the development of locus coeruleus noradrenergic neurons was evaluated. We found that two neurotrophic factors previously reported to prevent the degeneration of lesioned adult central noradrenergic neurons, GDNF and neurotrophin 3 (NT3), do not play significant roles in the prenatal development of locus coeruleus noradrenergic neurons, as demonstrated by: (1) the lack of alterations in double Gdnf/Nt3 null mutant mice; and (2) the lack of survival-promoting effects of GDNF and/or NT3 in rat E13.5 primary cultures. In contrast, null mutant mice for TrkB, the tyrosine kinase receptor for brain-derived neurotrophic factor and neurotrophin 4, displayed a clear loss of locus coeruleus noradrenergic neurons. In accordance with this, treatment of rat E13.5 primary cultures with TrkB ligands prevented the early loss of noradrenergic neurons and maintained their survival for up to 6 days in vitro. Moreover, an additional 5-10-fold increase in the number of tyrosine hydroxylase positive noradrenergic neurons was detected after 12 hours in culture. This second effect of TrkB ligands involved neither proliferation nor survival, because the number of BrdU- or TUNEL-positive noradrenergic neurons did not change and the effect was elicited by delayed administration of either factor. Because TrkB ligands increased the number of tyrosine hydroxylase-positive cells expressing Phox2a, a paired homeodomain protein required for the development of locus coeruleus noradrenergic neurons, but did not affect the number of Phox2a-positive tyrosine hydroxylase-negative cells, our results suggest that the second effect of TrkB ligands may involve promoting or inducing a noradrenergic phenotype. In summary, our findings suggest that, unlike NT3 and GDNF, TrkB ligands are required and sufficient to promote the development of central noradrenergic neurons.  相似文献   

15.
16.
In the present study, we investigated the involvement of rhombomere 1 patterning proteins in the regulation of the major noradrenergic centre of the brain, the locus coeruleus. Primary cultures of rat embryonic day 13.5 locus coeruleus were treated with fibroblast growth factor-8, noggin and members of the bone morphogenetic and Wnt protein families. We show that bone morphogenetic proteins 2, 5 and 7 increase and noggin decreases the number of tyrosine hydroxylase-positive locus coeruleus neurons. Interestingly, from all Wnts expressed in the first rhombomere by embryonic day 12.5 in the mice, we only found expression of wnt5a mRNA in the vicinity of the locus coeruleus. In agreement with this finding, from all Wnts studied in vitro, only Wnt5a increased the number of tyrosine hydroxylase-positive neurons in locus coeruleus cultures. Finally, we also found that fibroblast growth factor-8 increased the number of tyrosine hydroxylase-positive cells in locus coeruleus cultures. Neither of the identified factors affected the survival of tyrosine hydroxylase-positive locus coeruleus noradrenergic neurons or the proliferation of their progenitors or neurogenesis. Instead, our results suggest that these patterning signals of rhombomere 1 may work to promote the differentiation of noradrenergic progenitors at later stages of development.  相似文献   

17.
目的:我们最近的实验发现大鼠侧脑室注射氨甲酰胆碱引起显著的促钠排泄作用,本工作同时还观察了下丘脑内不同脑区的儿茶酚胺能神经元活性的变化。方法和结果:氨甲酰胆碱注射后40min,下丘脑室旁核的腹侧和内侧小细胞部、内侧视前区、尾核、苍白球的酪氨酸羟化酶免疫反应(thyrosinehydroxylaseimmunoreactivity,THIR)阳性细胞数减少,免疫反应染色强度降低;下丘脑室旁核的后部,下丘脑前区的后部、下丘脑室周核、弓状核、下丘脑外侧区的THIR阳性细胞数增多,免疫反应染色强度增强。结论:侧脑室注射氨甲酰胆碱对脑内不同脑区的内源性儿茶酚胺能神经元分别有兴奋或抑制作用,其与促钠排泄的关系将在本文中讨论  相似文献   

18.
Atrial natriuretic factor (ANP) is present in neuronal cells of the locus coeruleus and its vicinity in the pontine tegmentum and moderate amount of ANP is detectable in this area by radioimmunoassay. The ANP (both peripheral and brain-born) is known as a neuropeptide which may influence the body salt and water homeostasis and blood pressure by targeting both central and peripheral regulatory mechanisms. Whether this pontine ANP cell group is involved in any of these regulatory mechanisms, the effect of various types of hypertension and experimental alterations in the salt and water balance on ANP levels was measured by radioimmunoassay in the locus coeruleus of rats. Adrenalectomy, as well as aldosterone and dexamethasone treatments failed to alter ANP levels in the locus coeruleus. Reduced ANP levels were measured in spontaneously hypertensive (both young and adult) rats, and in diabetes insipidus (Brattleboro) rats with vasopressin replacement. In contrast to these situations, elevated ANP levels were found in rats with DOCA-salt or 1-kidney-1-clip hypertension. These data suggest a link between ANP levels in the locus coeruleus and fluid volume homeostasis. Whether this link is causal and connected with the major activity of locus coeruleus neurons (noradrenergic influence on brain regulatory activities) needs further informations.  相似文献   

19.
Summary The preoptic area of the domestic fowl (Gallus gallus) was studied by means of the Golgi technique. At least two regions can be recognized: (i) a medial and (ii) a lateral area, clearly distinguishable laterally from the adjacent telencephalic regions. The dendritic organization of the preoptic area is quite uniform. The neurons can be classified as isodendritic elements. The magnocellular elements are few and irregularly scattered mostly in the periventricular grey of the medial preoptic area. Of relevant interest is also the observation of some bipolar and horizontal neurons in the dorsal part of the medial preoptic area, near the anterior commissure.  相似文献   

20.
Measurements of serotonin (5-HT), dopamine (DA), and noradrenaline, and of 5-HT and DA metabolites, were obtained by HPLC from 16 brain regions and the spinal cord of 5-HT(1A) or 5-HT(1B) knockout and wild-type mice of the 129/Sv strain. In 5-HT(1A) knockouts, 5-HT concentrations were unchanged throughout, but levels of 5-HT metabolites were higher than those of the wild type in dorsal/medial raphe nuclei, olfactory bulb, substantia nigra, and locus coeruleus. This was taken as an indication of increased 5-HT turnover, reflecting an augmented basal activity of midbrain raphe neurons and consequent increase in their somatodendritic and axon terminal release of 5-HT. It provided a likely explanation for the increased anxious-like behavior observed in 5-HT(1A) knockout mice. Concomitant increases in DA content and/or DA turnover were interpreted as the result of a disinhibition of DA, whereas increases in noradrenaline concentration in some territories of projection of the locus coeruleus could reflect a diminished activity of its neurons. In 5-HT(1B) knockouts, 5-HT concentrations were lower than those of the wild type in nucleus accumbens, locus coeruleus, spinal cord, and probably also several other territories of 5-HT innervation. A decrease in DA, associated with increased DA turnover, was measured in nucleus accumbens. These changes in 5-HT and DA metabolism were consistent with the increased aggressiveness and the supersensitivity to cocaine reported in 5-HT(1B) knockout mice. Thus, markedly different alterations in CNS monoamine metabolism may contribute to the opposite behavioral phenotypes of these two knockouts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号