首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interface between two cells from the immune system has recently been coined "immunological synapse". The authors review recent findings concerning the structure of the synapse formed between T lymphocytes and antigen-presenting cells. T cells can be part of different synapses, depending on the antigen-presenting cell (B cell hybridoma, proteo-lipid bilayer, macrophage, dendritic cell). The synapse formed with dendritic cells is discussed in more details. A comparison is made with the synapses from the nervous system. Several parallel questions are discussed: how receptors can be clustered, what is the influence of synapse functioning on the structure of the synapse. It is suggested that in both cases two modes of communication exist in parallel: direct cell-cell contacts and soluble mediators, neurotransmitters in one case, putative immunotransmitters in the other.  相似文献   

2.
Retroviral spread by induction of virological synapses   总被引:5,自引:0,他引:5  
Cells of the immune system communicate via the formation of receptor-containing adhesive junctions termed immunological synapses. Recently, retroviruses have been shown to subvert this process in order to pass directly from infected to uninfected immune cells. Such cell-cell viral dissemination appears to function by triggering existing cellular pathways involved in antigen presentation and T-cell communication. This mode of viral spread has important consequences for both the virus and the host cells in terms of viral pathogenesis and viral resistance to immune and therapeutic intervention. This review summarises the current knowledge concerning virological synapses induced by retroviruses.  相似文献   

3.
4.
Fueling synapses     
Schuman E  Chan D 《Cell》2004,119(6):738-740
The transmission of information across neuronal synapses is an energetically taxing business. Sheng and colleagues monitored the localization of mitochondria following different levels of synaptic activation and discovered that these organelles change their distribution in interesting ways, stalling near synapses when neurons are activated and increasing their movement when neurons are silent (Li et al., 2004 [this issue of Cell]).  相似文献   

5.
How does each ingrowing retinal fiber select the right spot in the overall retinotopic projection? Chemospecific surface interactions appear to be sufficient only to organize a crude retinotopic map on the tectum during regeneration of the optic nerve of goldfish. Precise retinotopic ordering is achieved via an activity-dependent stabilization of appropriate synapses, based on the correlated activity of neighboring ganglion cells of the same receptive field type in the retina. Four treatments have been found to block the sharpening process: 1) blocking activity of the ganglion cells with intraocular tetrodotoxin (TTX); 2) rearing in total darkness; 3) correlated activation of all ganglion cells via stroboscopic illumination in a featureless environment; 4) block of retinotectal synaptic transmission with alpha-bungarotoxin. These experiments support a role for normal visually driven activity in sharpening the diffuse projection, and demonstrate that the correlated activity of the optic fibers interacts within the postsynaptic cells, probably through the summation of excitatory postsynaptic potentials. Intraocular TTX experiments suggest that a similar mechanism may drive both the formation of ocular dominance patches in fish tectum and kitten visual cortex and the segregation of different receptive field types in the lateral geniculate nucleus. Thus, it may be a general mechanism whereby the diffuse projections of early development are brought to a mature level of organization.  相似文献   

6.
 Some synapses between cortical pyramidal neurons exhibit a rapid depression of excitatory postsynaptic potentials for successive presynaptic spikes. Since depressing synapses do not transmit information on sustained presynaptic firing rates, it has been speculated that they are favorable for temporal coding. In this paper, we study the dynamical effects of depressing synapses on stimulus-induced transient synchronization in a simple network of inhibitory interneurons and excitatory neurons, assuming that the recurrent excitation is mediated by depressing synapses. This synchronization occurs in a temporal pattern which depends on a given stimulus. Since the presence of noise is always a potential hazard in temporal coding, we investigate the extent to which noise in stimuli influences the synchronization phenomena. It is demonstrated that depressing synapses greatly contribute to suppressing the influences of noise on the stimulus-specific temporal patterns of synchronous firing. The timing-based Hebbian learning revealed by physiological experiments is shown to stabilize the temporal patterns in cooperation with synaptic depression. Thus, the times at which synchronous firing occurs provides a reliable information representation in the presence of synaptic depression. Received: 5 July 2000 / Accepted in revised form: 12 January 2001  相似文献   

7.
8.
Histochemistry of synapses   总被引:2,自引:0,他引:2  
  相似文献   

9.
10.
11.
The effect of dipicolinic acid (2,6-pyridine dicarboxylic acid) on the mealworm neuromuscular junction was studied using conventional microelectrode recording techniques. Dipicolinic acid (10?5-10?3 M) added to the bathing solution reversibly blocked neuromuscular transmission. The depolarization in response to iontophoretically applied L-glutamate (glutamate potential) was not affected by dipicolinic acid even when the neurally evoked excitatory postsynaptic potential (EPSP) was totally abolished. Focal extracellular recordings from single synaptic sites revealed that in the presence of 1 x 10?4 M dipicolinic acid the presynaptic spike was unchanged, but the quantal content for evoked transmitter release was reduced. The calcium-dependent action potential elicited by direct stimulation of the muscle fiber was not impaired by dipicolinic acid. These results suggest that dipicolinic acid interferes with the transmitter-releasing mechanism from the presynaptic terminal.  相似文献   

12.
Microglia are the immune cells of the brain. In the absence of pathological insult, their highly motile processes continually survey the brain parenchyma and transiently contact synaptic elements. Aside from monitoring, their physiological roles at synapses are not known. To gain insight into possible roles of microglia in the modification of synaptic structures, we used immunocytochemical electron microscopy, serial section electron microscopy with three-dimensional reconstructions, and two-photon in vivo imaging to characterize microglial interactions with synapses during normal and altered sensory experience, in the visual cortex of juvenile mice. During normal visual experience, most microglial processes displayed direct apposition with multiple synapse-associated elements, including synaptic clefts. Microglial processes were also distinctively surrounded by pockets of extracellular space. In terms of dynamics, microglial processes localized to the vicinity of small and transiently growing dendritic spines, which were typically lost over 2 d. When experience was manipulated through light deprivation and reexposure, microglial processes changed their morphology, showed altered distributions of extracellular space, displayed phagocytic structures, apposed synaptic clefts more frequently, and enveloped synapse-associated elements more extensively. While light deprivation induced microglia to become less motile and changed their preference of localization to the vicinity of a subset of larger dendritic spines that persistently shrank, light reexposure reversed these behaviors. Taken together, these findings reveal different modalities of microglial interactions with synapses that are subtly altered by sensory experience. These findings suggest that microglia may actively contribute to the experience-dependent modification or elimination of a specific subset of synapses in the healthy brain.  相似文献   

13.
Control of nerve-cell excitability is crucial for normal brain function. Two main groups of inhibitory neurotransmitter receptors--GABA(A) and glycine receptors--fulfil a significant part of this role. To mediate fast synaptic inhibition effectively, these receptors need to be localized and affixed opposite nerve terminals that release the appropriate neurotransmitter at multiple sites on postsynaptic neurons. But for this to occur, neurons require intracellular anchoring molecules, as well as mechanisms that ensure the efficient turnover and transport of mature, functional inhibitory synaptic receptor proteins. This review describes the dynamic regulation of synaptic GABA(A) and glycine receptors and discusses recent advances in this rapidly evolving field.  相似文献   

14.
The developing neuromuscular junction has provided an important paradigm for studying synapse formation. An outstanding feature of neuromuscular differentiation is the aggregation of acetylcholine receptors (AChRs) at high density in the postsynaptic membrane. While AChR aggregation is generally believed to be induced by the nerve, the mechanisms underlying aggregation remain to be clarified. A 43-kD protein (43k) normally associated with the cytoplasmic aspect of AChR clusters has long been suspected of immobilizing AChRs by linking them to the cytoskeleton. In recent studies, the AChR clustering activity of 43k has, at last, been demonstrated by expressing recombinant AChR and 43k in non-muscle cells. Mutagenesis of 43k has revealed distinct domains within the primary structure which may be responsible for plasma membrane targeting and AChR binding. Other lines of study have provided clues as to how nerve-derived (extracellular) AChR-cluster inducing factors such as agrin might activate 43k-driven postsynaptic membrane specialization.  相似文献   

15.
16.
Development of neuron-neuron synapses   总被引:1,自引:0,他引:1  
Our understanding of neuronal synapse development has advanced in recent years. The development of glycinergic synapses appears to depend on gephyrin and glycine receptor activity. Molecular characterization of the structure and development of glutamatergic synapses is in progress, but the underlying mechanisms remain unclear. Activity-dependent mechanisms and specific molecules that regulate the morphological development of dendritic spines have recently been identified.  相似文献   

17.
18.
Y H Koh  E Popova  U Thomas  L C Griffith  V Budnik 《Cell》1999,98(3):353-363
Discs large (DLG) mediates the clustering of synaptic molecules. Here we demonstrate that synaptic localization of DLG itself is regulated by CaMKII. We show that DLG and CaMKII colocalize at synapses and exist in the same protein complex. Constitutively activated CaMKII phenocopied structural abnormalities of dlg mutant synapses and dramatically increased extrajunctional DLG. Decreased CaMKII activity caused opposite alterations. In vitro, CaMKII phosphorylated a DLG fragment with a stoichiometry close to one. Moreover, expression of site-directed dlg mutants that blocked or mimicked phosphorylation had effects similar to those observed upon inhibiting or constitutively activating CaMKII. We propose that CaMKII-dependent DLG phosphorylation regulates the association of DLG with the synaptic complex during development and plasticity, thus providing a link between synaptic activity and structure.  相似文献   

19.
Proximity labeling provides a powerful in vivo tool to characterize the proteome of subcellular structures and the interactome of specific proteins. The nematode Caenorhabditis elegans is one of the most intensely studied organisms in biology, offering many advantages for biochemistry. Using the highly active biotin ligase TurboID, we optimize here a proximity labeling protocol for C. elegans. An advantage of TurboID is that biotin''s high affinity for streptavidin means biotin-labeled proteins can be affinity-purified under harsh denaturing conditions. By combining extensive sonication with aggressive denaturation using SDS and urea, we achieved near-complete solubilization of worm proteins. We then used this protocol to characterize the proteomes of the worm gut, muscle, skin, and nervous system. Neurons are among the smallest C. elegans cells. To probe the method''s sensitivity, we expressed TurboID exclusively in the two AFD neurons and showed that the protocol could identify known and previously unknown proteins expressed selectively in AFD. The active zones of synapses are composed of a protein matrix that is difficult to solubilize and purify. To test if our protocol could solubilize active zone proteins, we knocked TurboID into the endogenous elks-1 gene, which encodes a presynaptic active zone protein. We identified many known ELKS-1-interacting active zone proteins, as well as previously uncharacterized synaptic proteins. Versatile vectors and the inherent advantages of using C. elegans, including fast growth and the ability to rapidly make and functionally test knock-ins, make proximity labeling a valuable addition to the armory of this model organism.  相似文献   

20.
Axon branch removal at developing synapses by axosome shedding   总被引:4,自引:0,他引:4  
Bishop DL  Misgeld T  Walsh MK  Gan WB  Lichtman JW 《Neuron》2004,44(4):651-661
In many parts of the developing nervous system, the number of axonal inputs to each postsynaptic cell is dramatically reduced. This synapse elimination has been extensively studied at the neuromuscular junction, but how axons are lost is unknown. Here, we combine time-lapse imaging of fluorescently labeled axons and serial electron microscopy to show that axons at neuromuscular junctions are removed by an unusual cellular mechanism. As axons disappear, they shed numerous membrane bound remnants. These "axosomes" contain a high density of synaptic organelles and are formed by engulfment of axon tips by Schwann cells. After this engulfment, the axosome's contents mix with the cytoplasm of the glial cell. Axosome shedding might underlie other forms of axon loss and may provide a pathway for interactions between axons and glia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号