首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
When cells are exposed to external H(2)O(2), the H(2)O(2) rapidly diffuses inside and oxidizes ferrous iron, thereby forming hydroxyl radicals that damage DNA. Thus the process of oxidative DNA damage requires only H(2)O(2), free iron, and an as-yet unidentified electron donor that reduces ferric iron to the ferrous state. Previous work showed that H(2)O(2) kills Escherichia coli especially rapidly when respiration is inhibited either by cyanide or by genetic defects in respiratory enzymes. In this study we established that these respiratory blocks accelerate the rate of DNA damage. The respiratory blocks did not substantially affect the amounts of intracellular free iron or H(2)O(2), indicating that that they accelerated damage because they increased the availability of the electron donor. The goal of this work was to identify that donor. As expected, the respiratory inhibitors caused a large increase in the amount of intracellular NADH. However, NADH itself was a poor reductant of free iron in vitro. This suggests that in non-respiring cells electrons are transferred from NADH to another carrier that directly reduces the iron. Genetic manipulations of the amounts of intracellular glutathione, NADPH, alpha-ketoacids, ferredoxin, and thioredoxin indicated that none of these was the direct electron donor. However, cells were protected from cyanide-stimulated DNA damage if they lacked flavin reductase, an enzyme that transfers electrons from NADH to free FAD. The K(m) value of this enzyme for NADH is much higher than the usual intracellular NADH concentration, which explains why its flux increased when NADH levels rose during respiratory inhibition. Flavins that were reduced by purified flavin reductase rapidly transferred electrons to free iron and drove a DNA-damaging Fenton system in vitro. Thus the rate of oxidative DNA damage can be limited by the rate at which electron donors reduce free iron, and reduced flavins become the predominant donors in E. coli when respiration is blocked. It remains unclear whether flavins or other reductants drive Fenton chemistry in respiring cells.  相似文献   

2.
Reactive oxygen species induce a pharmacopoeia of oxidized bases in DNA. DNA can be cleaved at most of the sites of these modified bases by digestion with a combination of two base excision repair glycosylases from Escherichia coli, Fpg glycosylase, and endonuclease III. The frequency of the resulting glycosylase-dependent 5'-phosphoryl ends can be mapped at nucleotide resolution along a sequencing gel autoradiogram by a genomic sequencing technique, ligation-mediated polymerase chain reaction (LMPCR). In cultured rat cells, the frequency of endogenous oxidized bases in mitochondrial DNA is sufficiently high, about one oxidized base per 100 kb, to be directly mapped from 0.1 microg of total cellular DNA preparations by LMPCR. Nuclear DNA has a lower frequency of endogenous oxidative base damage which cannot be mapped from 1-microg preparations of total cellular DNA. Preparative gel electrophoresis of the PGK1 and p53 genes from 300 microg of restriction endonuclease-digested genomic DNA showed a 25-fold enrichment for the genes and, after endonuclease digestion followed by LMPCR, gave sufficient signal to map the frequency of oxidized bases from human cells treated with 50 microM H2O2.  相似文献   

3.
Oxidative damage to DNA caused by free radicals and other oxidants generate base and sugar damage, strand breaks, clustered sites, tandem lesions and DNA-protein cross-links. Oxidative DNA damage is mainly repaired by base-excision repair in living cells with the involvement of DNA glycosylases in the first step and other enzymes in subsequent steps. DNA glycosylases remove modified bases from DNA, generating an apurinic/apyrimidinic (AP) site. Some of these enzymes that remove oxidatively modified DNA bases also possess AP-lyase activity to cleave DNA at AP sites. DNA glycosylases possess varying substrate specificities, and some of them exhibit cross-activity for removal of both pyrimidine- and purine-derived lesions. Most studies on substrate specificities and excision kinetics of DNA glycosylases were performed using oligonucleotides with a single modified base incorporated at a specific position. Other studies used high-molecular weight DNA containing multiple pyrimidine- and purine-derived lesions. In this case, substrate specificities and excision kinetics were found to be different from those observed with oligonucleotides. This paper reviews substrate specificities and excision kinetics of DNA glycosylases for removal of pyrimidine- and purine-derived lesions in high-molecular weight DNA.  相似文献   

4.
Oxidative stress is reputed to be a significant contributor to the aging process and a key factor affecting species longevity. The tremendous natural variation in maximum species lifespan may be due to interspecific differences in reactive oxygen species generation, antioxidant defenses and/or levels of accrued oxidative damage to cellular macromolecules (such as DNA, lipids and proteins). The present study tests if the exceptional longevity of the longest living (> 28.3 years) rodent species known, the naked mole-rat (NMR, Heterocephalus glaber ), is associated with attenuated levels of oxidative stress. We compare antioxidant defenses (reduced glutathione, GSH), redox status (GSH/GSSG), as well as lipid (malondialdehyde and isoprostanes), DNA (8-OHdG), and protein (carbonyls) oxidation levels in urine and various tissues from both mole-rats and similar-sized mice. Significantly lower GSH and GSH/GSSG in mole-rats indicate poorer antioxidant capacity and a surprisingly more pro-oxidative cellular environment, manifested by 10-fold higher levels of in vivo lipid peroxidation. Furthermore, mole-rats exhibit greater levels of accrued oxidative damage to lipids (twofold), DNA (~two to eight times) and proteins (1.5 to 2-fold) than physiologically age-matched mice, and equal to that of same-aged mice. Given that NMRs live an order of magnitude longer than predicted based on their body size, our findings strongly suggest that mechanisms other than attenuated oxidative stress explain the impressive longevity of this species.  相似文献   

5.
6.
7.
Guanyl radicals, the product of the removal of a single electron from guanine, are produced in DNA by the direct effect of ionizing radiation. We have produced guanyl radicals in DNA by using the single electron oxidizing agent (SCN)2, itself derived from the indirect effect of ionizing radiation via thiocyanate scavenging of OH. We have examined the reactivity of guanyl radicals in plasmid DNA with the six most easily oxidized amino acids cysteine, cystine, histidine, methionine, tryptophan and tyrosine and also simple ester and amide derivatives of them. Cystine and histidine derivatives are unreactive. Cysteine, methionine, tyrosine and particularly tryptophan derivatives react to repair guanyl radicals in plasmid DNA with rate constants in the region of ~105, 105, 106 and 107 dm3 mol–1 s–1, respectively. The implication is that amino acid residues in DNA binding proteins such as histones might be able to repair by an electron transfer reaction the DNA damage produced by the direct effect of ionizing radiation or by other oxidative insults.  相似文献   

8.
Damage caused to Saccharomyces cerevisiae SY4 plasma membrane H(+)-ATPase by Fe- and Cu-Fenton reagents was determined in secretory vesicles containing enzyme in which Cys residues were replaced singly or in pairs by Ala. Cys-221 situated in a beta-sheet domain between M2 and M3 segments, phosphorylation domain-located Cys-409 and Cys-532 situated at the ATP-binding site play a role in the inactivation. In the presence of all three residues the enzyme exhibited a certain basic inactivation, which did not change when Cys-532 was replaced with Ala. In mutants having intact Cys-532 but lacking one or both other cysteines, replacement of Cys-221 with Ala led to lower inactivation, suggesting that Cys-221 may serve as a target for metal-catalyzed oxidation and intact Cys-532 promotes this target role of Cys-221. In contrast, the absence of Cys-409 caused higher inactivation by Fe-Fenton. Cys-532 thus seems to serve as a target for Fe-Fenton, intact Cys-409 causing a conformational change that makes Cys-532 less accessible to oxidation. The mutant lacking both Cys-221 and Cys-409 is more sensitive to Fe-Fenton than to Cu-Fenton and the absence of both Cys residues thus seems to expose presumable extra Fe-binding sites. These data and those on protection by ATP, ADP, 1,4-dithiothreitol and deferrioxamine B point to complex interactions between individual parts of the enzyme molecule that determine its sensitivity towards Fenton reagents. ATPase fragmentation caused by the two reagents differed in that the Fe-Fenton reagent produced in Western blot "smears" whereas the Cu-Fenton reagent produced defined fragments.  相似文献   

9.
A comparative study was performed on lysozyme modification after exposure to Fenton reagent (Fe(II)/H2 O2) or hydroxyl radicals produced by y radiation. The conditions were adjusted to obtain, with both systems, a 50% loss of activity of the modified ensemble. Gamma radiation modified almost all types of amino acid residues in the enzyme, with little specificity. The modification order was Tyr > Met = Cys > Lys > Ile + Leu > Gly > Pro = Phe > Thr + Ala > Trp = Ser > Arg > Asp + Glu, with 42 mol of modified residues per initial mole of native enzyme. In contrast, when the enzyme was exposed to the Fenton reaction, only some types of amino acids were modified. Furthermore, a smaller number of residues (13.5) were damaged per initial mole of enzyme. The order of the modified residues was Tyr > Cys > Trp > Met His > Ile + Leu > Val > Arg. These results demonstrate that the modifications elicited by these two free radical sources follow different mechanisms. An intramolecular free radical chain reaction is proposed to play a dominant role in the oxidative modification of the protein promoted by gamma radiation.  相似文献   

10.
Cellular genomes suffer extensive damage from exogenous agents and reactive oxygen species formed during normal metabolism. The MutT homologs (MutT/MTH) remove oxidized nucleotide precursors so that they cannot be incorporated into DNA during replication. Among many repair pathways, the base excision repair (BER) pathway is the most important cellular protection mechanism responding to oxidative DNA damage. The 8-oxoG glycosylases (Fpg or MutM/OGG) and the MutY homologs (MutY/MYH) glycosylases along with MutT/MTH protect cells from the mutagenic effects of 8-oxoG, the most stable and deleterious product known caused by oxidative damage to DNA. The key enzymes in the BER process are DNA glycosylases, which remove different damaged bases by cleavage of the N-glycosylic bonds between the bases and the deoxyribose moieties of the nucleotide residues. Biochemical and structural studies have demonstrated the substrate recognition and reaction mechanism of BER enzymes. Cocrystal structures of strated the substrate recognition and reaction mechanism of BER enzymes. Cocrystal structures of several glycosylases show that the substrate base flips out of the sharply bent DNA helix and the minor groove is widened to be accessed by the glycosylases. To complete the repair after glycosylase action, the apurinic/apyrimidinic (AP) site is further processed by an incision step, DNA synthesis, an excision step, and DNA ligation through two alternative pathways. The short-patch BER (1-nucleotide patch size) and long-patch BER (2–6-nucleotide patch size) pathways need AP endonuclease to generate a 3′ hydroxyl group but require different sets of enzymes for DNA synthesis and ligation. Protein-protein interactions have been reported among the enzymes involved in BER. It is possible that the successive players in the repair pathway are assembled in a complex to perform concerted actions. The BER pathways are proposed to protect cells and organisms from mutagenesis and carcinogenesis.  相似文献   

11.
Apart from their well-established role in nitric oxide detoxification, flavohemoglobins (FHbs) are also believed to be involved in protection against oxidative stress in some yeast and bacteria. However, different studies have reported contradictory results in this regard. Here, we investigate the relationship between two FHbs in Aspergillus oryzae (cytosolic FHb1 and mitochondrial FHb2) and oxidative stress. The strains deficient in the two FHbs exhibited higher resistance to hydrogen peroxide than the wild-type. In addition, the FHb2 overexpression strain showed hypersensitivity to hydrogen peroxide. Flavin reductase accompanied by the ferric reductase activities of the two FHbs were observed in correspondence with this expression. The reductase activities of the FHbs were attributed to their C-terminal flavin reductase domains. The reduced intracellular free iron can subsequently promote oxidative damage by accelerating the Fenton reaction in the cytosol and mitochondria (corresponding to the subcellular localizations of the two FHbs). This study is the first to show that fungal FHbs have a deleterious effect on oxidative protection, and suggests that the accelerated Fenton reaction induced by FHbs might be responsible for this effect.  相似文献   

12.
13.
Kim RH  Kwon OJ  Park JW 《Biochimie》2001,83(6):487-495
Ceruloplasmin (Cp) was found to promote the oxidative damage to DNA in vitro, as evidenced by the formation of 8-hydroxy-2'-deoxyguanosine and strand breaks, when incubated with a cysteine metal-catalyzed oxidation system (Cys-MCO) comprised of Fe(3+), O(2), and cysteine as an electron donor. The capacity of Cp to enhance oxidative damage to DNA was inhibited by hydroxyl radical scavengers such as sodium azide and mannitol, a metal chelator, diethylenetriaminepentaacetic acid, a spin-trapping agent, 5,5-dimethyl-1-pyrroline N-oxide (DMPO) and catalase. Ceruloplasmin also caused the two-fold enhancement of a mutation in the pUC18 lacZ' gene in the presence of Cys-MCO when measured as a loss of alpha-complementation. Incubation of Cp with Cys-MCO resulted in an increase in the content of carbonyl groups and the significant alteration of the ferroxidase activity, as well as the proteolytic susceptibility. The deoxyribose assay and the salicylate hydroxylation assay showed that hydroxyl free radicals were generated in the reaction of Cp with Cys-MCO. The release of a portion of Cu from Cp was observed, and conformational alterations were indicated by the changes in fluorescence spectra. Based on these results, we interpret the enhancing effect of Cp on DNA damage and mutagenicity induced by Cys-MCO as due to reactive oxygen species, probably hydroxyl free radicals, formed by the reaction of free Cu(2+), released from oxidatively damaged Cp, and H(2)O(2) produced by Cys-MCO. The release of Cu from Cp during oxidative stress could enhance the formation of reactive oxygen species and could also potentiate cellular damage.  相似文献   

14.
Oxidative damage to DNA has often been used as a biomarker for oxidative stress and more specifically for cancer risk. Indeed, the measurement of oxidative damage to DNA, particularly of 8-hydroxyguanine (8OHG) and 8-hydroxy-2'-deoxyguanosine (8OHdG), has been adopted as a method for establishing the effects of antioxidant supplementation towards protection from certain cancers, cardiovascular and neuro-degenerative diseases, both in patients and healthy individuals. However, reported levels of 8OHdG or 8OHG vary considerably, possibly due to the different methodologies used, and only few data are available for the non-smoking and the female population. In this paper, steady-state levels of oxidative damage to DNA measured in a group of 20 males and 19 females are reported. Significant gender differences in levels of modified DNA bases such as 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FAPy guanine), 8-hydroxyadenine (8OHA) and 5-hydroxycytosine (5OHC), measured by gas chromatography-mass spectrometry (GC/MS), were observed. The results are discussed in relation to the Vitamin C and iron status of the subjects and to the existing, yet limited, literature data. The role of gender in predisposition to oxidative damage to DNA needs to be addressed in future studies.  相似文献   

15.
Experimental study of oxidative DNA damage   总被引:7,自引:0,他引:7  
Animal experiments allow the study of oxidative DNA damage in target organs and the elucidation of dose-response relationships of carcinogenic and other harmful chemicals and conditions as well as the study of interactions of several factors. So far the effects of more than 50 different chemical compounds have been studied in animal experiments mainly in rats and mice, and generally with measurement of 8-oxodG with HPLC-EC. A large number of well-known carcinogens induce 8-oxodG formation in liver and/or kidneys. Moreover several animal studies have shown a close relationship between induction of dative DNA damage and tumour formation.

In principle the level of oxidative DNA damage in an organ or cell may be studied by measurement of modified bases in extracted DNA by immunohistochemical visualisation, and from assays of strand breakage before and after treatment with repair enzymes. However, this level is a balance between the rates of damage and repair. Until the repair rates and capacity can be adequately assessed the rate of damage can only be estimated from the urinary excretion of repair products albeit only as an average of the entire body.

A number of model compounds have been used to induce oxidative DNA damage in experimental animals. The hepatocarcinogen 2-nitropropane induces up to 10-fold increases in 8-oxodG levels in rat liver DNA. The level of 8-oxodG is also increased in kidneys and bone marrow but not in the testis. By means of 2-nitropropane we have shown correspondence between the increases in 8-oxodG in target organs and the urinary excretion of 8-oxodG and between 8-oxodG formation and the comet assay in bone marrow as well potent preventive effects of extracts of Brussels sprouts. Others have shown similar effects of green tea extracts and its components. Drawbacks of the use of 2-nitropropane as a model for oxidative DNA damage relate particularly to formation of 8-aminoguanine derivatives that may interfere with HPLC-EC assays and have unknown consequences. Other model compounds for induction of oxidative DNA damage, such as ferric nitriloacetate, iron dextran, potassium bromate and paraquat, are less potent and/or more organ specific.

Inflammation and activation of an inflammatory response by phorbol esters or E. coli lipopolysaccharide (LPS) induce oxidative DNA damage in many target cells and enhance benzene-induced DNA damage in mouse bone marrow.

Experimental studies provide powerful tools to investigate agents inducing and preventing oxidative damage to DNA and its role in carcinogenesis. So far, most animal experiments have concerned 8-oxodG and determination of additional damaged bases should be employed. An ideal animal model for prevention of oxidative DNA damage has yet to he developed.  相似文献   

16.
Milligan JR  Tran NQ  Ly A  Ward JF 《Biochemistry》2004,43(17):5102-5108
Guanyl radical species are produced in DNA by electron removal caused by ionizing radiation, photoionization, oxidation, or photosensitization. DNA guanyl radicals can be reduced by electron donation from mild reducing agents. Important biologically relevant examples are the redox active amino acids cysteine, cystine, methionine, tryptophan, and tyrosine. We have quantified the reactivity of derivatives of these amino acids with guanyl radicals located in plasmid DNA. The radicals were produced by electron removal using the single electron oxidizing agent (SCN)(2)(*)(-). Disulfides (cystine) are unreactive. Thioethers (methionine), thiols (cysteine), and phenols (tyrosine) react with rate constants in the range 10(4)-10(6), 10(5)-10(6), and 10(5)-10(6) dm(3) mol(-1) s(-1), respectively. Indoles (tryptophan) are the most reactive with rate constants of 10(7)-10(8) dm(3) mol(-1) s(-1). Selenium analogues of amino acids are over an order of magnitude more reactive than their sulfur equivalents. Increasing positive charge is associated with a ca. 10-fold increase in reactivity. The results suggest that amino acid residues located close to DNA (for example, in DNA binding proteins such as histones) might participate in the repair of oxidative DNA damage.  相似文献   

17.
Several isothiocyanates have been proposed as promising chemopreventive agents for human cancers. However, it has been reported that allyl isothiocyanate exhibit carcinogenic potential, and benzyl isothiocyanate and phenethyl isothiocyanate have tumor-promoting activities. We investigated whether these isothiocyanates could cause DNA damage, using (32)P-labeled DNA fragments obtained from the human p53 tumor suppressor gene and the c-Ha-ras-1 protooncogene. Allyl isothiocyanate caused Cu(II)-mediated DNA damage and formation of 8-oxo-7, 8-dihydro-2'-deoxyguanosine (8-oxodG) more strongly than benzyl and phenethyl isothiocyanates. Catalase and bathocuproine, a Cu(I)-specific chelator, inhibited Cu(II)-mediated DNA damage by these isothiocyanates, suggesting involvement of H(2)O(2) and Cu(I). Isothiocyanates induced DNA damage frequently at thymine and cytosine residues in the presence of Cu(II). A UV-visible spectroscopic study revealed an association between the generation of superoxide and the yield of SH group from isothiocyanates. Furthermore, the yield of 8-oxodG formation was correlated with their superoxide-generating ability. Allyl isothiocyanate significantly induced 8-oxodG formation in HL-60 cells, but not in H(2)O(2)-resistant HP100 cells, suggesting the involvement of H(2)O(2) in cellular DNA damage. We conclude that oxidative DNA damage may play important roles in carcinogenic processes induced by allyl isothiocyanate.  相似文献   

18.
Mechanism of oxidative DNA damage induced by carcinogenic 4-aminobiphenyl   总被引:5,自引:0,他引:5  
DNA adduct formation is thought to be a major cause of DNA damage by carcinogenic aromatic amines. We investigated the ability of an aromatic amine, 4-aminobiphenyl (4-ABP) and its N-hydroxy metabolite (4-ABP(NHOH)) to cause oxidative DNA damage, using (32)P-labeled human DNA fragments from the p53 tumor suppressor gene and the c-Ha-ras-1 protooncogene. 4-ABP(NHOH) was found to cause Cu(II)-mediated DNA damage, especially at thymine residues. Addition of the endogenous reductant NADH led to dramatic enhancement of this process. Catalase and bathocuproine, a Cu(I)-specific chelator, reduced the amount of DNA damage, suggesting the involvement of H(2)O(2) and Cu(I). 4-ABP(NHOH) dose-dependently induced 8-hydroxy-2'-deoxyguanosine (8-OHdG) formation in the presence of Cu(ll) and NADH. 4-ABP(NHOH) conversion to nitrosobiphenyl, as measured by UV-visible spectroscopy, occurred rapidly in the presence of Cu(II), suggesting Cu(II)-mediated autoxidation. Increased amounts of 8-OHdG were found in HL-60 cells compared to the H(2)O(2)-resistant clone HP100 following 4-ABP(NHOH) treatment, further supporting the involvement of H(2)O(2). The present study demonstrates that an N-hydroxy derivative of 4-ABP induces oxidative DNA damage through H(2)O(2) in both a cell-free system and in cultured human cells. We conclude that, in addition to DNA adduct formation, oxidative DNA damage may play an important role in the carcinogenic process of 4-ABP.  相似文献   

19.
The ability of the fungal carcinogen, ochratoxin A (OTA, 1), to facilitate copper-promoted oxidative DNA damage has been assessed using supercoiled plasmid DNA (Form I)-agarose gel electrophoresis and gas chromatography-mass spectrometry with selected-ion monitoring (GC-MS-SIM). OTA is shown to promote oxidative cleavage of Form I DNA with optimal cleavage efficiency occurring under excess Cu(II) conditions. As the concentration of OTA was increased and present in excess of Cu(II) the cleavage was less effective. Parallel findings were found for the ability of the OTA-Cu mixture to facilitate oxidative base damage. Yields (lesions per 10(6) DNA bases) of modified bases upon exposure of calf-thymus DNA (CT-DNA) to OTA-H(2)O(2)-Cu(II) were diminished when the OTA:Cu ratio was increased to 5:1. Electrochemical studies carried out in methanol implicate a ligand-centered 2e oxidation of OTA in the presence of excess Cu(II), while product analyses utilizing electrospray mass spectrometry support the intermediacy of the quinone, OTQ (3), in Cu-promoted oxidation of OTA. The implications of these findings with regard to the mutagenicity of OTA are discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号