首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Bacteriophages T2 and T4 encode DNA-[N6-adenine] methyltransferases (Dam) which differ from each other by only three amino acids. The canonical recognition sequence for these enzymes in both cytosine and 5-hydroxymethylcytosine-containing DNA is GATC; at a lower efficiency they also recognize some non-canonical sites in sequences derived from GAY (where Y is cytosine or thymine). We found that T4 Dam fails to methylate certain GATA and GATT sequences which are methylated by T2 Dam. This indicates that T2 Dam and T4 Dam do not have identical sequence specificities. We analyzed DNA sequence data files obtained from GenBank, containing about 30% of the T4 genome, to estimate the overall frequency of occurrence of GATC, as well as non-canonical sites derived from GAY. The observed N6methyladenine (m6A) content of T4 DNA, methylated exclusively at GATC (by Escherichia coli Dam), was found to be in good agreement with this estimate. Although GATC is fully methylated in virion DNA, only a small percentage of the non-canonical sequences are methylated.  相似文献   

2.
Interaction of T4 DNA-(N6-adenine)-methyltransferase [EC 2.1.1] was studied with a variety of synthetic oligonucleotide substrates containing the native recognition site GATC or its modified variants. The data obtained in the decisecond and second intervals of the reaction course allowed for the first time the substrate methylation rates to be compared with the parameters of the steady-state reaction. It was established that the substrate reaction proceeds in two stages. Because it is shown that in steady-state conditions T4 MTase forms a dimeric structure, the following sequence of events is assumed. Upon collision of a T4 MTase monomer with an oligonucleotide duplex, an asymmetrical complex forms in which the enzyme randomly oriented relative to one of the strands of the specific recognition site catalyzes a fast transfer of the methyl group from S-adenosylmethionine to the adenosine residue (k1 = 0.21 s-1). Simultaneously, a second T4 MTase subunit is added to the complex, providing for the continuation of the reaction. In the course of a second stage, which is by an order of magnitude slower (k2 = 0.023 s-1 for duplex with the native site), the dimeric T4 MTase switches over to the second strand and the methylation of the second residue, target. The rate of the methyl group transfer from donor, S-adenosylmethionine, to DNA is much higher than the overall rate of the T4 MTase-catalyzed steady-state reaction, although this difference is considerably less than that shown for EcoRI Mtase. Substitutions of bases and deletions in the recognition site affect the substrate parameters in different fashions. When the GAT sequence is disrupted, the proportion of the initial productive enzyme-substrate complexes is usually sharply reduced. The flipping of the adenosine residue, a target for the modification in the recognition site, revealed by fluorescence titration, upon interaction with the enzyme supports the existing notions about the involvement of such a DNA deformation in reactions catalyzed by various DNA-MTases.  相似文献   

3.
The DNA [adenine-N6]methyltransferase (Dam) of bacteriophage T4   总被引:8,自引:0,他引:8  
S L Schlagman  Z Miner  Z Fehér  S Hattman 《Gene》1988,73(2):517-530
A functional bacteriophage T4 dam+ gene, which specifies a DNA [adenine-N6]methyltransferase (Dam), was cloned on a 1.8-kb HindIII fragment [Schlagman and Hattman, Gene 22 (1983) 139-156]. Sequence analysis [Macdonald and Mosig, EMBO J. 3 (1984) 2863-2871] revealed two overlapping in-phase open reading frames (ORFs). The 5' proximal ORF initiates translation at an AUG and encodes a 30-kDa polypeptide, whereas the downstream ORF initiates translation at a GUG and encodes a 26-kDa polypeptide. Analysis of BAL 31 deletions in our original dam+ clone has verified that at least one of these overlapping ORFs, in fact, encodes T4 Dam. To investigate where T4 Dam translation is initiated, we have constructed plasmids in which a tac or lambda PL promoter is placed 5' to either the longer ORF or just the shorter ORF. Only clones which contain a promoter in front of the longer ORF produce active T4 Dam. This indicates that the 26-kDa polypeptide alone cannot be T4 Dam. Additional experiments suggest that only the 30-kDa polypeptide is required for enzyme activity and that the shorter ORF is not translated in plasmid-carrying cells. We also present evidence that T4 Dam is capable of methylating 5'-GATC-3', GATm5C, and GAThmC sequences; non-canonical sites (e.g., GACC) are also methylated, but much less efficiently.  相似文献   

4.
5.
The DNA-[N 6-adenine]-methyltransferase (Dam MTase) of phage T4 catalyzes methyl group transfer from S-adenosyl-l-methionine (AdoMet) to the N6-position of adenine in the palindromic sequence, GATC. We have used a gel shift assay to monitor complex formation between T4 Dam and various synthetic duplex oligonucleotides, either native or modified/defective. The results are summarized as follows. (i) T4 Dam bound with approximately 100-fold higher affinity to a 20mer specific (GATC-containing) duplex containing the canonical palindromic methylation sequence, GATC, than to a non-specific duplex containing another palindrome, GTAC. (ii) Compared with the unmethylated duplex, the hemimethylated 20mer specific duplex had a slightly increased ( approximately 2-fold) ability to form complexes with T4 Dam. (iii) No stable complex was formed with a synthetic 12mer specific (GATC-containing) duplex, although T4 Dam can methylate it. This indicates that there is no relation between formation of a catalytically competent 12mer-Dam complex and one stable to gel electrophoresis. (iv) Formation of a stable complex did not require that both strands be contiguous or completely complementary. Absence of a single internucleotide phosphate strongly reduced complex formation only when missing between the T and C residues. This suggests that if T4 Dam makes critical contact(s) with a backbone phosphate(s), then the one between T and C is the only likely candidate. Having only one half of the recognition site intact on one strand was sufficient for stable complex formation provided that the 5'G.C base-pairs be present at both ends of the palindromic, GATC. Since absence of either a G or C abolished T4 Dam binding, we conclude that both strands are recognized by T4 Dam.  相似文献   

6.
The DNA methyltransferase of bacteriophage T4 (T4 Dam MTase) recognizes the palindromic sequence GATC, and catalyzes transfer of the methyl group from S:-adenosyl-L-methionine (AdoMet) to the N(6)-position of adenine [generating N(6)-methyladenine and S:-adenosyl-L-homocysteine (AdoHcy)]. Pre-steady state kinetic analysis revealed that the methylation rate constant k(meth) for unmethylated and hemimethylated substrates (0.56 and 0.47 s(-1), respectively) was at least 20-fold larger than the overall reaction rate constant k(cat) (0.023 s(-1)). This indicates that the release of products is the rate-limiting step in the reaction. Destabilization of the target-base pair did not alter the methylation rate, indicating that the rate of target nucleoside flipping does not limit k(meth). Preformed T4 Dam MTase-DNA complexes are less efficient than preformed T4 Dam MTase-AdoMet complexes in the first round of catalysis. Thus, this data is consistent with a preferred route of reaction for T4 Dam MTase in which AdoMet is bound first; this preferred reaction route is not observed with the DNA-[C5-cytosine]-MTases.  相似文献   

7.
The fluorescence of 2-aminopurine ((2)A)-substituted duplexes (contained in the GATC target site) was investigated by titration with T4 Dam DNA-(N6-adenine)-methyltransferase. With an unmethylated target ((2)A/A duplex) or its methylated derivative ((2)A/(m)A duplex), T4 Dam produced up to a 50-fold increase in fluorescence, consistent with (2)A being flipped out of the DNA helix. Though neither S-adenosyl-L-homocysteine nor sinefungin had any significant effect, addition of substrate S-adenosyl-L-methionine (AdoMet) sharply reduced the Dam-induced fluorescence with these complexes. In contrast, AdoMet had no effect on the fluorescence increase produced with an (2)A/(2)A double-substituted duplex. Since the (2)A/(m)A duplex cannot be methylated, the AdoMet-induced decrease in fluorescence cannot be due to methylation per se. We propose that T4 Dam alone randomly binds to the asymmetric (2)A/A and (2)A/(m)A duplexes, and that AdoMet induces an allosteric T4 Dam conformational change that promotes reorientation of the enzyme to the strand containing the native base. Thus, AdoMet increases enzyme binding-specificity, in addition to serving as the methyl donor. The results of pre-steady-state methylation kinetics are consistent with this model.  相似文献   

8.
We carried out a steady state kinetic analysis of the bacteriophage T4 DNA-[N6-adenine]methyltransferase (T4 Dam) mediated methyl group transfer reaction from S-adenosyl-l-methionine (AdoMet) to Ade in the palindromic recognition sequence, GATC, of a 20-mer oligonucleotide duplex. Product inhibition patterns were consistent with a steady state-ordered bi-bi mechanism in which the order of substrate binding and product (methylated DNA, DNA(Me) and S-adenosyl-l-homocysteine, AdoHcy) release was AdoMet downward arrow DNA downward arrow DNA(Me) upward arrow AdoHcy upward arrow. A strong reduction in the rate of methylation was observed at high concentrations of the substrate 20-mer DNA duplex. In contrast, increasing substrate AdoMet concentration led to stimulation in the reaction rate with no evidence of saturation. We propose the following model. Free T4 Dam (initially in conformational form E) randomly interacts with substrates AdoMet and DNA to form a ternary T4 Dam-AdoMet-DNA complex in which T4 Dam has isomerized to conformational state F, which is specifically adapted for catalysis. After the chemical step of methyl group transfer from AdoMet to DNA, product DNA(Me) dissociates relatively rapidly (k(off) = 1.7 x s(-1)) from the complex. In contrast, dissociation of product AdoHcy proceeds relatively slowly (k(off) = 0.018 x s(-1)), indicating that its release is the rate-limiting step, consistent with kcat = 0.015 x s(-1). After AdoHcy release, the enzyme remains in the F conformational form and is able to preferentially bind AdoMet (unlike form E, which randomly binds AdoMet and DNA), and the AdoMet-F binary complex then binds DNA to start another methylation cycle. We also propose an alternative pathway in which the release of AdoHcy is coordinated with the binding of AdoMet in a single concerted event, while T4 Dam remains in the isomerized form F. The resulting AdoMet-F binary complex then binds DNA, and another methylation reaction ensues. This route is preferred at high AdoMet concentrations.  相似文献   

9.
The interaction of the phage T4 Dam DNA-[N6-adenine] methyltransferase with 24mer synthetic oligonucleotide duplexes having different purine base substitutions in the palindromic recognition sequence, GATC, was investigated by means of gel shift and methyl transfer assays. The substitutions were introduced in either the upper or lower strand: guanine by 7-deazaguanine (G-->D) or 2-aminopurine (G-->N) and target adenine by purine (A-->P) or 2-aminopurine (A-->N). The effects of each base modification on binding/methylation were approximately equivalent for both strands. G-->D and G-->N substitutions resulted in a sharp decrease in binary complex formation. This suggests that T4 Dam makes hydrogen bonds with either the N7- or O6-keto groups (or both) in forming the complex. In contrast, A-->P and A-->N substitutions were much more tolerant for complex formation. This confirms our earlier observations that the presence of intact 5'-G:C base pairs at both ends of the methylation site is critical, but that base substitutions within the central A:T base pairs show less inhibition of complex formation. Addition of T4 Dam to a complete substrate mixture resulted in a burst of [3H]methylated product. In all cases the substrate dependencies of bursts and methylation rates were proportional to each other. For the perfect 24mer k cat = 0.014/s and K m = 7.7 nM was obtained. In contrast to binary complex formation the two guanine substitutions exerted relatively minor effects on catalytic turnover (the k cat was reduced at most 2. 5-fold), while the two adenine substitutions showed stronger effects (5- to 15-fold reduction in k cat). The effects of base analog substitutions on K m(DNA) were more variable: A-->P (decreased); A-->N and G-->D (unchanged); G-->N (increased).  相似文献   

10.
Kinetic analysis of methyl group transfer from S-adenosyl-L-methionine (SAM) to the GATC recognition site catalyzed by the phage T4 DNA-[N6-adenine]-methyltransferase (MTase) [EC 2.1.1.72] showed that the reverse reaction is at least 500 times slower than the direct one. The overall pattern of product inhibition corresponds to an ordered steady-state mechanism following the sequence SAM decreases DNA decreases metDNA increases SAH increases (S-adenosyl-L-homocysteine). Pronounced inhibition was observed at high concentrations of the 20-meric substrate duplex, which may be attributed to formation of a dead-end complex MTase-SAH-DNA. In contrast, high SAM concentrations proportionally accelerated the reaction. Thus, the reaction may include a stage whereby the binding of SAM and the release of SAH are united into one concerted event. Computer fitting of alternative kinetic schemes to the aggregate of experimental data revealed that the most plausible mechanism involves isomerization of the enzyme.  相似文献   

11.
The bacteriophage T2 and T4 dam genes code for a DNA (N6-adenine)methyltransferase (MTase). Nonglucosylated, hydroxymethylcytosine-containing T2gt- virion DNA has a higher level of methylation than T4gt- virion DNA does. To investigate the basis for this difference, we compared the intracellular enzyme levels following phage infection as well as the in vitro intrinsic methylation capabilities of purified T2 and T4 Dam MTases. Results from Western blotting (immunoblotting) showed that the same amounts of MTase protein were produced after infection with T2 and T4. Kinetic analyses with purified homogeneous enzymes showed that the two MTases had similar Km values for the methyl donor, S-adenosyl-L-methionine, and for substrate DNA. In contrast, they had different k(cat) values (twofold higher for T2 Dam MTase). We suggest that this difference can account for the ability of T2 Dam to methylate viral DNA in vivo to a higher level than does T4 Dam. Since the T2 and T4 MTases differ at only three amino acid residues (at positions 20 [T4, Ser; T2, Pro], 26 [T4, Asn; T2, Asp], and 188 [T4, Asp; T2, Glu]), we have produced hybrid proteins to determine which residue(s) is responsible for increased catalytic activity. The results of these analyses showed that the residues at positions 20 and 26 are responsible for the different k(cat) values of the two MTases for both canonical and noncanonical sites. Moreover, a single substitution of either residue 20 or 26 was sufficient to increase the k(cat) of T4 Dam.  相似文献   

12.
We carried out steady state and pre-steady state (burst) kinetic analyses of the bacteriophage T4 Dam DNA-(N(6)-adenine)-methyltransferase (MTase)-mediated methyl group transfer from S-adenosyl-l-methionine (AdoMet) to Ade in oligonucleotide duplexes containing one or two specific GATC sites with different combinations of methylated and unmodified targets. We compared the results for ligated 40-mer duplexes with those of the mixtures of the two unligated duplexes used to generate the 40-mers. The salient results are as follows: (i) T4 Dam MTase modifies 40-mer duplexes in a processive fashion. (ii) During processive movement, T4 Dam rapidly exchanges product S-adenosyl-l-homocysteine (AdoHcy) for substrate AdoMet without dissociating from the DNA duplex. (iii) T4 Dam processivity is consistent with an ordered bi-bi mechanism AdoMet downward arrow DNA downward arrow DNA(Me) upward arrow AdoHcy upward arrow. However, in contrast to the steady state, here DNA(Me) upward arrow signifies departure from a methylated site GMTC upward arrow without physically dissociating from the DNA. (iv) Following methyl transfer at one site and linear diffusion to a hemimethylated site, a reconstituted T4 Dam-AdoMet complex rapidly reorients itself to the (productive) unmethylated strand. T4 Dam-AdoHcy cannot reorient at an enzymatically created GMTC site. (v) The inhibition potential of fully methylated sites 5'-GMTC/5'-GMTC is much lower for a long DNA molecule compared with short single-site duplexes.  相似文献   

13.
The sequences of the genes coding for M.CviBIII (from virus NC-1A which infects a eukaryotic alga) [Narva et al., Nucleic Acids Res. 15 (1987) 9807-9823] and M.TaqI (from the bacterium Thermus aquaticus) [Slatko et al., Nucleic Acids Res. 15 (1987) 9781-9796] have been determined recently. Both enzymes methylate adenine in the sequence TCGA. We have compared the predicted amino acid sequences of these two methyltransferases (MTases), with each other and with ten other N6 A-MTases and find regions of similarity. M.CviBIII and M.TaqI were most closely related followed by M.PaeR7, whose recognition sequence (CTCGAG) contains the M.TaqI/M.CviBIII recognition sequence TCGA, and M.PstI, whose recognition sequence is CTGCAG. All of the N6-MTases contain the sequence Asp/Asn-Pro-Pro-Tyr (B-P-P-Y) referred to by Hattman et al. [J. Bacteriol. 164 (1985) 932-937] as region IV. The predicted secondary structure of this region forms a finger-like structure ('beta finger') containing a beta-pleated sheet (...XXXB), two beta-turns (P-P) followed by another beta-pleated sheet [Y/FXXX...].  相似文献   

14.
Comparison of the deduced amino acid sequences of DNA-[N6-adenine]-methyltransferases has revealed several conserved regions. All of these enzymes contain a DPPY [or closely related] motif. By site-directed mutagenesis of a cloned T4 dam gene, we have altered the first proline residue in this motif [located in conserved region IV of the T4 Dam-MTase] to alanine or threonine. The mutant enzymic forms, P172A and P172T, were overproduced and purified. Kinetic studies showed that compared to the wild-type [wt] the two mutant enzymic forms had: (i) an increased [5 and 20-fold, respectively] Km for substrate, S-adenosyl-methionine [AdoMet]; (ii) a slightly reduced [2 and 4-fold lower] kcat; (iii) a strongly reduced kcat/KmAdoMet [10 and 100-fold]; and (iv) almost the same Km for substrate DNA. Equilibrium dialysis studies showed that the mutant enzymes had a reduced [4 and 9-fold lower] Ka for AdoMet. Taken together these data indicate that the P172A and P172T alterations resulted primarily in a reduced affinity for AdoMet. This suggests that the DPPY-motif is important for AdoMet-binding, and that region IV contains or is part of an AdoMet-binding site.  相似文献   

15.
Properties of a mutant bacteriophage T2 DNA [N:(6)-adenine] methyltransferase (T2 Dam MTase) have been investigated for its potential utilization in RecA-assisted restriction endonuclease (RARE) cleavage. Steady-state kinetic analyses with oligonucleotide duplexes revealed that, compared to wild-type T4 Dam, both wild-type T2 Dam and mutant T2 Dam P126S had a 1.5-fold higher k(cat) in methylating canonical GATC sites. Additionally, T2 Dam P126S showed increased efficiencies in methylation of non-canonical GAY sites relative to the wild-type enzymes. In agreement with these steady-state kinetic data, when bacteriophage lambda DNA was used as a substrate, maximal protection from restriction nuclease cleavage in vitro was achieved on the sequences GATC, GATN and GACY, while protection of GACR sequences was less efficient. Collectively, our data suggest that T2 Dam P126S can modify 28 recognition sequences. The feasibility of using the mutant enzyme in RARE cleavage with BCL:I and ECO:RV endonucleases has been shown on phage lambda DNA and with BCL:I and DPN:II endonucleases on yeast chromosomal DNA embedded in agarose.  相似文献   

16.
RsrI [N6-adenine] DNA methyltransferase (M·RsrI), which recognizes GAATTC and is a member of a restriction–modification system in Rhodobacter sphaeroides, was purified to >95% homogeneity using a simplified procedure involving two ion exchange chromatographic steps. Electrophoretic gel retardation assays with purified M·RsrI were performed on unmethylated, hemimethylated, dimethylated or non-specific target DNA duplexes (25 bp) in the presence of sinefungin, a potent inhibitory analog of AdoMet. M·RsrI binding was affected by the methylation status of the DNA substrate and was enhanced by the presence of the cofactor analog. M·RsrI bound DNA substrates in the presence of sinefungin with decreasing affinities: hemimethylated > unmethylated > dimethylated >> non-specific DNA. Gel retardation studies with DNA substrates containing an abasic site substituted for the target adenine DNA provided evidence consistent with M·RsrI extruding the target base from the duplex. Consistent with such base flipping, an ~1.7-fold fluorescence intensity increase was observed upon stoichiometric addition of M·RsrI to hemimethylated DNA containing the fluorescent analog 2-aminopurine in place of the target adenine. Pre-steady-state kinetic and isotope- partitioning experiments revealed that the enzyme displays burst kinetics, confirmed the catalytic competence of the M·RsrI–AdoMet complex and eliminated the possibility of an ordered mechanism where DNA is required to bind first. The equilibrium dissociation constants for AdoMet, AdoHcy and sinefungin were determined using an intrinsic tryptophan fluorescence-quenching assay.  相似文献   

17.
Dimeric restriction endonucleases and monomeric modification methyltransferases were long accepted as the structural paradigm for Type II restriction systems. Recent studies, however, have revealed an increasing number of apparently dimeric DNA methyltransferases. Our initial characterization of RsrI methyltransferase (M.RsrI) was consistent with the enzyme functioning as a monomer, but, subsequently, the enzyme crystallized as a dimer with 1500 A2 of buried surface area. This result led us to re-examine the biochemical properties of M.RsrI. Gel-shift studies of M.RsrI binding to DNA suggested that binding cooperativity targets hemimethylated DNA preferentially over unmethylated DNA. Size-exclusion chromatography indicated that the M.RsrI-DNA complex had a size and stoichiometry consistent with a dimeric enzyme binding to the DNA. Kinetic measurements revealed a quadratic relationship between enzyme velocity and concentration. Site-directed mutagenesis at the dimer interface affected the kinetics and DNA-binding of the enzyme, providing support for a model proposing an active enzyme dimer. We also identified a conserved motif in the dimer interfaces of the beta-class methyltransferases M.RsrI, M.MboIIA and M2.DpnII. Taken together, these data suggest that M.RsrI may be part of a sub-class of MTases that function as dimers.  相似文献   

18.
Interaction of T4 DNA-(N6-adenine)-methyltransferase was studied with a variety of synthetic oligonucleotide substrates containing the native recognition site GATC or its modified variants. The data obtained in the decisecond and second intervals of the reaction course allowed for the first time the substrate methylation rates to be compared with the parameters of the steady-state reaction. It was established that the substrate reaction proceeds in two stages. Because it is shown that in steady-state conditions T4 MTase forms a dimeric structure, the following sequence of events is assumed. Upon collision of a T4 MTase monomer with an oligonucleotide duplex, an asymmetrical complex forms in which the enzyme randomly oriented relative to one of the strands of the specific recognition site catalyzes a fast transfer of the methyl group from S-adenosylmethionine to the adenosine residue (k 1 = 0.21 s–1). Simultaneously, a second T4 MTase subunit is added to the complex, providing for the continuation of the reaction. In the course of a second stage, which is by an order of magnitude slower (k 2 = 0.023 s–1 for duplex with the native site), the dimeric T4 MTase switches over to the second strand and the methylation of the second residue, target. The rate of the methyl group transfer from donor, S-adenosylmethionine, to DNA is much higher than the overall rate of the T4 MTase-catalyzed steady-state reaction, although this difference is considerably less than that shown for EcoRI MTase. Base substitutions and deletions in the recognition site affect the substrate parameters in different fashions. When the GAT sequence is disrupted, the proportion of the initial productive enzyme–substrate complexes is usually sharply reduced. The flipping of the adenosine residue to be modified in the recognition site upon interaction with the enzyme, revealed by fluorescence titration, supports the existing notions about the involvement of such a DNA deformation in reactions catalyzed by various DNA-MTases.  相似文献   

19.
Kinetic analysis of methyl group transfer from S-adenosyl-L-methionine (SAM) to the GATC recognition site catalyzed by the phage T4 DNA-[N6-adenine]-methyltransferase (MTase) [EC 2.1.1.72] showed that the reverse reaction is at least 500 times slower than the direct one. The overall pattern of product inhibition corresponds to an ordered steady-state mechanism following the sequence SAMDNAmetDNASAH (S-adenosyl-L-homocysteine). Pronounced inhibition was observed at high concentrations of the 20-meric substrate duplex, which may be attributed to formation of a dead-end complex MTase–SAH–DNA. In contrast, high SAM concentrations proportionally accelerated the reaction. Thus, the reaction may include a stage whereby the binding of SAM and the release of SAH are united into one concerted event. Computer fitting of alternative kinetic schemes to the aggregate of experimental data revealed that the most plausible mechanism involves isomerization of the enzyme.  相似文献   

20.
A 693 basepair cloned fragment of bacteriophage T4 DNA, which supports specifically growth of T4 amber mutants in gene 57, has been sequenced. A polypeptide can be deduced from this sequence, that is either 54 or 60 amino acids long depending which of two AUG codons, 18 nucleotides apart, are used for initiation. The size of this deduced polypeptide is compatible with the size of a single polypeptide (based on polyacrylamide gel electrophoresis) synthesized in vivo in E. coli under the direction of the cloned T4 DNA fragment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号