首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Hormonal modulation of hepatic plasma membrane lactate transport was studied in primary cultures of isolated hepatocytes from fed rats to examine the mechanism for the known enhancement of lactate transport in starvation and diabetes. Total cellular lactate entry was increased by 14% in the presence of dexamethasone; this was accounted for by an approximately 40% increase in the carrier-mediated component of entry with no effect on diffusion. A trend of similar magnitude was evident with glucagon. The effects of dexamethasone and glucagon on lactate transport constitute an additional potential mechanism for enhancement of gluconeogenesis by these hormones.  相似文献   

2.
Entry of beta-hydroxybutyrate into erythrocytes and thymocytes is facilitated by a carrier (C), as judged from temperature dependence, saturation kinetics, stereospecificity, competition with lactate and pyruvate, and inhibition by moderate concentrations of methylisobutylxanthine, phloretin, or alpha-cyanocinnamate. We studied the dependence of influx and efflux on internal and external pH and [beta-hydroxybutyrate]. Lowering external pH from 8.0 to 7.3 to 6.6 enhanced influx into erythrocytes by lowering entry Km from 29 to 16 to 10 mM, entry V being independent of external pH. Lowering external pH inhibited efflux. At low external pH, external beta-hydroxybutyrate enhanced efflux slightly. At high external pH, external beta-hydroxybutyrate inhibited efflux. Internal acidification inhibited influx and internal alkalization enhanced influx. Internal beta-hydroxybutyrate (betaHB) enhanced influx more in acidified than alkalized cells. These data are compatible with coupled betaHB-/OH- exchange, betaHB- and OH- competing for influx, C:OH- moving faster than C: betaHB-, empty C being immobile. They are also compatible with coupled betaHB-/H+ copermeation, empty C moving inward faster than H+:C:betaHB-, H+:C being immobile, and C:betaHB- (without H+) being so unstable as not to be formed in significant amounts (relative to C, H+:C, and H+:C:betaHB-).  相似文献   

3.
Cholic acid uptake was studied in isolated rat hepatocytes using a centrifugal filtration technique to allow rapid sampling. Hepatocytes were found to adsorb as well as to transport cholic acid. The adsorption was characterized by a capacity of 24 nmol X mg cell protein-1 and an association constant of 0.59 X 103 M-1. Cholic acid uptake was linear with respect to concentration at or below 10 degree C, suggesting a unsaturable uptake process which was considered to represent simple diffusion and is quantitated by a diffusion coefficient of 1.76 pmol cholic acid X min-1 X mg protein-1 X muM-1. Above 10 degrees C the uptake curve was biphasic. After subtracting the unsaturable component from uptake rates at higher temperatures, a curve showing saturable kinetics resulted. The apparent Km and V values at 37 degrees C were calculated to be 31muM and 0.8 nmol X min-1 X mg protein-1 respectively. This saturable uptake process was temperature-dependent with an activation energy of 13 kcal X mol-1 (5.44 X 104 J X mol-1) and was inhibited by oligomycin and KCN. Countertransport was demonstrated with cholic, taurocholic and chenodeoxycholic acids. The results suggest that cholic acid is transported by an energy-dependent carrier-mediated process in addition to simple diffusion by hepatocytes, and that the postulated carrier has affinity for other bile acids.  相似文献   

4.
5.
1. Under appropriate conditions L- and D-lactate enter the cells of rat aorta and are metabolized. Oxidation of lactate to CO2 occurs under aerobic conditions. 2. L- and D-lactate are taken up into the cells when oxygen, glucose, or both oxygen and glucose are present in the incubation medium. Both L- and D-lactate are excluded from the cells when neither oxygen nor glucose is present. 3. D,L-Glyceraldehyde prevents the uptake of L-lactate. The effect is apparently not due to the inhibition of glucose metabolism by L-glyceraldehyde. 4. L-lactate (20 mM) markedly inhibits the uptake of 5 mM D-lactate, but 20 mM D-lactate fails to inhibit the uptake of 5 mM L-lactate. 5. Raising the pH of the incubation medium markedly depresses the uptake of L-lactate. 6. The results provide evidence that L- and D-lactate enter the cells of rat aorta by a mediated transport system.  相似文献   

6.
The sensitivity of glucose production from L-lactate by isolated liver cells from starved rats to inhibition by alpha-cyano-4-hydroxycinnamate was studied. A small percentage of the maximal rate of gluconeogenesis was insensitive to inhibition by alpha-cyano-4-hydroxycinnamate, and evidence is presented to show that this is due to pyruvate entry into the mitochondria as alanine. After subtraction of this rate, Dixon plots of the reciprocal of the rate of gluconeogenesis against inhibitor concentration were linear both in the absence and presence of glucagon, phenylephrine or valinomycin, each of which stimulated gluconeogenesis by 30-50%. Pyruvate kinase activity was decreased by glucagon, but not by phenylephrine or valinomycin. Inhibition of gluconeogenesis by quinolinate (inhibitor of phosphoenolpyruvate carboxykinase) or monochloroacetate (probably inhibiting pyruvate carboxylation) caused a significant deviation from linearity of the Dixon plot obtained with alpha-cyano-4-hydroxycinnamate. Amytal, however, inhibited gluconeogenesis without affecting the linearity of this plot. These data, coupled with a computer simulation study, suggest that pyruvate transport may control gluconeogenesis from L-lactate and that hormones may stimulate this process through an effect on the respiratory chain. An additional role for pyruvate kinase and pyruvate carboxylase is quite compatible with the data presented.  相似文献   

7.
Epinephrine treatment of the perfused rat heart led to an increase in the rate of glucose uptake and lactate release as well as increases in the rate of beating and the activity ratio of phosphofructokinase. The dose of epinephrine required for half maximal increases in the rate of beating, and glucose uptake and the activity ratio of phosphofructokinase was approx.10?7M. Glucose uptake, lactate release and the activity ratio of phosphofructokinase were increased by the α-agonists methoxamine and phenylephrine, and the β agonist, isoproterenol. Propranolol and phenoxybenzamine each partially blocked the stimulatory effects of epinephrine on glucose uptake and lactate production. Phenoxybenzamine blocked the stimulatory effects of methoxamine but had no effect on those produced by isoproterenol which were blocked by propranolol. It is concluded that dual α and β adrenergic control of glycolysis occurs in cardiac muscle. It is proposed that the previously reported α-adrenergic control of phosphofructokinase plays a key role in the control of heart muscle glycolysis.  相似文献   

8.
Cellular uptake of L-lactate in mouse diaphragm.   总被引:1,自引:0,他引:1       下载免费PDF全文
A Koch  B Webster    S Lowell 《Biophysical journal》1981,36(3):775-796
Early uptake curves of L-lactate and of mannitol were measured in quartered, incubated mouse diaphragms. Uptake was determined at 15, 30, and 45 s for various concentrations of lactate in the external solution as well as in the presence and absence of the competitive inhibitor of lactate transport, alpha-cyano-4-hydroxycinnimate. In normal preparations, when the external lactate concentration was 10 mM or less, the ratio of lactate-to mannitol space in the tissue was 1.7. This value was nearly independent of time and of external concentration. In normal preparations, when the external lactate concentration was greater than 10 mM, the ratio of lactate-to-mannitol space rose with time. At a fixed time, however, this ratio fell with increasing lactate concentration. In the inhibited preparations, the ratio of lactate-to-mannitol space rose with time at all concentrations. When lactate concentration was greater than 5 mM, this ratio was independent of the external concentration. The results suggest that there are two modes of lactate entry into these muscle cells. Entry can occur by means of a saturable system. When external lactate concentration is low, entry rates for this process are rapid compared with diffusional rates. This system probably saturates at concentrations near 10 mM and can facilitate transport in either direction. In addition, an appreciable passive leak is present. This leak accounts for about one fourth of the membrane transfer when external lactate is low, but is equal to the carrier transfer when lactate concentration is 30 mM. A model was developed to describe the entry of a permeating solute, such as lactate, into an isolated tissue.  相似文献   

9.
We examined the possibility of quantitative differences in lactate entry into periportal and perivenous hepatocytes under different nutritional states. The rate of14C-L(+)-lactate uptake was determined after 15-second incubations with freshly isolated zonally separated hepatocytes using a centrifuge stop technique at 37 °C and 4 °C, in the presence or absence of either differing amounts of unlabelled lactate or of a hepatocyte lactate transport inhibitor,-cyano-3-hydroxycinnamate. Total entry as well as carrier mediated entry of14C-L(+)-lactate into the isolated cell populations was found to be similar in periportal and perivenous hepatocytes, irrespective of the nutritional state of the animal. Periportal and perivenous hepatocytes showed a greater tendency to transport lactate when isolated from starved animals, in agreement with previously reported data from non-zonally separated isolated hepatocytes. The activity of the hepatocyte plasma-membrane lactate transporter was diminished between fourfold and eightfold in transport studies conducted at 4 °C; similar results were obtained in unseparated and zonally separated suspensions. Temperature dependence of the hepatocyte transporter is markedly less than that reported for the erythrocyte transporter.  相似文献   

10.
Upon addition of methylamine to intact cells, this lysosomotropic weak base accumulates intracellularly as the result of at least two different mechanisms: (1) facilitated diffusion across the plasma membrane, i.e. a process which is carrier-mediated and subject to both trans-stimulation (accelerative exchange) and cis-inhibition (competition) by other amines (e.g. ammonia, methylamine and triethylamine); this transport process is furthermore non-concentrative, energy-independent, and (although moderately temperature-sensitive) operative even at 0 degrees C; (2) active uptake, i.e. an energy-dependent concentrative process which is inhibited by anoxia and energy inhibitors. With time, methylamine accumulates in lysosomes and gives rise to a lysosomal swelling which is easily visible by optical microscopy, and which causes the cells to appear coarsely granular. After a 1h incubation with 10mM-methylamine, the total cell volume is increased by about 12%. Under anoxic conditions or in the presence of energy inhibitors, lysosomal swelling is abolished regardless of there being a high concentration of methylamine intracellularly (taken up by facilitated diffusion). The continuous accumulation of methylamine in lysosomes therefore seems to depend on an energy-requiring process (such as continuous proton pumping), and not only on trapping by Donnan-equilibrium-generated protons.  相似文献   

11.
L-lactate transport in Ehrlich ascites-tumour cells.   总被引:10,自引:0,他引:10       下载免费PDF全文
Ehrlich ascites-tumour cells were investigated with regard to their stability to transport L-lactate by measuring either the distribution of [14C]lactate or concomitant H+ ion movements. The movement of lactate was dependent on the pH difference across the cell membrane and was electroneutral, as evidenced by an observed 1:1 antiport for OH- ions or 1:1 symport with H+ ions. 2. Kinetic experiments showed that lactate transport was saturable, with an apparent Km of approx. 4.68 mM and a Vmax. as high as 680 nmol/min per mg of protein at pH 6.2 and 37 degrees C. 3. Lactate transport exhibited a high temperature dependence (activation energy = 139 kJ/mol). 4. Lactate transport was inhibited competitively by (a) a variety of other substituted monocarboxylic acids (e.g. pyruvate, Ki = 6.3 mM), which were themselves transported, (b) the non-transportable analogues alpha-cyano-4-hydroxycinnamate (Ki = 0.5 mM), alpha-cyano-3-hydroxycinnamate (Ki = 2mM) and DL-p-hydroxyphenyl-lactate (Ki = 3.6 mM) and (c) the thiol-group reagent mersalyl (Ki = 125 muM). 5. Transport of simple monocarboxylic acids, including acetate and propionate, was insensitive to these inhibitors; they presumably cross the membrane by means of a different mechanism. 6. Experiments using saturating amounts of mersalyl as an "inhibitor stop" allowed measurements of the initial rates of net influx and of net efflux of [14C]lactate. Influx and efflux of lactate were judged to be symmetrical reactions in that they exhibited similar concentration dependence. 7. It is concluded that lactate transport in Ehrlich ascites-tumour cells is mediated by a carrier capable of transporting a number of other substituted monocarboxylic acids, but not unsubstituted short-chain aliphatic acids.  相似文献   

12.
Rat hepatocytes have been studied in suspension culture for 10-h periods. Levels of extractable lactate dehydrogenase (LDH) have been measured in these hepatocytes at hourly intervals in order to note the balance between biosynthesis and degradation of this enzyme. Newly synthesized LDH has been measured by following the rate of incorporation of [3H]leucine into radiochemically pure LDH of high specific catalytic activity as isolated by a rapid affinity chromatographic procedure. The effects of the addition of physiological concentrations of the following hormones at the beginning of 10-h culture periods immediately following preparation of the hepatocytes by the collagen perfusion procedure have been recorded. The hormones triiodothyronine (T3), insulin, glucagon, and dexamethasone have been added singly or in combination. The culture medium has supplied variable amounts of these hormones in the 10% of fetal calf (or other) serum added, and the hepatocytes themselves have provided intracellular amounts of hormones. In addition to the added hormones, N6,O2'-dibutyryl cyclic AMP (Bt2cAMP) has also been studied. Control suspensions of hepatocytes show reproducible initial levels of extractable LDH which are maintained or slightly increased during 10 h. Such control systems also incorporate [3H]leucine into total protein and into highly purified LDH at reproducible rates during 10 h of incubation. The effects of added hormones on LDH lavels are as follows: (a) T3 causes about a 2-fold increase in LDH at 7 to 8 h in hepatocytes from young adult animals, an effect which is lowered in either younger or older animals or in thyroidectomized animals. (b) Insulin leads to a similar increase in LDH at 5 to 6 h and a falling off at 8 to 10 h. (c) Glucagon also causes an approximate doubling of the amount of extractable LDH during a 10-doubling of the amount of extractable LDH during a 10-h period. (d) Dexamethasone does not produce an increase. (e) Bt2-cAMP produces an effect indistinguishable from that of glucagon. Paired combinations of these hormones fail to produce an additive response in any case. The combinations of T3 plus dexamethaseon and insulin plus dexamethasone lead to significant reductions in levels of extractable LDH when compared to the single hormone effects cited above. With respect to rates of synthesis of total protein as measured by [3H]leucine incorporation, only glucagon, glucagon plus Bt2-cAMP, glucagon plus insulin, T3 plus Bt2cAMP, and T3 plus insulin produce significant increases during a 10-h period. However, when [3H]leucine incorporation into highly purified LDH is measured as an index of LDH biosynthesis, T3, insulin, and glucagon consistently increase the biosynthetic rates during a 10-h period. Bt2cAMP produces a smaller increase. Dexamethasone fails to produce any significant change when compared to controls. Paired combinations of hormones again do not produce any additive effect on LDH biosynthesis when the hormone producing the higher level is taken as the reference...  相似文献   

13.
Transport of [3H]tetraethylammonium, an organic cation, has been studied in brush-border and basolateral membrane vesicles isolated from rat kidney cortex. Some characteristics of carrier-mediated transport for tetraethylammonium were demonstrated in brush-border and basolateral membrane vesicles; the uptake was saturable, was stimulated by the countertransport effect, and showed discontinuity in an Arrhenius plot. In brush-border membrane vesicles, the presence of an H+ gradient ( [H+]i greater than [H+]o) induced a marked stimulation of tetraethylammonium uptake against its concentration gradient (overshoot phenomenon), and this concentrative uptake was completely inhibited by HgCl2. In contrast, the uptake of tetraethylammonium by basolateral membrane vesicles was unaffected by an H+ gradient. Tetraethylammonium uptake by basolateral membrane vesicles was significantly stimulated by a valinomycin-induced inside-negative membrane potential, while no effect of membrane potential was observed in brush-border membrane vesicles. These results suggest that tetraethylammonium transport across brush-border membranes is driven by an H+ gradient via an electroneutral H+-tetraethylammonium antiport system, and that tetraethylammonium is transported across basolateral membranes via a carrier-mediated system and this process is stimulated by an inside-negative membrane potential.  相似文献   

14.
Calcium transport in isolated rat hepatocytes   总被引:6,自引:0,他引:6  
  相似文献   

15.
The characteristics of the intestinal transport system for choline were investigated using isolated brush-border membrane vesicles from rat small intestine. In spite of the diminutive lipid solubility, the uptake of choline by membrane vesicles reflected smooth permeation into intravesicular space rather than the binding to the membrane surface. Physiological conditions, present in the intact intestine, such as an inward-directed Na+ or H+ gradient and inside negative membrane potentials, didn't directly involve in choline transport across the brush-border membrane. Moreover, an outward-directed H+ gradient had no significant effect on the time course of choline transport. However, in the absence of a driving-force, the initial uptake of choline exhibited a saturable manner. A kinetic analysis of the initial uptake rate gave an apparent Km of 159 microM. Furthermore, unlabeled choline caused both cis-inhibition and trans-stimulation for labeled choline transport, suggesting the existence of a carrier-mediated transport system for choline, classified as so-called 'facilitated diffusion'. Since tetramethylammonium, acetylcholine, and N1-methylnicotinamide caused both cis-inhibition and trans-stimulation, they appear to be accepted as the substrate of choline carrier. On the other hand, quaternary ammonium compounds (QACs) such as those which possessed hydrophobic parts in their molecules exhibited only cis-inhibition. They also inhibited Na(+)-dependent D-glucose transport, indicating that they influenced various carrier-mediated transport systems non-specifically due to interaction with the membrane. These findings strongly suggest that the choline transport system on the brush-border membrane of rat intestine recognizes only small molecular QACs as its substrate.  相似文献   

16.
Carrier-mediated transport of aminocephalosporin antibiotics by renal brush-border membrane vesicles has been studied in relation to the transport systems for dipeptides and amino acids. Dipeptides such as L-carnosine (beta-alanyl-L-histidine) and L-phenylalanylglycine competitively inhibited the uptake of cephalexin, but amino acids did not. Cephalexin uptake was stimulated by the countertransport effect of L-carnosine in the normal and papain-treated vesicles, and by the effect of L-phenylalanylglycine only in the papain-treated vesicles. In the papain-treated vesicles, the hydrolysis of dipeptides was markedly decreased, and the specific activity for cephalexin transport was increased approx. 2-fold because of the partial removal of membrane proteins. These results suggest that carrier-mediated transport of cephalexin can be transported by the system for dipeptides in renal brush-border membranes.  相似文献   

17.
Oxygen uptake rates in cultured rat hepatocytes   总被引:5,自引:0,他引:5  
One potential treatment of acute liver failure involves the use of an extracorporeal device composed of functional hepatocytes. A major issue in the design of such a large-scale device is providing the hepatocytes with a sufficient supply of oxygen and other nutrients. In this study, we have designed and characterized a simple perfusion system hepatocytes using this system. The OUR of hepatocytes was determined during the first day after seeding on a single collagen gel and during the long-term stable culture after the addition of a top layer of collagen. The OUR increased to 20.7 +/- 0.57 pmol/sec/mug DNA during the first 13 hours of culture on a single collagen gel, while during the next 11 hours, the OUR declined to 10.6 +/- 1.5 pmol/sec/mug DNA. In parallel with the increase in OUR during the first 10 hours, we observed significant cell spreading, suggesting that the oxygen supply to the cells may be critical for the spreading and adaptation of the anchorage-dependent hepatocytes following isolation. Addition of a top layer of collagen to hepatocyte cultures for 24 hours of culture on a single collagen layer resulted in a stable OUR for 15 days. These results indicate that OUR of hepatocytes in culture may vary depending on the phase of culture (i.e., early vs. late) and on the extracellular environment. (c) 1992 John Wiley & Sons, Inc.  相似文献   

18.
Time courses of L-lactate and pyruvate uptake into isolated rat hepatocytes were measured in a citrate-based medium to generate a pH gradient (alkaline inside), by using the silicone-oil-filtration technique at 0 degrees C to minimize metabolism. At low concentrations of lactate and pyruvate (0.5 mM), transport was inhibited by over 95% by 5 mM-alpha-cyano-4-hydroxycinnamate, whereas at higher concentrations (greater than 10 mM) a significant proportion of transport could not be inhibited. The rate of this non-inhibitable transport was linearly related to the substrate concentration, was less with pyruvate than with L-lactate, and appeared to be due to diffusion of undissociated acid. Uptake of D-lactate was not inhibited by alpha-cyano-4-hydroxycinnamate and occurred only by diffusion. Kinetic parameters for the carrier-mediated transport process were obtained after correction of the initial rates of uptake of lactate and pyruvate in the absence of 5 mM-alpha-cyano-4-hydroxycinnamate by that in the presence of inhibitor. Under the conditions used, the Km values for L-lactate and pyruvate were 2.4 and 0.6 mM respectively and the Ki for alpha-cyano-4-hydroxycinnamate as a competitive inhibitor was 0.11 mM. Km values for the transport of L-lactate and pyruvate into rat erythrocytes under similar conditions were 3.0 and 0.96 mM. The Vmax. of lactate and pyruvate transport into hepatocytes at 0 degrees C was 3 nmol/min per mg of protein. Carrier-mediated transport of 0.5 mM-L-lactate was inhibited by 0.2 mM-p-chloromercuribenzenesulphonate (greater than 90%), 0.5 mM-quercetin (80%), 0.6 mM-isobutylcarbonyl-lactyl anhydride (70%) and 0.5 mM-4,4'-di-isothiocyanostilbene-2,2'-disulphonate (50%). A similar pattern of inhibition of lactate transport is seen in erythrocytes. It is suggested that the same or a similar carrier protein exists in both tissues. The results also show that L-lactate transport into rat hepatocytes is very rapid at physiological temperatures and is unlikely to restrict the rate of its metabolism. Differences between our results and those of Fafournoux, Demigne & Remesy [(1985) J. Biol. Chem. 260, 292-299] are discussed.  相似文献   

19.
3-O-Methyl-D-glucose transport across the plasma membrane of isolated rat hepatocytes was followed for net entry of the sugar into sugar-free cells (zero trans entry), net exit of sugar into sugar-free medium (zero trans exit) and for unidirectional entry and exit fluxes when cells had been equilibrated with sugar in the extracellular medium (equilibrium exchange entry and exit). These measurements were performed at 20 degrees C and pH 7.4 by the use of simple manual methods. Initial rates of transport showed a Michaelis--Menten dependency on the sugar concentration at the cis side of the membrane over the range of concentrations tested (100 microM to 100 mM). Transport was found to be symmetrical with no evidence of substrate stimulation of transport from the trans side of the membrane. Parameters (mean values +/- S.E.M.) of transport were estimated as Vmax. 86.2 +/- 9.7 mmol/litre of cell water per min and Km 18.1 +/- 5.9 mM for exchange entry, Vmax. 78.8 +/- 5.3 mmol/litre of cell water per min and Km 17.6 +/- 3.5 mM for exchange exit, Vmax. 84.1 +/- 8.4 mmol/litre of cell water per min and Km 16.8 +/- 4.6 mM for zero trans exit.  相似文献   

20.
Plasma membrane vesicles from rat liver transported L-lactate into the inner vesicular space. Kinetic analysis of L-lactate uptake gave a Km value of approx. 2.9 mM. Selective inhibition was found in a similar pattern to that described for the hepatic lactate carrier. L-Lactate transport was enhanced when a pH gradient was created across the plasma membrane. Vesicles obtained from fasted rats showed a higher uptake of L-lactate than those from fed rats, when incubated with physiological concentrations of L-lactate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号