首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A rapid, sensitive and specific high-performance liquid chromatographic (HPLC) assay was developed and validated for the measurement of (−)-2′-deoxy-3′-thiacytidine (3TC) in human serum. The method included precipitation of serum proteins by trichloroacetic acid (20%, w/v) treatment followed by centrifugation. The resulting supernatant was directly injected and 3TC was isocratically chromatographed on a reversed-phase C18 column using a mixture of phosphate buffer and methanol (88.3:11.7, v/v) and monitored at 280 nm. The limit of quantitation was 20 ng/ml using 100 μl of serum. The standard curve was linear within the range of 20–10 000 ng/ml. Replicate analysis of three quality control samples (40–1500 ng/ml) led to satisfactory intra- and itner-assay precision (coefficient of variation from 3.0 to 12.9%) and accuracy (deviation from −6.3 to 9.7%). Moreover, sample treatment processes including human immunodeficiency virus (HIV) heat-inactivation, exposure at room temperature and freezing-thawing cycles did not influence the stability of the analyte. This assay was successfully applied to the determination of 3TC serum levels in HIV-infected patients. In addition, preliminary results indicated that this procedure may also be extended to the measurement of 3TC in human plasma and urine.  相似文献   

3.
A high-performance liquid chromatographic method is described for the determination in human urine of GI138870X, the sulphoxide metabolite of a novel dideoxynucleoside analogue, 2′-deoxy-3′-thiacytidine (lamivudine). GI138870X was extracted from human urine using Empore SDB RPS solid-phase extraction disks prior to reversed-phase chromatography with UV detection. The method has shown to be valid over the concentration range 0.5–100 μg/ml using a 0.5-ml sample volume.  相似文献   

4.
A method for the quantification of 2′-deoxy-3′-thiacytidine (lamivudine, 3-TC), which incorporated the use of 3-isobutyl-methylxanthine as internal standard (I.S.) was developed and validated in human plasma, using HPLC with UV absorbance detection. Using solid-phase extraction, 3-TC and I.S. were selectively extracted from human plasma. Subsequently, chromatographic separation was performed using a YMC phenyl column with ion-pair chromatography and detection at 270 nm. The method was validated over a concentration range of 10 to 5000 ng/ml using 0.5 ml of human plasma. The extraction recovery for both 3-TC and I.S. was greater than 95%. The determination of inter- and intra-day precision (RSD) was less than 10% at all concentration levels, while the inter- and intra-day accuracy (% difference) was less than 6%.  相似文献   

5.
3′-Azido-2′,3′-dideoxyuridine (AZDU, Azddu, CS-87) is a nucleoside analog of 3′-azido-3′-deoxythymidine (zidovudine, AZT) that has been shown to inhibit human immunodeficiency virus (HIV-1). AZDU is a potential candidate for treatment of pregnant mothers to prevent prenatal transmission of HIV/AIDS to their unborn children. A rapid and efficient high-performance liquid chromatography (HPLC) method for the determination of AZDU concentrations in rat maternal plasma, amniotic fluid, placental and fetal tissue samples has been developed and validated. Tissue samples were homogenized in distilled water, protein precipitated and extracted using a C-18 solid-phase extraction (SPE) method prior to analysis. Plasma and amniotic fluid samples were protein precipitated with 2 M perchloric acid prior to analysis. Baseline resolution was achieved using a 4.5% acetonitrile in 40 mM sodium acetate (pH 7) buffer mobile phase for amniotic fluid, placenta and fetus samples and with a 5.5% acetonitrile in buffer solution for plasma at flow-rates of 2.0 ml/min. The HPLC system consists of a Hypersil ODS column (150×4.6 mm) with a Nova-Pak C-18 guard column with detection at 263 nm. The method yields retention times of 6.2 and 12.2 min for AZDU and AZT in plasma and 8.3 and 17.6 min for AZDU and AZT in amniotic fluid, fetal and placental tissues. Limits of detection ranged from 0.01 to 0.075 μg/ml. Recoveries ranged from 81 to 96% for AZDU and from 82 to 96% for AZT in the different matrices. Intra-day (n=6) and inter-day (n=9) precision (% RSD) and accuracy (% Error) ranged from 1.48 to 6.25% and from 0.50 to 10.07%, respectively.  相似文献   

6.
This paper describes a relatively simple and sensitive high-performance liquid chromatographic assay (HPLC) with ultraviolet absorbance detection for 5-fluorouracil (5-FUra) and its two main metabolites, 5-fluorouridine (5-FUrd) and 5-fluoro-2′-deoxyuridine (5-FdUrd), in plasma. In this study, two plasma clean-up procedures involving addition of internal standard, solid-phase and liquid-liquid extractions have been developed. A reversed-phase Kromasil C18 column was used. The detection was performed at 268 nm for 5-FUra and at 275 nm for the two metabolites. Linear detection responses were obtained for concentrations ranging from 25 to 1000 ng/ml. The average recovery from plasma was 35, 42 and 48% for 5-FUra, 5-FUrd and 5-FdUrd, respectively. Precision, expressed as C.V., ranged from 2.7 to 13% and the mean recovery from 94 to 105%. The limits of quantitation and detection of the three analytes were 20 and 10 ng/ml, respectively. The method was used to monitor the pharmacokinetic profile of 5-FUra and its two metabolites in patients with metastatic colorectal cancer.  相似文献   

7.
Exogenous and endogenous oxidants constantly cause oxidative damage to DNA. Since the reactive oxidants itself are not suitable for analysis, oxidized bases like 8-hydroxy-2′-deoxyguanosine (8OHdG) are used as biomarkers for oxidative stress, either in cellular DNA or as elimination product in urine. A simple, fast and robust analytical procedure is described for urinary 8OHdG as an indicator of oxidative damage in humans. The adduct was purified from human urine by applying a single solid-phase extraction step on LiChrolut EN®. After evaporation of the eluate, the residue was resolved and an aliquote was injected into a HPLC system with a triple quadrupole mass spectrometer. The limit of detection was 0.2 ng ml−1 (7 fmol absolute) when using one product ion as quantifier and two further product ions as qualifier. The coefficient of variation was 10.1% (n=5 at 2.8 ng ml−1 urine). The sample throughput was about 50 samples a day. Thus, this method is more sensitive and much faster than the common method using HPLC with electrochemical detection. The results of a study with nine volunteers investigated at six time-points each over 5 days are presented. The mean excretion of 8OHdG was 2.1 ng mg−1 creatinine (range 0.17–5.9 ng mg−1 creatinine; 4 of 53 samples were below the LOD). A relatively large intra- (relative SD 66%) and inter-individual (relative SD 71%) variation in urinary 8OHdG excretion rates was found.  相似文献   

8.
Transforming naringin using the mycelium of Trichoderma harzianum CGMCC 1523 produces two metabolites, 3′,4′,5,7-tetrahydroxy flavanone-7-rhamnoglucoside (3′-OHN) and 3′,4′,5′,5,7-pentahydroxy flavanone-7-rhamnoglucoside (3′,5′-DOHN), both of which were characterized by ESI–MS, 1H NMR and 13C NMR analyses. The time course of the biotransformation by T. harzianum showed that 3′-OHN and 3′,5′-DOHN appeared simultaneously at 6 h, and the conversion yield (32.6%) of 3′,5′-DOHN was higher (10.6%) than that of 3′-OHN at 56 h. The optimal biotransformation temperature was 30 °C, the optimal pH was 5.0, and the optimal concentration of naringin was 400 mg/l. The bigger volume of biotransformation mixture and lower shaking speed did not favor hydroxylation reactions. The radical scavenging activity of naringin at 2000 μM was 11.1%, whereas activity of 3′-OHN at 100 μM could reach 38.4%, which is 68.6 times more than naringin. Antioxidative activity of 3′,5′-DOHN was increased 13.5% at 100 μM compared to 3′-OHN.  相似文献   

9.
A new method is presented for the HPLC determination of plasma 2′-deoxyuridine (dUrd). Briefly, 1 ml of human plasma is deproteinised with perchloric acid followed by purification by solid-phase extraction using a non-polar high-capacity polymeric sorbent. The dUrd is separated on a C18 reversed-phase column using a mobile-phase of 0.05% v/v trifluoroacetic acid in water, with a retention time of 8.5 min at a flow-rate of 1.25 ml min−1. Quantitation is by UV detection at 261 nm using a photodiode array detector. The limit of quantitation is 6 nM with a linear response over the measured range 6–400 nM. Both intra- and inter-day RSD and bias are typically less than 13%. Chromatograms and pharmacodynamic data from a Phase 1 Clinical Trial of a new antifolate drug, ZD9331 are included to illustrate the utility of the method. They show the increase in circulating dUrd as a result of drug inhibition of the target enzyme thymidylate synthase. The method has the significant advantages of ease and simplicity over earlier methods and may be applied to the analysis of other nucleoside species.  相似文献   

10.
A reversed-phase high-performance liquid chromatography method with electrospray ionization and mass spectral detection is described for the determination of capecitabine, 5'-deoxy-5-fluorocytidine and 5'-deoxy-5-fluorouridine in human plasma with 5-chloro-2'-deoxyuridine as the internal standard. An on-line sample clean-up procedure allows dilution of the plasma sample with the initial mobile phase. The linear dynamic range is 0.0500-10.0 microgram/ml for capecitabine, and 0.0500-25.0 microgram/ml for the metabolites, 5'-deoxy-5-fluorocytidine and 5'-deoxy-5-fluorouridine, respectively. This method has been used to analyze plasma samples from patients receiving capecitabine in combination with oxaliplatin.  相似文献   

11.
We recently identified dichlorobiphenyl (DCB) derivatives and 2-phenylbenzotriazole (PBTA) congeners as major mutagenic constituents of the waters of the Waka River and the Yodo River system in Japan, respectively. In this study we examined sister chromatid exchange (SCE) induction by two dichlorobiphenyl derivatives, 3,3′-dichlorobenzidine (DCB, 4,4′-diamino-3,3′-dichlorobiphenyl) and 4,4′-diamino-3,3′-dichloro-5-nitrobiphenyl (5-nitro-DCB); three PBTA congeners, 2-[2-(acetylamino)-4-[bis(2-methoxyethyl)amino]-5-methoxyphenyl]-5-amino-7-bromo-4-chloro-2H-benzotriazole (PBTA-1), 2-[2-(acetylamino)-4-[N-(2-cyanoethyl)ethylamino]-5-methoxyphenyl]-5-amino-7-bromo-4-chloro-2H-benzotriazole (PBTA-2), and 2-[2-(acetylamino)amino]-4-[bis(2-hydroxyethyl)amino]-5-methoxyphenyl]-5-amino-7-bromo-4-chloro-2H-benzotriazole (PBTA-6); and water concentrates from the Waka River in Chinese hamster lung (CHL) cells. Concentration-dependent induction of SCE was found for all DCBs and PBTAs examined in the presence of S9 mix, and statistically significant increases of SCEs were detected at 2 μg per ml of medium or higher concentrations. SCE induction of MeIQx was examined to compare genotoxic activities of these water pollutants. According to the results, a ranking of the SCE-inducing potency of these compounds is the following: 5-nitro-DCB ≈ MeIQx > PBTA6 > PBTA-1 ≈ PBTA-2 > DCB.Water samples collected at a site at the Waka River showed concentration-related increases in SCEs at 6.25–18.75 ml-equivalent of river water per ml of medium with S9 mix. The concentrations of 5-nitro-DCB and DCB in the river water samples were from 2.5 to 19.4 ng/l and from 4100 to 18,900 ng/l, respectively. However, these chemicals showed only small contribution to SCE induction by the Waka River water.  相似文献   

12.
This paper describes a high-performance liquid chromatographic method with ultraviolet absorbance detection at 304 nm for the determination of 6-chloro-5-(1-naphthyloxy)-2-methylthio benzimidazole (αBIOF10) — a new fasciolicide agent — and its sulphoxide (SOαBIOF10), in plasma and urine. It requires 2 ml of biological fluid, an extraction using Sep-Pak cartridges, and methanol for drug elution. Analysis is performed on a μBondapak C18 (10 μm) column, using methanol–acetonitrile–water (40:30:30, v/v) as the mobile phase. Results showed that the assay is sensitive: 12 ng/ml for αBIOF10 and SOαBIOF10 in plasma and 3.6 ng/ml for both compounds in urine. The response was linear between 0.195 and 12.5 μg/ml. Maximum intra-day coefficient of variation was 5.3%. Recovery obtained was 97.8% for both αBIOF10 and SOαBIOF10. In urine, recovery was 99.6% and 93.1% for αBIOF10 and SOαBIOF10 respectively. The method was used to perform a preliminary pharmacokinetic study in two sheep and was found to be satisfactory.  相似文献   

13.
A new, simple, reproducible and reliable high-performance liquid chromatography method with ultraviolet absorbance detection at 240 nm was developed and validated for the determination of 7-oxo-dehydroepiandrosterone-3β-sulfate in human plasma. The method was based upon solid-phase (C18) extraction of plasma after addition of 17β-hydroxy-3β-methoxyandrost-5-en-7-one as internal standard. Using 1 ml of plasma for extraction, the detection limit of the assay was 3 ng/ml. The standard curve was linear over the concentration range 10–1000 ng/ml. Stored at −20°C for about 4 months at various concentrations in plasma, 7-oxo-dehydroepiandrosterone-3β-sulfate did not reveal any appreciable degradation. Also included herein is a method for the simultaneous detection and determination of 7-oxo-dehydroepiandrosterone and 7-oxo-dehydroepiandrosterone-3β-acetate in plasma.  相似文献   

14.
To determine if increased 5′-methylthioadenosine phosphorylase activity in activated lymphocytes may be responsible for the decreased inhibitory effect noted when 5′-methylthioadenosine is added after stimulation, the activity of this enzyme was monitored during lymphocyte transformation. A direct correlation existed between the transformation process and 5′-methylthioadenosine phosphorylase activity; the longer the stimulation process progressed, the greater the enzyme activity. The 7-deaza analog of 5′-methylthioadenosine, 5′-methylthiotubercidin, was utilized to explore further the role that the phosphorylase may play in the reversal process. 5′-Methylthioadenosine acted as a potent inhibitor, but not a substrate, of the 5′-methylthioadenosine phosphorylase, and was an even more potent inhibitor of lymphocyte transformation than 5′-methylthioadenosine. However, in direct contrast to the 5′-methylthioadenosine effect, inhibition by 5′-methylthiotubercidin could not be completely reversed. These data suggest the 5′-methylthioadenosine phosphorylase plays an important role in reversing 5′-methylthioadenosine-mediated inhibition and that the potent, nonreversible inhibitory effects of 5′-methylthiotubercidin are due to its resistance to 5′-methylthioadenosine phosphorylase degradation.  相似文献   

15.
In order to determine epirubicin and its metabolites at low concentrations (<38 ng/ml) in small plasma samples, a fast reliable method based on a precipitation pre-treatment and sensitive reversed-phase isocratic HPLC has been developed and validated for epirubicin in the range 5–100 ng/ml. The R.S.D. was 5–9% over this concentration range. For human serum containing 25 ng/ml of epirubicin, the inter- and intra-day variation was <10%. Recoveries of the metabolites epirubicinol, 7-deoxydoxorubicinone and 7-deoxydoxorubicinolone at 20 ng/ml ranged from 94–104%. The assay has been used to study human plasma samples taken during a 96-h infusion of epirubicin in a patient with multiple myeloma. The combined levels of the unseparated metabolites, epirubicin glucuronide and epirubicinol glucuronide, were semiquantitatively determined after treatment with β-glucuronidase. The metabolites epirubicinol and 7-deoxydoxorubicinolone, but not 7-deoxydoxorubicinone, were also detected and measured.  相似文献   

16.
17.
The structural elucidation of 1′,2′-dideacetylboronolide, 5,6-dihydro-6-(3′-acetoxy-1′,2′-dihydroxyheptyl)2-pyrone, a new α-pyrone isolated from the leaves of Iboza riparia has been performed. Additionally, three sterols, sitosterol, stigmasterol and campesterol, have been identified in this species.  相似文献   

18.
The four stereoisomers of the combined α- and β-adrenoceptor antagonist labetalol were separated and quantified at therapeutic concentrations by normal-phase high-pressure liquid chromatography using a chiral stationary phase and fluorescence detection. Drug in plasma or urine was recovered by solid-phase extraction with 83±5% efficiency. Limits of detection from biological samples (3 ml) were between 1.5–1.8 ng ml−1. Intra-day and inter-day variation at 25 ng ml−1 were ≤2.7% and ≤5.80% respectively for all stereoisomers. The assay was applied to an examination of the disposition of labetalol stereoisomers after a single oral dose of racemate to a human volunteer. Labetalol appears to undergo enantioselective metabolism leading to relatively low plasma concentrations of the pharmacologically active enantiomers.  相似文献   

19.
This study aims to determine whether zinc enhances interferon (IFN)-α activity in U937 cells. Type 1 IFN2 receptor (IFNAR2) protein in U937 cells was measured by flow cytometry. After 24 h of exposure to zinc chloride or polaprezinc (a chelate of zinc and l-carnosine) at concentrations ranging from 50 to 200 μM, histograms showing anti-IFNAR2 antibody-positive cells shifted to a higher FITC intensity. Zinc chloride and polaprezinc increased IFNAR2 mRNA levels approximately 30% and 40%, respectively, compared to the control. l-Carnosine alone did not alter IFNAR2 mRNA or protein levels. Cellular levels of 2′–5′ oligoadenylate synthetases (OAS) were markedly increased by IFN-α, and the increase was significantly accelerated by polaprezinc. However, polaprezinc alone did not increase 2′–5′OAS levels. The finding suggests that zinc, especially polaprezinc, enhances the expression of INFAR2 in U937 cells, thereby inducing production of the anti-viral protein 2′–5′OAS.  相似文献   

20.
The results of an investigation of the carotenoids in the seven species of sea cucumber (Stichopus japonicus, Holothuria leucospilota, H. moebi and H. pervicax of the order Aspidochirotida, Cucumaria japonica, C. echinata and Pentacta australis of the order Dendrochirotida), from the comparative biochemical point of view, are reported. β-Carotene, β-echinenone, canthaxanthin, phoenicoxanthin and astaxanthin were common in all the sea cucumbers examined. A series of novel marine carotenoids (cucumariaxanthin A, B and C) was obtained from the sea cucumbers of the order Dendrochirotida, while they could not be found from those of the order Aspidochirotida. Significant differences in the carotenoid patterns of the two orders were also observed. The structures of cucumariaxanthin A, B and C have been determined, by chemical and spectroscopic investigations, to be (9Z,9′Z)-5,6,5′,6′-tetrahydro-β,β-carotene-4,4′-dione, (9Z,9′Z)-4′-hydroxy-5,6,5′,6′-tetrahydro-β,β-caroten-4-one, and (9Z,9′Z)-5,6,5′,6′-tetrahydro-β,β-carotene-4,4'-diol, respectively. From the experimental results of carotenoids in the sea cucumbers examined, an oxidative metabolic pathway for β-carotene to astaxanthin, and a new reductive and isomeric metabolic pathway for canthaxanthin to cucumariaxanthin C (via cucumariaxanthin A and B) are proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号