首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The protein-serine kinase Shaggy(Zeste-white3) (Sgg(Zw3)) is the Drosophila homolog of mammalian glycogen synthase kinase-3 and has been genetically implicated in signal transduction pathways necessary for the establishment of patterning. Sgg(Zw3) is a putative component of the Wingless (Wg) pathway, and epistasis analyses suggest that Sgg(Zw3) function is repressed by Wg signaling. Here, we have investigated the biochemical consequences of Wg signaling with respect to the Sgg(Zw3) protein kinase in two types of Drosophila cell lines and in embryos. Our results demonstrate that Sgg(Zw3) activity is inhibited following exposure of cells to Wg protein and by expression of downstream components of Wg signaling, Drosophila frizzled 2 and dishevelled. Wg-dependent inactivation of Sgg(Zw3) is accompanied by serine phosphorylation. We also show that the level of Sgg(Zw3) activity regulates the stability of Armadillo protein and modulates the level of phosphorylation of D-Axin and Armadillo. Together, these results provide direct biochemical evidence in support of the genetic model of Wg signaling and provide a model for dissecting the molecular interactions between the signaling proteins.  相似文献   

2.
The Drosophila gene product Wingless (Wg) is a secreted glycoprotein and a member of the Wnt gene family. Genetic analysis of Drosophila epidermal development has defined a putative paracrine Wg signalling pathway involving the zeste-white 3/shaggy (zw3/sgg) gene product. Although putative components of Wg- (and by inference Wnt-) mediated signalling pathways have been identified by genetic analysis, the biochemical significance of most factors remains unproven. Here we show that in mouse 10T1/2 fibroblasts the activity of glycogen synthase kinase-3 (GSK-3), the murine homologue of Zw3/Sgg, is inactivated by Wg. This occurs through a signalling pathway that is distinct from insulin-mediated regulation of GSK-3 in that Wg signalling to GSK-3 is insensitive to wortmannin. Additionally, Wg-induced inactivation of GSK-3 is sensitive to both the protein kinase C (PKC) inhibitor Ro31-8220 and prolonged pre-treatment of 10T1/2 fibroblasts with phorbol ester. These findings provide the first biochemical evidence in support of the genetically defined pathway from Wg to Zw3/Sgg, and suggest a previously uncharacterized role for a PKC upstream of GSK-3/Zw3 during Wnt/Wg signal transduction.  相似文献   

3.
beta-catenin is a multifunctional protein involved in cell-cell adhesion and the Wnt signaling pathway. beta-Catenin is activated upon its dephosphorylation, an event triggered by Dishevelled (Dvl)-mediated phosphorylation and deactivation of glycogen synthase kinase-3beta (GSK-3beta). In skeletal muscle, both insulin and exercise decrease GSK-3beta activity, and we tested the hypothesis that these two stimuli regulate beta-catenin. Immunoblotting demonstrated that Dvl, Axin, GSK-3beta, and beta-catenin proteins are expressed in rat red and white gastrocnemius muscles. Treadmill running exercise in vivo significantly decreased beta-catenin phosphorylation in both muscle types, with complete dephosphorylation being elicited by maximal exercise. beta-Catenin dephosphorylation was intensity dependent, as dephosphorylation was highly correlated with muscle glycogen depletion during exercise (r(2) = 0.84, P < 0.001). beta-Catenin dephosphorylation was accompanied by increases in GSK-3beta Ser(9) phosphorylation and Dvl-GSK-3beta association. In contrast to exercise, maximal insulin treatment (1 U/kg body wt) had no effect on skeletal muscle beta-catenin phosphorylation or Dvl-GSK-3beta interaction. In conclusion, exercise in vivo, but not insulin, increases the association between Dvl and GSK-3beta in skeletal muscle, an event paralleled by beta-catenin dephosphorylation.  相似文献   

4.
The serine/threonine kinase Akt/PKB plays diverse roles in cells, and genetic studies have indicated distinct roles for the three Akt isoforms expressed in mammalian cells and tissues. Akt2 is a key signaling intermediate for insulin-stimulated glucose uptake and glycogen synthesis in skeletal muscle. Akt2 has also been shown to be activated by exercise and muscle contraction in both rodents and humans. In this study, we used Akt2 knockout mice to explore the role of Akt2 in exercise-stimulated glucose uptake and glycogen synthesis as well as intracellular signaling pathways that regulate glycogen metabolism in skeletal muscle. We found that Akt2 deficiency does not affect basal or exercise-stimulated glucose uptake or intracellular glycogen content in the soleus muscle. In addition, lack of Akt2 did not result in alterations in basal Akt Thr(308) or basal and contraction-stimulated glycogen synthase kinase-3beta (GSK-3beta) Ser(9) phosphorylation, glycogen synthase phosphorylation, or glycogen synthase activity. In contrast, in situ contraction failed to elicit normal increases in Akt T-loop Thr(308) phosphorylation and GSK-3alpha Ser(21) phosphorylation in tibialis anterior muscles from Akt2-deficient animals. Our data establish a key role for Akt2 in the regulation of GSK-3alpha Ser(21) phosphorylation with contraction and add genetic evidence to support the separation of the intracellular pathways regulated by insulin and exercise that converge on glucose uptake and glycogen synthesis in skeletal muscle.  相似文献   

5.
Regulation of Armadillo (Arm) protein levels through ubiquitin-mediated degradation plays a central role in the Wingless (Wg) signaling. Although zeste-white3 (Zw3)-mediated Arm phosphorylation has been implicated in its degradation, we have recently shown that casein kinase Ialpha (CKIalpha) also phosphorylates Arm and induces its degradation. However, it remains unclear how CKIalpha and Zw3, as well as other components of the Arm degradation complex, regulate Arm phosphorylation in response to Wg. In particular, whether Wg signaling suppresses CKIalpha- or Zw3-mediated Arm phosphorylation in vivo is unknown. To clarify these issues, we performed a series of RNA interference (RNAi)-based analyses in Drosophila S2R+ cells by using antibodies that specifically recognize Arm phosphorylated at different serine residues. These analyses revealed that Arm phosphorylation at serine-56 and at threonine-52, serine-48, and serine-44, is mediated by CKIalpha and Zw3, respectively, and that Zw3-directed Arm phosphorylation requires CKIalpha-mediated priming phosphorylation. Daxin stimulates Zw3- but not CKIalpha-mediated Arm phosphorylation. Wg suppresses Zw3- but not CKIalpha-mediated Arm phosphorylation, indicating that a vital regulatory step in Wg signaling is Zw3-mediated Arm phosphorylation. In addition, further RNAi-based analyses of the other aspects of the Wg pathway clarified that Wg-induced Dishevelled phosphorylation is due to CKIalpha and that presenilin and protein kinase A play little part in the regulation of Arm protein levels in Drosophila tissue culture cells.  相似文献   

6.
Glycogen synthase kinase-3 (GSK-3) is a serine-threonine kinase that is involved in multiple cellular signaling pathways, including the Wnt signaling cascade where it phosphorylates beta-catenin, thus targeting it for proteasome-mediated degradation. Unlike phosphorylation of glycogen synthase, phosphorylation of beta-catenin by GSK-3 does not require priming in vitro, i.e. it is not dependent on the presence of a phosphoserine, four residues C-terminal to the GSK-3 phosphorylation site. Recently, a means of dissecting GSK-3 activity toward primed and non-primed substrates has been made possible by identification of the R96A mutant of GSK-3beta. This mutant is unable to phosphorylate primed but can still phosphorylate unprimed substrates (Frame, S., Cohen, P., and Biondi R. M. (2001) Mol. Cell 7, 1321-1327). Here we have investigated whether phosphorylation of Ser(33), Ser(37), and Thr(41) in beta-catenin requires priming through prior phosphorylation at Ser(45) in intact cells. We have shown that the Arg(96) mutant does not induce beta-catenin degradation but instead stabilizes beta-catenin, indicating that it is unable to phosphorylate beta-catenin in intact cells. Furthermore, if Ser(45) in beta-catenin is mutated to Ala, beta-catenin is markedly stabilized, and phosphorylation of Ser(33), Ser(37), and Thr(41) in beta-catenin by wild type GSK-3beta is prevented in intact cells. In addition, we have shown that the L128A mutant, which is deficient in phosphorylating Axin in vitro, is still able to phosphorylate beta-catenin in intact cells although it has reduced activity. Mutation of Tyr(216) to Phe markedly reduces the ability of GSK-3beta to phosphorylate and down-regulate beta-catenin. In conclusion, we have found that the Arg(96) mutant has a dominant-negative effect on GSK-3beta-dependent phosphorylation of beta-catenin and that targeting of beta-catenin for degradation requires prior priming through phosphorylation of Ser(45).  相似文献   

7.
Activation of the canonical Wnt signalling pathway results in stabilisation and nuclear translocation of beta-catenin. In the absence of a Wnt signal, beta-catenin is phosphorylated at four conserved serine and threonine residues at the N-terminus of the protein, which results in beta-catenin ubiquitination and proteasome-dependent degradation. The phosphorylation of three of these residues, Thr41, Ser37, and Ser33, is mediated by glycogen synthase kinase-3 (GSK-3) in a sequential manner, beginning from the C-terminal Thr41. It has recently been shown that the GSK-3 dependent phosphorylation of beta-catenin requires prior priming through phosphorylation of Ser45. However, it is not known whether phosphorylation of Ser45 is carried out by GSK-3 itself or by an alternative kinase. In this study, the phosphorylation of beta-catenin at Ser45 was characterised using a phospho-specific antibody. GSK-3beta was found to be unable to phosphorylate beta-catenin at Ser45 in vitro and in intact cells. However, inhibition of GSK-3 in intact cells reduced Ser45 phosphorylation, suggesting that GSK-3 kinase activity is required for the phosphorylation event. In vitro, CK1, but not CK2, phosphorylates Ser45. Ser45 phosphorylation in intact cells is not mediated by CK1varepsilon, a known positive regulator of Wnt signalling, as overexpression of this kinase leads to decreased phosphorylation levels. In conclusion, phosphorylation of beta-catenin at the GSK-3 priming site Ser45 is not mediated by GSK-3 itself, but by an alternative kinase, indicating that beta-catenin is not an unprimed substrate for GSK-3 in vivo. Priming of GSK-3 dependent phosphorylation of beta-catenin by a different kinase could have important implications for the regulation of Wnt signalling.  相似文献   

8.
We have recently shown that while adrenaline alone has no effect on the activation of Protein Kinase B (PKB) in rat soleus muscle, it greatly potentiates the effects of insulin (Brennesvik et al., Cellular Signalling 17: 1551-1559, 2005). In the current study we went on to investigate whether this was paralleled by a similar effect on GSK-3, which is a major PKB target. Surprisingly adrenaline alone increased phosphorylation of GSK-3beta Ser9 and GSK-3alpha Ser21 and adrenaline's effects were additive with those of insulin but did not synergistically potentiate insulin action. Dibutyryl-cAMP (5 mM) and the PKA specific cAMP analogue N6-Benzoyl-cAMP (2 mM) increased GSK-3beta Ser9 phosphorylation, whereas the Epac specific cAMP analogue 8-(4-chlorophenylthio)-2'-O-methyl-cAMP (1 mM) did not. Wortmannin (PI 3-kinase inhibitor; 1 microM) blocked insulin-stimulated GSK-3 phosphorylation completely, but adrenaline increased GSK-3beta Ser9 phosphorylation in the presence of wortmannin. The PKA inhibitor H89 (50 microM) reduced adrenaline-stimulated GSK-3beta Ser9 phosphorylation but did not influence the effects of insulin. Insulin-stimulated GSK-3 Ser9 phosphorylation was paralleled by decreased glycogen synthase phosphorylation at the sites phosphorylated by GSK-3 as expected. However, adrenaline-stimulated GSK-3 Ser9 phosphorylation was paralleled by increased glycogen synthase phosphorylation indicating this pool of GSK-3 may not be directly involved in phosphorylation of glycogen synthase. Our results indicate the existence of at least two distinct pools of GSK-3beta in soleus muscle, one phosphorylated by PKA and another by PKB. Further, we hypothesise that each of these pools is involved in the control of different cellular processes.  相似文献   

9.
It has been suggested that phosphorylation at serine 9 near the N-terminus of glycogen synthase kinase-3β (GSK-3β) mimics the prephosphorylation of its substrate and, therefore, the N-terminus functions as a pseudosubstrate. The molecular basis for the pseudosubstrate's binding to the catalytic core and autoinhibition has not been fully defined. Here, we combined biochemical and computational analyses to identify the potential residues within the N-terminus and the catalytic core engaged in autoinhibition of GSK-3β. Bioinformatic analysis found Arg4, Arg6, and Ser9 in the pseudosubstrate sequence to be extremely conserved through evolution. Mutations at Arg4 and Arg6 to alanine enhanced GSK-3β kinase activity and impaired its ability to autophosphorylate at Ser9. In addition, and unlike wild-type GSK-3β, these mutants were unable to undergo autoinhibition by phosphorylated Ser9. We further show that Gln89 and Asn95, located within the catalytic core, interact with the pseudosubstrate. Mutation at these sites prevented inhibition by phosphorylated Ser9. Furthermore, the respective mutants were not inhibited by a phosphorylated pseudosubstrate peptide inhibitor. Finally, computational docking of the pseudosubstrate into the catalytic active site of the kinase suggested specific interactions between Arg6 and Asn95 and of Arg4 to Asp181 (apart from the interaction of phosphorylated serine 9 with the “phosphate binding pocket”). Altogether, our study supports a model of GSK-3-pseudosubstrate autoregulation that involves phosphorylated Ser9, Arg4, and Arg6 within the N-terminus and identified the specific contact sites within the catalytic core.  相似文献   

10.
Activation of glucagon-like peptide-2 receptor (GLP-2R) signaling promotes expansion of the mucosal epithelium indirectly via activation of growth and anti-apoptotic pathways; however, the cellular mechanisms coupling direct GLP-2R activation to cell survival remain poorly understood. We now demonstrate that GLP-2, in a cycloheximide-insensitive manner, enhanced survival in baby hamster kidney cells stably transfected with the rat GLP-2R; reduced mitochondrial cytochrome c efflux; and attenuated the caspase-dependent cleavage of Akt, poly(ADP-ribose) polymerase, and beta-catenin following inhibition of phosphatidylinositol 3-kinase (PI3K) by LY294002. The prosurvival effects of GLP-2 on LY294002-induced cell death were independent of Akt, p90(Rsk), or p70 S6 kinase activation; were mimicked by forskolin; and were abrogated by inhibition of protein kinase A (PKA) activity. GLP-2 inhibited activation of glycogen synthase kinase-3 (GSK-3) through phosphorylation at Ser(21) in GSK-3alpha and at Ser(9) in GSK-3beta in a PI3K-independent, PKA-dependent manner. GLP-2 reduced LY294002-induced mitochondrial association of endogenous Bad and Bax and stimulated phosphorylation of a transfected Bad fusion protein at Ser(155) in a PI3K-independent, but H89-sensitive manner, a modification known to suppress Bad pro-apoptotic activity. These results suggest that GLP-2R signaling enhances cell survival independently of PI3K/Akt by inhibiting the activity of a subset of pro-apoptotic downstream targets of Akt in a PKA-dependent manner.  相似文献   

11.
Catecholamines, acting through adrenergic receptors, play an important role in modulating the effects of insulin on glucose metabolism. Insulin activation of glycogen synthesis is mediated in part by the inhibitory phosphorylation of glycogen synthase kinase-3 (GSK-3). In this study, catecholamine regulation of GSK-3beta was investigated in Rat-1 fibroblasts stably expressing the alpha1A-adrenergic receptor. Treatment of these cells with either insulin or phenylephrine (PE), an alpha1-adrenergic receptor agonist, induced Ser-9 phosphorylation of GSK-3beta and inhibited GSK-3beta activity. Insulin-induced GSK-3beta phosphorylation is mediated by the phosphatidylinositol 3-kinase/Akt signaling pathway. PE treatment does not activate phosphatidylinositol 3-kinase or Akt (Ballou, L. M., Cross, M. E., Huang, S., McReynolds, E. M., Zhang, B. X., and Lin, R. Z. (2000) J. Biol. Chem. 275, 4803-4809), but instead inhibits insulin-induced Akt activation and GSK-3beta phosphorylation. Experiments using protein kinase C (PKC) inhibitors suggest that phorbol ester-sensitive novel PKC and G? 6983-sensitive atypical PKC isoforms are involved in the PE-induced phosphorylation of GSK-3beta. Indeed, PE treatment of Rat-1 cells increased the activity of atypical PKCzeta, and expression of PKCzeta in COS-7 cells stimulated GSK-3beta Ser-9 phosphorylation. In addition, PE-induced GSK-3beta phosphorylation was reduced in Rat-1 cells treated with a cell-permeable PKCzeta pseudosubstrate peptide inhibitor. These results suggest that the alpha1A-adrenergic receptor regulates GSK-3beta through two signaling pathways. One pathway inhibits insulin-induced GSK-3beta phosphorylation by blocking insulin activation of Akt. The second pathway stimulates Ser-9 phosphorylation of GSK-3beta, probably via PKC.  相似文献   

12.
Rictor is an essential component of mTOR (mammalian target of rapamycin) complex 2 (mTORC2), a kinase complex that phosphorylates Akt at Ser473 upon activation of phosphatidylinositol 3-kinase (PI-3 kinase). Since little is known about the role of either rictor or mTORC2 in PI-3 kinase-mediated physiological processes in adult animals, we generated muscle-specific rictor knockout mice. Muscle from male rictor knockout mice exhibited decreased insulin-stimulated glucose uptake, and the mice showed glucose intolerance. In muscle lacking rictor, the phosphorylation of Akt at Ser473 was reduced dramatically in response to insulin. Furthermore, insulin-stimulated phosphorylation of the Akt substrate AS160 at Thr642 was reduced in rictor knockout muscle, indicating a defect in insulin signaling to stimulate glucose transport. However, the phosphorylation of Akt at Thr308 was normal and sufficient to mediate the phosphorylation of glycogen synthase kinase 3 (GSK-3). Basal glycogen synthase activity in muscle lacking rictor was increased to that of insulin-stimulated controls. Consistent with this, we observed a decrease in basal levels of phosphorylated glycogen synthase at a GSK-3/protein phosphatase 1 (PP1)-regulated site in rictor knockout muscle. This change in glycogen synthase phosphorylation was associated with an increase in the catalytic activity of glycogen-associated PP1 but not increased GSK-3 inactivation. Thus, rictor in muscle tissue contributes to glucose homeostasis by positively regulating insulin-stimulated glucose uptake and negatively regulating basal glycogen synthase activity.  相似文献   

13.
14.
15.
Serum and glucocorticoid-inducible kinase-like kinase (SGKL) has been identified as a new integrator that decodes lipid signals produced by the activation of phosphoinositide 3-kinase (PI3K). SGKL is activated via its lipid-binding domain (phox homology domain) in response to PI3K signaling. However, downstream targets of SGKL as well as the role of SGKL as a mediator in PI3K signaling in human tissues remain to be established. In this study, we identified human glycogen synthase kinase 3 beta (GSK-3beta) as a specific interacting partner with SGKL in a yeast two-hybrid screening of human brain cDNA library. The association between these two proteins is confirmed independently in human embryonic kidney (HEK293) cells by co-immunoprecipitation. Furthermore, the kinase activity of wild-type SGKL was required for the in vitro phosphorylation of a GSK-3 crosstide fusion protein at serine-21/9 as demonstrated with a Phospho-GSK-3alpha/beta (Ser21/9) specific antibody. The present results provide strong evidences that SGKL could utilize GSK-3beta as a direct downstream target by phosphorylating GSK-3beta at serine-9.  相似文献   

16.
17.
Control of beta-catenin phosphorylation/degradation by a dual-kinase mechanism   总被引:40,自引:0,他引:40  
Liu C  Li Y  Semenov M  Han C  Baeg GH  Tan Y  Zhang Z  Lin X  He X 《Cell》2002,108(6):837-847
Wnt regulation of beta-catenin degradation is essential for development and carcinogenesis. beta-catenin degradation is initiated upon amino-terminal serine/threonine phosphorylation, which is believed to be performed by glycogen synthase kinase-3 (GSK-3) in complex with tumor suppressor proteins Axin and adnomatous polyposis coli (APC). Here we describe another Axin-associated kinase, whose phosphorylation of beta-catenin precedes and is required for subsequent GSK-3 phosphorylation of beta-catenin. This "priming" kinase is casein kinase Ialpha (CKIalpha). Depletion of CKIalpha inhibits beta-catenin phosphorylation and degradation and causes abnormal embryogenesis associated with excessive Wnt/beta-catenin signaling. Our study uncovers distinct roles and steps of beta-catenin phosphorylation, identifies CKIalpha as a component in Wnt/beta-catenin signaling, and has implications to pathogenesis/therapeutics of human cancers and diabetes.  相似文献   

18.
Oxidative stress can contribute to the multifactorial etiology of whole body and skeletal muscle insulin resistance. No investigation has directly assessed the effect of an in vitro oxidant stress on insulin action in intact mammalian skeletal muscle. Therefore, the purpose of the present study was to characterize the molecular actions of a low-grade oxidant stress (H(2)O(2)) on insulin signaling and glucose transport in isolated skeletal muscle of lean Zucker rats. Soleus strips were incubated in 8 mM glucose for 2 h in the absence or presence of 100 mU/ml glucose oxidase, which produces H(2)O(2) at approximately 90 microM. By itself, H(2)O(2) significantly (P < 0.05) activated basal glucose transport activity, net glycogen synthesis, and glycogen synthase activity and increased phosphorylation of insulin receptor (Tyr), Akt (Ser(473)), and GSK-3beta (Ser(9)). In contrast, this oxidant stress significantly inhibited the expected insulin-mediated enhancements in glucose transport, glycogen synthesis, and these signaling factors and allowed GSK-3beta to retain a more active form. In the presence of CT-98014, a selective GSK-3 inhibitor, the ability of insulin to stimulate glucose transport and glycogen synthesis during exposure to this oxidant stress was enhanced by 20% and 39% (P < 0.05), respectively, and insulin stimulation of the phosphorylation of insulin receptor, Akt, and GSK-3 was significantly increased by 36-58% (P < 0.05). These results indicate that an oxidant stress can directly and rapidly induce substantial insulin resistance of skeletal muscle insulin signaling, glucose transport, and glycogen synthesis. Moreover, a small, but significant, portion of this oxidative stress-induced insulin resistance is associated with a reduced insulin-mediated suppression of the active form of GSK-3beta.  相似文献   

19.
The dishevelled (dsh) gene family encodes cytoplasmic proteins that have been implicated in Wnt/Wingless (Wg) signaling. To demonstrate functional conservation of Dsh family proteins, two mouse homologs of Drosophila Dsh, Dvl-1 and Dvl-2, were biochemically characterized in mouse and Drosophila cell culture systems. We found that treatment with a soluble Wnt-3A leads to hyperphosphorylation of Dvl proteins and a concomitant elevation of the cytoplasmic beta-catenin levels in mouse NIH3T3, L, and C57MG cells. This coincides well with our finding in a Drosophila wing disc cell line, clone-8, that Wg treatment induced hyperphosphorylation of Dsh (Yanagawa, S., van Leeuwen, F., Wodarz, A., Klingensmith, J., and Nusse, R. (1995) Genes Dev. 9, 1087-1097). Furthermore, we showed that mouse Dvl proteins affect downstream components of Drosophila Wg signaling as Dsh does; overexpression of Dvl proteins in clone-8 cells results in elevation of Armadillo (Drosophila homolog of beta-catenin) and Drosophila E-cadherin levels, hyperphosphorylation of Dvl proteins themselves, and inhibition of Zeste-White3 kinase-mediated phosphorylation of a microtubule-binding protein, Tau. In addition, casein kinase II was shown to coimmunoprecipitate with Dvl proteins, and Dvl proteins were phosphorylated in these immune complexes. These results are direct evidence that Dsh family proteins mediate a set of conserved biochemical processes in the Wnt/Wg signaling pathway.  相似文献   

20.
Lithium increases glucose transport and glycogen synthesis in insulin-sensitive cell lines and rat skeletal muscle, and has been used as a non-selective inhibitor of glycogen synthase kinase-3 (GSK-3). However, the molecular mechanisms underlying lithium action on glucose transport in mammalian skeletal muscle are unknown. Therefore, we examined the effects of lithium on glucose transport activity, glycogen synthesis, insulin signaling elements (insulin receptor (IR), Akt, and GSK-3beta), and the stress-activated p38 mitogen-activated protein kinase (p38 MAPK) in the absence or presence of insulin in isolated soleus muscle from lean Zucker rats. Lithium (10 mM LiCl) enhanced basal glucose transport by 62% (p < 0.05) and augmented net glycogen synthesis by 112% (p < 0.05). Whereas lithium did not affect basal IR tyrosine phosphorylation or Akt ser(473) phosphorylation, it did enhance (41%, p < 0.05) basal GSK-3beta ser(9) phosphorylation. Lithium further enhanced (p < 0.05) the stimulatory effects of insulin on glucose transport (43%), glycogen synthesis (44%), and GSK-3beta ser(9) phosphorylation (13%). Lithium increased (p < 0.05) p38 MAPK phosphorylation both in the absence (37%) and presence (41%) of insulin. Importantly, selective inhibition of p38 MAPK (using 10 microM A304000) completely prevented the basal activation of glucose transport by lithium, and also significantly reduced (52%, p < 0.05) the lithium-induced enhancement of insulin-stimulated glucose transport. Theses results demonstrate that lithium enhances basal and insulin-stimulated glucose transport activity and glycogen synthesis in insulin-sensitive rat skeletal muscle, and that these effects are associated with a significant enhancement of GSK-3beta phosphorylation. Importantly, we have documented an essential role of p38 MAPK phosphorylation in the action lithium on the glucose transport system in isolated mammalian skeletal muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号