首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Several polycations were tested for their abilities to inhibit the activity of glycogen synthase kinase 3 (GSK-3). L-Polylysine was the most powerful inhibitor of GSK-3 with half-maximal inhibition of glycogen synthase phosphorylation occurring at approx. 100 nM. D-Polylysine and histone H1 were also inhibitory, but the concentration dependence was complex, and DL-polylysine was the least effective inhibitor. Spermine caused about 50% inhibition of GSK-3 at 0.7 mM and 70% inhibition at 4 mM. Inhibition of GSK-3 by L-polylysine could be blocked or reversed by heparin. A heat-stable polycation antagonist isolated from swine kidney cortex also blocked the inhibitory effect of L-polylysine on GSK-3 and blocked histone H1 stimulation of protein phosphatase 2A activity. Under the conditions tested, L-polylysine also inhibited GSK-3 catalyzed phosphorylation of type II regulatory subunit of cAMP-dependent protein kinase and a 63 kDa brain protein, but only slightly inhibited phosphorylation of inhibitor 2 or proteolytic fragments of glycogen synthase that contain site 3 (a + b + c). L-Polylysine at a concentration (200 nM) that caused nearly complete inhibition of GSK-3 stimulated casein kinase I and casein kinase II, but had virtually no effect on the catalytic subunit of cAMP-dependent protein kinase. These results suggest that polycations can be useful in controlling GSK-3 activity. Polycations have the potential to decrease the phosphorylation state of glycogen synthase at site 3, both by inhibiting GKS-3 as shown in this study and by stimulating the phosphatase reaction as shown previously (Pelech, S. and Cohen, P. (1985) Eur. J. Biochem. 148, 245-251).  相似文献   

2.
3.
Tau is a microtubule-associated protein found primarily in neurons, and its function is regulated by site-specific phosphorylation. Although it is well established that tau is phosphorylated at both primed and unprimed epitopes by glycogen synthase kinase 3 beta (GSK3 beta), how specific proteins that interact with GSK3 beta regulate tau phosphorylation has not been thoroughly examined. Members of the FRAT (frequently rearranged in advanced T-cell lymphoma) protein family have been shown to interact with GSK3 beta, and FRAT-1 has been shown to modulate the activity of GSK3 beta toward tau and other substrates. However, the effects of FRAT-2 on GSK3 beta activity and tau phosphorylation have not been examined. Therefore in this study the effects of FRAT-2 on GSK3 beta activity and tau phosphorylation were examined. In situ, FRAT-2 significantly increased GSK3 beta-mediated phosphorylation of tau at a primed epitope while not significantly affecting the phosphorylation of unprimed sites. Co-immunoprecipitation studies revealed that association of FRAT-2 with GSK3 beta resulted in a significant increase in phosphorylation of a primed substrate but did not alter phosphorylation of an unprimed substrate. Further, in vitro assays using recombinant proteins directly demonstrated that FRAT-2 enhances GSK3 beta-mediated phosphorylation of a primed substrate to a greater extent than an unprimed substrate. In addition, FRAT-2 is phosphorylated by GSK3 beta. This is the first demonstration of a protein differentially regulating the activity of GSK3 beta toward primed and unprimed epitopes.  相似文献   

4.
Rat liver glycogen synthase was purified to homogeneity by an improved procedure that yielded enzyme almost exclusively as a polypeptide of Mr 85,000. The phosphorylation of this enzyme by eight protein kinases was analyzed by cleavage of the enzyme subunit followed by mapping of the phosphopeptides using polyacrylamide gel electrophoresis in the presence of SDS, reverse-phase high-performance liquid chromatography and thin-layer electrophoresis. Cyclic AMP-dependent protein kinase, phosphorylase kinase, protein kinase C and the calmodulin-dependent protein kinase all phosphorylated the same small peptide (approx. 20 amino acids) located in a 14 kDa CNBr-fragment (CB-1). Calmodulin-dependent protein kinase and protein kinase C also modified second sites in CB-1. A larger CNBr-fragment (CB-2) of approx. 28 kDa was the dominant site of action for casein kinases I and II, FA/GSK-3 and the heparin-activated protein kinase. The sites modified were all localized in a 14 kDa species generated by trypsin digestion. Further proteolysis with V8 proteinase indicated that FA/GSK-3 and the heparin-activated enzyme recognized the same smaller peptide within CB-2, which may also be phosphorylated by casein kinase 1. Casein kinase 1 also modified a distinct peptide, as did casein kinase II. The results lead us to suggest homology to the muscle enzyme with regard to CB-1 phosphorylation and the region recognized by FA/GSK-3, which in rabbit muscle is characterized by a high density of proline and serine residues. A striking difference with the muscle isozyme is the apparent lack of phosphorylations corresponding to the muscle sites 1a and 1b. These results provide further evidence for the presence of liver- and muscle-specific glycogen synthase isozymes in the rat. That the isozymes differ subtly as to phosphorylation sites may provide a clue to the functional differences between the isozymes.  相似文献   

5.
Glycogen synthase kinase 3beta (GSK3beta) is an essential protein kinase that regulates numerous functions within the cell. One critically important substrate of GSK3beta is the microtubule-associated protein tau. Phosphorylation of tau by GSK3beta decreases tau-microtubule interactions. In addition to phosphorylating tau, GSK3beta is a downstream regulator of the wnt signaling pathway, which maintains the levels of beta-catenin. Axin plays a central role in regulating beta-catenin levels by bringing together GSK3beta and beta-catenin and facilitating the phosphorylation of beta-catenin, targeting it for ubiquitination and degradation by the proteasome. Although axin clearly facilitates the phosphorylation of beta-catenin, its effects on the phosphorylation of other GSK3beta substrates are unclear. Therefore in this study the effects of axin on GSK3beta-mediated tau phosphorylation were examined. The results clearly demonstrate that axin is a negative regulator of tau phosphorylation by GSK3beta. This negative regulation of GSK3beta-mediated tau phosphorylation is due to the fact that axin efficiently binds GSK3beta but not tau and thus sequesters GSK3beta away from tau, as an axin mutant that does not bind GSK3beta did not inhibit tau phosphorylation by GSK3beta. This is the first demonstration that axin negatively affects the phosphorylation of a GSK3beta substrate, and provides a novel mechanism by which tau phosphorylation and function can be regulated within the cell.  相似文献   

6.
7.
Glycogen synthase I (EC 2.4.1.11) from rat and from rabbit skeletal muscle was phosphorylated in vitro by glycogen synthase kinase 4 (EC 2.7.1.37) to the extent of 0.8 phosphates/subunit. For both phosphorylated enzymes, the activity ratio (activity without glucose 6-P divided by activity with 8 mM glucose 6-P) was 0.8 when determined with low concentrations of glycogen synthase and/or short incubation times. However, the activity ratio was 0.5 with high enzyme concentrations and longer incubation times. It was found that the lower activity ratios result largely from UDP inhibition of activity measured in the absence of glucose 6-P. Inhibition by UDP was much less pronounced for glycogen synthase I, indicating that a major consequence of phosphorylation by glycogen synthase kinase 4 is an increased sensitivity to UDP inhibition.  相似文献   

8.
Agents that elevate intracellular cyclic AMP (cAMP) levels promote neuronal survival in a manner independent of neurotrophic factors. Inhibitors of phosphatidylinositol 3 kinase and dominant-inactive mutants of the protein kinase Akt do not block the survival effects of cAMP, suggesting that another signaling pathway is involved. In this report, we demonstrate that elevation of intracellular cAMP levels in rat cerebellar granule neurons leads to phosphorylation and inhibition of glycogen synthase kinase 3beta (GSK-3beta). The increased phosphorylation of GSK-3beta by protein kinase A (PKA) occurs at serine 9, the same site phosphorylated by Akt. Purified PKA is able to phosphorylate recombinant GSK-3beta in vitro. Inhibitors of GSK-3 block apoptosis in these neurons, and transfection of neurons with a GSK-3beta mutant that cannot be phosphorylated interferes with the prosurvival effects of cAMP. These data suggest that activated PKA directly phosphorylates GSK-3beta and inhibits its apoptotic activity in neurons.  相似文献   

9.

Background  

The glycogen synthase kinase 3 (GSK3)/SHAGGY-like kinases (GSKs) are non-receptor serine/threonine protein kinases that are involved in a variety of biological processes. In contrast to the two members of the GSK3 family in mammals, plants appear to have a much larger set of divergent GSK genes. Plant GSKs are encoded by a multigene family; analysis of the Arabidopsis genome revealed the existence of 10 GSK genes that fall into four major groups. Here we characterized the structure of Arabidopsis and rice GSK genes and conducted the first broad phylogenetic analysis of the plant GSK gene family, covering a taxonomically diverse array of algal and land plant sequences.  相似文献   

10.
We report here the isolation of the Arabidopsis thaliana gene AtK-1. The predicted protein sequence of AtK-1 show 70% identity to the Arabidopsis ASK and alfalfa MsK kinases that are homologs of the Drosophila shaggy and rat GSK-3 serine/threonine protein kinases playing an important role in signal transduction processes in animals. Northern analysis of different organs revealed exclusive expression in inflorescences suggesting an involvement of the AtK-1 kinase in reproduction-specific processes.  相似文献   

11.
Glycogen synthase kinase-5 (casein kinase-II) phosphorylates glycogen synthase on a serine termed site 5. This residue is just C-terminal to the 3 serines phosphorylated by glycogen synthase kinase-3, which are critical for the hormonal regulation of glycogen synthase in vivo. Although phosphorylation of site 5 does not affect the catalytic activity, it is demonstrated that this modification is a prerequisite for phosphorylation by glycogen synthase kinase-3. Since site 5 is almost fully phosphorylated in vivo under all conditions, the role of glycogen synthase kinase-5 would appear to be a novel one in forming the recognition site for another protein kinase  相似文献   

12.
Inactivation of the von Hippel-Lindau (VHL) tumor suppressor gene is linked to the development of tumors of the eyes, kidneys, and central nervous system. VHL encodes two gene products, pVHL30 and pVHL19, of which one, pVHL30, associates functionally with microtubules (MTs) to regulate their stability. Here we report that pVHL30 is a novel substrate of glycogen synthase kinase 3 (GSK3) in vitro and in vivo. Phosphorylation of pVHL on serine 68 (S68) by GSK3 requires a priming phosphorylation event at serine 72 (S72) mediated in vitro by casein kinase I. Functional analysis of pVHL species carrying nonphosphorylatable or phosphomimicking mutations at S68 and/or S72 reveals a central role for these phosphorylation events in the regulation of pVHL's MT stabilization (but not binding) activity. Taken together, our results identify pVHL as a novel priming-dependent substrate of GSK3 and suggest a dual-kinase mechanism in the control of pVHL's MT stabilization function. Since GSK3 is a component of multiple signaling pathways that are altered in human cancer, our results further imply that normal operation of the GSK3-pVHL axis may be a critical aspect of pVHL's tumor suppressor mechanism through the regulation of MT dynamics.  相似文献   

13.
14.
多功能的蛋白:糖原合成酶激酶-3   总被引:8,自引:0,他引:8  
糖原合成酶激酶-3(GSK-3)是一个多功能的丝氨酸/苏氨酸类激酶,在真核生物中普遍存在。在哺乳动物中包括两个亚型,即GSK-3a和GSK-3β。GSK-3至少在三条细胞通路上有作用:Wnt/wingless,P13-kinase以及Hedgehog信号通路,该酶的作用主要包括调节糖原的合成代谢,参与细胞的分化与增殖等。研究发现,GSK-3在某些疾病,如阿尔茨海默病和非胰岛素依赖型糖尿病(NIDDM)中,其活性会异常升高。现已发现了几种针对该酶的抑制剂,如aloisine,paullones和马来酰胺类化合物等。这些抑制剂的确在分子水平特异性地抑制GSK-3的活性,而对其他激酶几乎没有作用。关于这些抑制剂的研究工作也已经在细胞水平和动物模型上开展起来,为开发以GSK-3为靶点的新的治疗药物创造了良好的基础。  相似文献   

15.
Stimulation of neutrophils with the chemoattractant fMet-Leu-Phe (fMLP) triggers phosphorylation/inactivation of the a- and beta-isoforms of glycogen synthase kinase 3 (GSK-3) with phosphorylation of the alpha-isoform predominating. These reactions were monitored with a phosphospecific antibody that only recognized the alpha- or beta-isoforms of GSK-3 when these proteins were phosphorylated on serine residues 21 and 9, respectively. Inhibitor studies indicated that phosphorylation of GSK-3alpha may be catalyzed by the combined action of p90-RSK and Akt and may represent a new strategy by which G protein-coupled receptors inactivate GSK-3. Inactivation of GSK-3 may be one of the mechanisms that delay apoptosis in fMLP-stimulated neutrophils.  相似文献   

16.
Casein kinase 1 phosphorylated rabbit skeletal muscle glycogen synthase at both seryl and threonyl residues. With glycogen synthase phosphorylated up to 7.5 mol phosphate/mol subunit, about 26% of the phosphate was present in the N-terminal cyanogen bromide fragment (CB1) and 74% in the C-terminal fragment (CB2). Both fragments contained phosphothreonine (11 to 14%) in addition to phosphoserine. When 32P-labeled glycogen synthase was totally digested with trypsin and chromatographed on reversephase high-performance liquid chromatography, seven phosphopeptides were observed. Peptide I eluted in the vicinity of the peptide containing site 1a, peptide II coincided with sites 4 + 5, peptides III and IV eluted in the region corresponding to sites 3a + 3b + 3c, peptide V appeared slightly after the peptide containing site 1b and peptide VII behaved as the peptide containing site 2, whereas peptide VI did not coincide with any of the known phosphopeptides. Limited trypsinization prior to analysis by HPLC led to the disappearance of peaks V and VI without altering peaks I to IV and VII. Only peaks I and VII remained when limited chymotrypsinization was performed prior to HPLC analysis. Chromatography on HPLC of the fragments derived from complete trypsinization of CB2 showed the presence of peaks II to VI. Phosphoamino acid analysis of the different peptides demonstrated the presence of quantitative amounts of phosphothreonine in peptides V, VI, and VII. These results indicate that multiple phosphorylation sites for casein kinase 1 must exist in both the N-terminal and C-terminal regions of glycogen synthase, some of which would only be labeled by casein kinase 1.  相似文献   

17.
Purified glycogen synthase is contaminated with traces of two protein kinases that can phosphorylate the enzyme. One is protein kinase dependent on adenosine 3':5'-monophosphate (cyclic AMP) and the second is an activity termed glycogen synthase kinase-2 [Nimmo, H.G. and Cohen P, (1974)]. Glycogen synthase kinase-2 has been found to be localized relatively specifically in the protein-glycogen complex. It has been purified 4000-fold by two procedures, both of which involve disruption of the complex, followed by the DEAE-cellulose and phosphocellulose chromatographies. However the salt concentration at which glycogen synthase kinase-2 is eluted from DEAE-cellulose depends on the method that is used to disrupt the complex. The results indicate that glycogen synthase kinase-2 is firmly attached to a protein component of the complex. The isolation procedures separate glycogen synthase kinase-2 from phosphorylase kinase, cyclic AMP-dependent protein kinase and other glycogen-metabolising enzymes. Glycogen synthase kinase-2 is the major phosvitin kinase in skeletal muscle, although glycogen synthase is a six to eight-fold better substrate than phosvitin under the standard assay conditions. Phosphorylase kinase and phosphorylase b are not substrates for glycogen synthase kinase 2. Following incubation with cyclic-AMP-dependent protein kinase, cyclic AMP and Mg-ATP, the phosphorylation of glycogen synthase reaches a plateau at 1.0 molecules of phosphate incorporated per subunit and the activity ratio measured in the absence and presence of glucose 6-phosphate falls from 0.8 to a plateau of 0.18. The Ka for glucose 6-phosphate of this phosphorylated species, termed glycogen synthase b1, is the 0.6 mM. Following incubation with glycogen synthase kinase-2 and Mg-ATP, the phosphorylation reaches a plateau of 0.92 molecules of phosphate incorporated per subunit and the activity ratio decreases to a plateau of 0.08. The Ka for glucose 6-phosphate of this phosphorylated species, termed glycogen synthetase b2, is 4 mM. In the presence of both cyclic-AMP-dependent protein kinase and glycogen synthase kinase-2, the phosphorylation of glycogen synthase reaches a plateau when 1.95 molecules of phoshophate have been incorporated per subunit. The activity ratio is 0.01 and the Ka for glucose 6-phosphate is 10 mM. The results indicate that glycogen synthase can be regulated by two distinct phosphorylation-dephosphorylation cycles. The implication of these findings for the regulation of glycogen synthase in vivo are discussed.  相似文献   

18.
19.
20.
Insulin treatment of Drosophila melanogaster Kc 167 cells induces the multiple phosphorylation of a Drosophila ribosomal protein, as judged by its decreased electrophoretic mobility on two-dimensional polyacrylamide gels. The extent to which insulin induces this response is potentiated by cycloheximide and blocked by pretreatment with rapamycin. Isolation and mass spectrometric analysis revealed that the multiply phosphorylated protein was the larger of two Drosophila melanogaster orthologues of mammalian 40S ribosomal protein S6, termed here DS6A. Proteolytic cleavage of DS6A derived from stimulated Kc 167 cells with the endoproteinase Lys-C released a number of peptides, one of which contained all the putative phosphorylation sites. Conversion of phosphoserines to dehydroalanines with Ba(OH)(2) showed that the sites of phosphorylation reside at the carboxy terminus of DS6A. The sites of phosphorylation were identified by Edman degradation after conversion of the phosphoserine residues to S-ethylcysteine as Ser(233), Ser(235), Ser(239), Ser(242), and Ser(245). Finally, phosphopeptide mapping of individual phosphoderivatives, isolated from two-dimensional polyacrylamide gels, indicated that DS6A phosphorylation, in analogy to mammalian S6 phosphorylation, appears to proceed in an ordered fashion. The importance of these observations in cell growth and development is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号