首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
J R Broach  J N Strathern  J B Hicks 《Gene》1979,8(1):121-133
We have constructed a plasmid, YEp13, which when used in conjunction with transformation in yeast is a suitable vector for isolating specific yeast genes. The plasmid consists of pBR322, the LEU2 gene of yeast, and a DNA fragment containing a yeast origin of replication from 2 mu circule. We have demonstrated the utility of this cloning system by isolating the yeast gene encoding the arginine permease, CAN1, from a pool of random yeast DNA fragments inserted into YEp13.  相似文献   

2.
In vivo recombinational cloning in yeast is a very efficient method. Until now, this method has been limited to experiments with yeast vectors because most animal, insect, and bacterial vectors lack yeast replication origins. We developed a new system to apply yeast-based in vivo cloning to vectors lacking yeast replication origins. Many cloning vectors are derived from the plasmid pBR322 and have a similar backbone that contains the ampicillin resistance gene and pBR322-derived replication origin for Escherichia coli. We constructed a helper plasmid pSUO that allows the in vivo conversion of a pBR322-derived vector to a yeast/E. coli shuttle vector through the use of this backbone sequence. The DNA fragment to be cloned is PCR-amplified with the addition of 40 bp of homology to a pBR322-derived vector. Cotransformation of linearized pSU0, the pBR322-derived vector, and a PCR-amplified DNA fragment, results in the conversion of the pBR322-derived vector into a yeast/E. coli shuttle vector carrying the DNA fragment of interest. Furthermore, this method is applicable to multifragment cloning, which is useful for the creation of fusion genes. Our method provides an alternative to traditional cloning methods.  相似文献   

3.
We have cloned and sequenced the alcohol dehydrogenase gene of the fission yeast Schizosaccharomyces pombe. The gene was isolated by transformation and complementation of a Saccharomyces cerevisiae strain which lacked functional alcohol dehydrogenase with an S. pombe gene bank constructed in the autonomously replicating yeast plasmid YEp13. Southern hybridization analysis indicates that S. pombe contains only one alcohol dehydrogenase gene. The structural region of the gene is 50% homologous to the alcohol dehydrogenase encoding genes of the budding yeast S. cerevisiae. The gene exhibits a very strong codon usage bias; with the set of predominantly used codons generally resembling that which S. cerevisiae employs preferentially. All of the differences in codon usage bias between S. pombe and S. cerevisiae are in the direction of greater G + C content in S. pombe codons. It is argued that this observation supports the hypothesis that selection toward uniform codon-anticodon binding energies contributes to codon usage bias and that the optimum binding energy is, on the average, higher in S. pombe than S. cerevisiae.  相似文献   

4.
Radiation resistance in Schizosaccharomyces pombe   总被引:2,自引:0,他引:2  
The fission yeast Schizosaccharomyces pombe serves as an excellent alternative and complementary model system for the analysis of genes and gene products involved in DNA repair. This brief review outlines the advantages of S. pombe and describes the radiation-sensitive mutants available for the analysis of DNA repair and recombination mechanisms in this organism. The progress in the cloning and characterization of representative genes is also described.  相似文献   

5.
We have developed a high-frequency cotransformation system which is useful in introducing nonreplicating circular DNA plasmids into the fission yeast Schizosaccharomyces pombe. This system depends on two factors: the ability of the ural-complementing helper plasmids pFYM2 and pFYM225 to propagate autonomously in S. pombe, and the intensive recombination activity intrinsic to this yeast. If cotransformed with a helper plasmid, plasmids such as YIp5 or YIp32, Escherichia coli-Saccharomyces cerevisiae shuttle vectors incapable of replication in S. pombe, can enter S. pombe and express the gene carried on them at a frequency comparable to that of autonomously replicating plasmids (10(3) to 10(4) transformants per microgram of DNA). Even if characters of the nonreplicating DNA are not selected directly, 50 to 70% of Ura+ cells transformed with the helper have also incorporated the nonreplicating plasmid. It is shown that these two plasmids have physically recombined at a site of common DNA sequence to form a heteropolymer in the fission yeast. Since any foreign DNA cloned in pBR322 or ColE1 derivatives can be incorporated into S. pombe by using pFYM2 or pFYM225 as a helper, this cotransformation system will serve as a convenient method to examine functional expression of such cloned DNA in S. pombe. This work also demonstrates that the kanamycin resistance gene carried by the bacterial transposon Tn903 can be expressed in S. pombe, as shown by its ability to inactivate the antibiotic G418.  相似文献   

6.
We have designed the most efficient strategy to knock out genes in fission yeast Schizosaccharomyces pombe on a large scale. Our technique is based on knockout constructs that contain regions homologous to the target gene cloned into vectors carrying dominant drug-resistance markers. Most of the steps are carried out in a 96-well format, allowing simultaneous deletion of 96 genes in one batch. Based on our knockout technique, we designed a strategy for cloning knockout constructs for all predicted fission yeast genes, which is available in a form of a searchable database http://mendel.imp.ac.at/Pombe_deletion/. We validated this technique in a screen where we identified novel genes required for chromosome segregation during meiosis. Here, we present our protocol with detailed instructions. Using this protocol, one person can knock out 96 S. pombe genes in 8 days.  相似文献   

7.
J. B. Keeney  J. D. Boeke 《Genetics》1994,136(3):849-856
Homologous integration into the fission yeast Schizosaccharomyces pombe has not been well characterized. In this study, we have examined integration of plasmids carrying the leu1(+) and ura4(+) genes into their chromosomal loci. Genomic DNA blot analysis demonstrated that the majority of transformants have one or more copies of the plasmid vector integrated via homologous recombination with a much smaller fraction of gene conversion to leu1(+) or ura4(+). Non-homologous recombination events were not observed for either gene. We describe the construction of generally useful leu1(+) and ura4(+) plasmids for targeted integration at the leu1-32 and ura4-294 loci of S. pombe.  相似文献   

8.
9.
A piece of DNA of the yeast Saccharomyces cerevisiae complementing the uracil permease gene was introduced into a plasmid able to replicate autonomously in Schizosaccharomyces pombe. A strain of S. pombe lacking uracil transport activity was transformed with this new plasmid carrying the gene of S. cerevisiae. The behaviour of the transformant shows not only an expression of the uracil permease gene in the heterologous membrane but also that the transport of uracil is active and coupled to the energy furnishing system of the heterologous host.  相似文献   

10.
We describe a highly efficient alkali cation method and library transducing vectors for cloning mammalian cDNAs by trans-complementation of fission yeast Schizosaccharomyces pombe mutants. cDNA libraries constructed with the pcD or pcD2 vector are transduced into yeast by cotransfection with a linearized vector, which allows an enhanced homologous recombination between the yeast vector and the library plasmid leading to the efficient formation of concatemers containing pcD molecules. The transformation frequencies obtained by the method are 10(6) colonies per 10(8) cells transfected with 2 micrograms of library and 1 microgram of vector, 50-60% of which contain pcD molecules. The high-efficiency alkali cation method circumvents many of the shortcomings of the spheroplast method generally used for Schiz. pombe transfection. The vectors are maximized for the efficiency of library transduction and minimized for the rearrangements of pcD molecules during propagation in yeast. This system allows rapid screening of multi-million cDNA clone libraries for rare cDNAs in a routine scale of experiments. Using this system, various mammalian cDNAs that are extremely difficult, time-consuming, or unclonable to clone by other methods have been cloned.  相似文献   

11.
The first gene encoding gamma-glutamyl transpeptidase (GGTI) of the fission yeast has previously been characterized, and its expression was found to be regulated by various oxidative stress-inducing agents. In this work, a second gene, encoding GGTII, was cloned and characterized from the fission yeast Schizosaccharomyces pombe. The structural gene encoding GGTII was amplified from the genomic DNA of the fission yeast and ligated into the shuttle vector pRS316 to generate the recombinant plasmid pPHJ02. The determined sequence contains 3040 bp and is able to encode the putative 611 amino acid sequence of GGTII, which resembles the counterparts of Saccharomyces cerevisiae, Homo sapiens, Rattus norvegicus, and Escherichia coli. The DNA sequence also contains 940-bp upstream and 289-bp downstream regions of the GGTII gene. The Schizosaccharomyces pombe cells harboring plasmid pPHJ02 showed about 4-fold higher GGT activity in the exponential phase than the cells harboring the vector only, indicating that the cloned GGTII gene is functional. The S. pombe cells containing the cloned GGTII gene were found to contain higher levels of both intracellular glutathione (GSH) content and GSH uptake. The S. pombe cells harboring plasmid pPHJ02 showed increased survival on solid media containing hydrogen peroxide, diethylmaleate, aluminum chloride, cadmium chloride, or mercuric chloride. The GGTII mRNA level was significantly elevated by treatment with GSH-depleting diethylmaleate. These results imply that the S. pombe GGTII gene produces functional GGTII protein and is involved in the response to oxidative stresses in S. pombe cells.  相似文献   

12.
PCR-mediated direct gene disruption in Schizosaccharomyces pombe.   总被引:2,自引:0,他引:2       下载免费PDF全文
We have examined the feasibility and efficiency of PCR-mediated direct gene disruptions in the fission yeast Schizosaccharomyces pombe. In the present study, the S.pombe ura4+ gene was amplified by PCR with oligonucleotides that had short flanking regions ( approximately 40 bp) to the target gene. Using this purified PCR product we were able to disrupt genes in an S. pombe strain bearing aura4 deletion, with an efficiency ranging between 1 and 3% among selected transformants. The results indicated that despite S.pombe's preference for non-homologous or illegitimate recombination, even very short stretches of homologous regions could be used to target genes at a defined frequency in this organism. The successful disruption of four independent genes (sts1+, gcs1+, gsh2+and hmt1+) by this method further demonstrates that, despite the relatively low efficiency, the method is very feasible, and it's simplicity, especially when coupled to phenotype-based screening, should greatly facilitate disruption of genes in S.pombe.  相似文献   

13.
Kiely J  Haase SB  Russell P  Leatherwood J 《Genetics》2000,154(2):599-607
orp2 is an essential gene of the fission yeast Schizosaccharomyces pombe with 22% identity to budding yeast ORC2. We isolated temperature-sensitive alleles of orp2 using a novel plasmid shuffle based on selection against thymidine kinase. Cells bearing the temperature-sensitive allele orp2-2 fail to complete DNA replication at a restrictive temperature and undergo cell cycle arrest. Cell cycle arrest depends on the checkpoint genes rad1 and rad3. Even when checkpoint functions are wild type, the orp2-2 mutation causes high rates of chromosome and plasmid loss. These phenotypes support the idea that Orp2 is a replication initiation factor. Selective spore germination allowed analysis of orp2 deletion mutants. These experiments showed that in the absence of orp2 function, cells proceed into mitosis despite a lack of DNA replication. This suggests either that the Orp2 protein is a part of the checkpoint machinery or more likely that DNA replication initiation is required to induce the replication checkpoint signal.  相似文献   

14.
Aquaporin membrane proteins enable the transport of water across membranes in various organisms. In yeast their expression has been shown to correlate strongly with freeze tolerance. When we analyzed the freeze tolerance of Schizosaccharomyces pombe, an organism whose genome sequence has revealed no genes encoding a bona fide water channel, we found very low intrinsic freeze tolerance compared to other yeast species with aquaporin-encoding genes. Deletion of Spac977.17, which encodes a putative glycerol facilitator, resulted in no significant differences in freeze tolerance with its corresponding wild-type strain in all growth conditions tested. However, when we expressed the Saccharomyces cerevisiae aquaporin-encoding gene AQY2-1 in S. pombe cells, we found that the relatively low freeze tolerance of S. pombe could be significantly enhanced. Therefore, (i) the absence of a bona fide water channel in S. pombe might provide in part an explanation for its overall low freeze tolerance compared to other yeast species, and (ii) aquaporin overexpression might be a tool to improve cryopreservation of many other cell types as well, as has recently been shown for mouse oocytes and fish embryos.  相似文献   

15.
16.
17.
J. R. Erickson  M. Johnston 《Genetics》1993,134(1):151-157
We describe a technique that facilitates the isolation of yeast genes that are difficult to clone. This technique utilizes a plasmid vector that rescues lambda clones as yeast centromere plasmids. The source of these lambda clones is a set of clones whose location in the yeast genome has been determined by L. Riles et al. in 1993. The Esherichia coli-yeast shuttle plasmid carries URA3, ARS4 and CEN6, and contains DNA fragments from the lambda vector that flank the cloned yeast insert. When yeast is cotransformed with linearized plasmid and lambda clone DNA, Ura(+) transformants are obtained by a recombination event between the lambda clone and the plasmid vector that generates an autonomously replicating plasmid containing the cloned yeast DNA sequences. Genes whose genetic map positions are known can easily be identified and recovered in this plasmid by testing only those lambda clones that map to the relevant region of the yeast genome for their ability to complement the mutant phenotype. This technique facilitates the isolation of yeast genes that resist cloning either because (1) they are underrepresented in yeast genomic libraries amplified in E. coli, (2) they provide phenotypes that are too marginal to allow selection of the gene by genetic complementation or (3) they provide phenotypes that are laborious to score. We demonstrate the utility of this technique by isolating three genes, GAL83, SSN2 and MAK7, each of which presents one of these problems for cloning.  相似文献   

18.
Protection against cadmium toxicity in yeast by alcohol dehydrogenase.   总被引:1,自引:0,他引:1  
A cDNA expression library from Schizosaccharomyces pombe was transformed into Saccharomyces cerevisiae to screen for genes capable of conferring cadmium resistance to S. cerevisiae cells. The cDNA library was cloned into the S. cerevisiae expression vector pDB20 which is designed to express cDNAs via the constitutively-expressed promoter of the gene for alcohol dehydrogenase I (ADH1). Terminator and polyadenylation signals are also provided by the ADH1 gene. Cadmium resistant colonies were shown to arise by a recombination event leading to the exchange of the S. pombe DNA with the chromosomal ADH1 gene and a consequent dramatic increase in the ADH1 gene expression due to the high copy number of the plasmid. The overexpression of ADH1 effectively buffered the cells for cadmium ions by formation of Cd-ADH.  相似文献   

19.
The inefficient suppressor sup3-i of the fission yeast Schizosaccharomyces pombe is an ochre suppressor. Sup3-i was derived from the efficient serine inserting UGA suppressor sup3-e. The cloning and sequencing of the sup3-i gene indicate that the suppressor is different from the parent sup3-e by a C----T substitution in the sequence coding for the middle position of the anticodon. In vitro translation assays supplemented with purified sup3-i tRNA and programmed with Xenopus globin mRNAs lead to the accumulation of a readthrough product in response to UAA termination signals, but not in response to UGA termination codons. Transformation of Saccharomyces cerevisiae nonsense mutant strains with plasmid DNA carrying the S. pombe sup3-i gene, led to ochre, but not amber or UGA suppression in vivo.  相似文献   

20.
A family of yeast expression vectors containing the phage f1 intergenic region   总被引:71,自引:0,他引:71  
T Vernet  D Dignard  D Y Thomas 《Gene》1987,52(2-3):225-233
The construction and characterization of a family of yeast expression vectors is described. They have the following features: plasmid replication and selection (ApR) in Escherichia coli, packaging of single-stranded (ss) DNA upon infection of E. coli with a filamentous helper phage, replication in Saccharomyces cerevisiae based on the 2 mu plasmid origin of replication (ori), selection in yeast by complementation of LEU2 (pVT-L series, size 6.3 kb) or URA3 gene (pVT-U series, size 6.9 kb) and seven unique restriction sites for cloning within an 'expression cassette' which includes the promoter and 3' sequence of the ADH1 gene. The multiple cloning site as well as the ori and intergenic region of the phage f1 have been cloned in two orientations for convenient gene cloning and ssDNA strand selection. As a result any of these eight vectors can be chosen for cloning, expressing genes in yeast, sequencing and mutagenesis without the need for recloning into specialized vectors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号