首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
The search for the association between complex diseases and single nucleotide polymorphisms (SNPs) or haplotypes has recently received great attention. For these studies, it is essential to use a small subset of informative SNPs accurately representing the rest of the SNPs. Informative SNP selection can achieve (1) considerable budget savings by genotyping only a limited number of SNPs and computationally inferring all other SNPs or (2) necessary reduction of the huge SNP sets (obtained, e.g. from Affymetrix) for further fine haplotype analysis. A novel informative SNP selection method for unphased genotype data based on multiple linear regression (MLR) is implemented in the software package MLR-tagging. This software can be used for informative SNP (tag) selection and genotype prediction. The stepwise tag selection algorithm (STSA) selects positions of the given number of informative SNPs based on a genotype sample population. The MLR SNP prediction algorithm predicts a complete genotype based on the values of its informative SNPs, their positions among all SNPs, and a sample of complete genotypes. An extensive experimental study on various datasets including 10 regions from HapMap shows that the MLR prediction combined with stepwise tag selection uses fewer tags than the state-of-the-art method of Halperin et al. (2005). AVAILABILITY: MLR-Tagging software package is publicly available at http://alla.cs.gsu.edu/~software/tagging/tagging.html  相似文献   

2.
3.
Li C  Li Y  Xu J  Lv J  Ma Y  Shao T  Gong B  Tan R  Xiao Y  Li X 《Gene》2011,489(2):119-129
Detection of the synergetic effects between variants, such as single-nucleotide polymorphisms (SNPs), is crucial for understanding the genetic characters of complex diseases. Here, we proposed a two-step approach to detect differentially inherited SNP modules (synergetic SNP units) from a SNP network. First, SNP-SNP interactions are identified based on prior biological knowledge, such as their adjacency on the chromosome or degree of relatedness between the functional relationships of their genes. These interactions form SNP networks. Second, disease-risk SNP modules (or sub-networks) are prioritised by their differentially inherited properties in IBD (Identity by Descent) profiles of affected and unaffected sibpairs. The search process is driven by the disease information and follows the structure of a SNP network. Simulation studies have indicated that this approach achieves high accuracy and a low false-positive rate in the identification of known disease-susceptible SNPs. Applying this method to an alcoholism dataset, we found that flexible patterns of susceptible SNP combinations do play a role in complex diseases, and some known genes were detected through these risk SNP modules. One example is GRM7, a known alcoholism gene successfully detected by a SNP module comprised of two SNPs, but neither of the two SNPs was significantly associated with the disease in single-locus analysis. These identified genes are also enriched in some pathways associated with alcoholism, including the calcium signalling pathway, axon guidance and neuroactive ligand-receptor interaction. The integration of network biology and genetic analysis provides putative functional bridges between genetic variants and candidate genes or pathways, thereby providing new insight into the aetiology of complex diseases.  相似文献   

4.
As large-scale sequencing efforts turn from single genome sequencing to polymorphism discovery, single nucleotide polymorphisms (SNPs) are becoming an increasingly important class of population genetic data. But because of the ascertainment biases introduced by many methods of SNP discovery, most SNP data cannot be analyzed using classical population genetic methods. Statistical methods must instead be developed that can explicitly take into account each method of SNP discovery. Here we review some of the current methods for analyzing SNPs and derive sampling distributions for single SNPs and pairs of SNPs for some common SNP discovery schemes. We also show that the ascertainment scheme has a large effect on the estimation of linkage disequilibrium and recombination, and describe some methods of correcting for ascertainment biases when estimating recombination rates from SNP data.  相似文献   

5.
MOTIVATION: Single nucleotide polymorphisms (SNPs) analysis is an important means to study genetic variation. A fast and cost-efficient approach to identify large numbers of novel candidates is the SNP mining of large scale sequencing projects. The increasing availability of sequence trace data in public repositories makes it feasible to evaluate SNP predictions on the DNA chromatogram level. MAVIANT, a platform-independent Multipurpose Alignment VIewing and Annotation Tool, provides DNA chromatogram and alignment views and facilitates evaluation of predictions. In addition, it supports direct manual annotation, which is immediately accessible and can be easily shared with external collaborators. RESULTS: Large-scale SNP mining of polymorphisms bases on porcine EST sequences yielded more than 7900 candidate SNPs in coding regions (cSNPs), which were annotated relative to the human genome. Non-synonymous SNPs were analyzed for their potential effect on the protein structure/function using the PolyPhen and SIFT prediction programs. Predicted SNPs and annotations are stored in a web-based database. Using MAVIANT SNPs can visually be verified based on the DNA sequencing traces. A subset of candidate SNPs was selected for experimental validation by resequencing and genotyping. This study provides a web-based DNA chromatogram and contig browser that facilitates the evaluation and selection of candidate SNPs, which can be applied as genetic markers for genome wide genetic studies. AVAILABILITY: The stand-alone version of MAVIANT program for local use is freely available under GPL license terms at http://snp.agrsci.dk/maviant. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.  相似文献   

6.
Oilseed rape (Brassica napus) is an allotetraploid species consisting of two genomes, derived from B. rapa (A genome) and B. oleracea (C genome). The presence of these two genomes makes single nucleotide polymorphism (SNP) marker identification and SNP analysis more challenging than in diploid species, as for a given locus usually two versions of a DNA sequence (based on the two ancestral genomes) have to be analyzed simultaneously during SNP identification and analysis. One hundred amplicons derived from expressed sequence tag (ESTs) were analyzed to identify SNPs in a panel of oilseed rape varieties and within two sister species representing the ancestral genomes. A total of 604 SNPs were identified, averaging one SNP in every 42 bp. It was possible to clearly discriminate SNPs that are polymorphic between different plant varieties from SNPs differentiating the two ancestral genomes. To validate the identified SNPs for their use in genetic analysis, we have developed Illumina GoldenGate assays for some of the identified SNPs. Through the analysis of a number of oilseed rape varieties and mapping populations with GoldenGate assays, we were able to identify a number of different segregation patterns in allotetraploid oilseed rape. The majority of the identified SNP markers can be readily used for genetic mapping, showing that amplicon sequencing and Illumina GoldenGate assays can be used to reliably identify SNP markers in tetraploid oilseed rape and to convert them into successful SNP assays that can be used for genetic analysis.  相似文献   

7.
GWAS has facilitated greatly the discovery of risk SNPs associated with complex diseases. Traditional methods analyze SNP individually and are limited by low power and reproducibility since correction for multiple comparisons is necessary. Several methods have been proposed based on grouping SNPs into SNP sets using biological knowledge and/or genomic features. In this article, we compare the linear kernel machine based test (LKM) and principal components analysis based approach (PCA) using simulated datasets under the scenarios of 0 to 3 causal SNPs, as well as simple and complex linkage disequilibrium (LD) structures of the simulated regions. Our simulation study demonstrates that both LKM and PCA can control the type I error at the significance level of 0.05. If the causal SNP is in strong LD with the genotyped SNPs, both the PCA with a small number of principal components (PCs) and the LKM with kernel of linear or identical-by-state function are valid tests. However, if the LD structure is complex, such as several LD blocks in the SNP set, or when the causal SNP is not in the LD block in which most of the genotyped SNPs reside, more PCs should be included to capture the information of the causal SNP. Simulation studies also demonstrate the ability of LKM and PCA to combine information from multiple causal SNPs and to provide increased power over individual SNP analysis. We also apply LKM and PCA to analyze two SNP sets extracted from an actual GWAS dataset on non-small cell lung cancer.  相似文献   

8.
Stringer S  Wray NR  Kahn RS  Derks EM 《PloS one》2011,6(11):e27964
Complex diseases are often highly heritable. However, for many complex traits only a small proportion of the heritability can be explained by observed genetic variants in traditional genome-wide association (GWA) studies. Moreover, for some of those traits few significant SNPs have been identified. Single SNP association methods test for association at a single SNP, ignoring the effect of other SNPs. We show using a simple multi-locus odds model of complex disease that moderate to large effect sizes of causal variants may be estimated as relatively small effect sizes in single SNP association testing. This underestimation effect is most severe for diseases influenced by numerous risk variants. We relate the underestimation effect to the concept of non-collapsibility found in the statistics literature. As described, continuous phenotypes generated with linear genetic models are not affected by this underestimation effect. Since many GWA studies apply single SNP analysis to dichotomous phenotypes, previously reported results potentially underestimate true effect sizes, thereby impeding identification of true effect SNPs. Therefore, when a multi-locus model of disease risk is assumed, a multi SNP analysis may be more appropriate.  相似文献   

9.
SUMMARY: The high cost of genotyping single nucleotide polymorphisms (SNPs) generally prohibits the systematic mapping of entire genetic linkage regions in order to find the polymorphisms associated with increased risk of disease. In practice, SNPs are selected at approximately equal spacing across the linkage region to try to locate a SNP lying in the haplotype block of the disease SNP. The size of the haplotype block may not be known, however, and SNPs taken from public domain sources may not in fact be polymorphic. Our program will choose a subset of the SNPs in a linkage region so as to maximize the expected proportion of the sequence that lies within a given distance of a real SNP. AVAILABILITY: The software is available, free of charge, for academic use on request from the authors. SUPPLEMENTARY INFORMATION: www.oxagen.co.uk  相似文献   

10.
We have recently developed analysis methods (GREML) to estimate the genetic variance of a complex trait/disease and the genetic correlation between two complex traits/diseases using genome-wide single nucleotide polymorphism (SNP) data in unrelated individuals. Here we use analytical derivations and simulations to quantify the sampling variance of the estimate of the proportion of phenotypic variance captured by all SNPs for quantitative traits and case-control studies. We also derive the approximate sampling variance of the estimate of a genetic correlation in a bivariate analysis, when two complex traits are either measured on the same or different individuals. We show that the sampling variance is inversely proportional to the number of pairwise contrasts in the analysis and to the variance in SNP-derived genetic relationships. For bivariate analysis, the sampling variance of the genetic correlation additionally depends on the harmonic mean of the proportion of variance explained by the SNPs for the two traits and the genetic correlation between the traits, and depends on the phenotypic correlation when the traits are measured on the same individuals. We provide an online tool for calculating the power of detecting genetic (co)variation using genome-wide SNP data. The new theory and online tool will be helpful to plan experimental designs to estimate the missing heritability that has not yet been fully revealed through genome-wide association studies, and to estimate the genetic overlap between complex traits (diseases) in particular when the traits (diseases) are not measured on the same samples.  相似文献   

11.
《Genomics》2022,114(3):110348
Single nucleotide polymorphisms (SNPs) are widely used in genetic research and molecular breeding. To date, the genomes of many vegetable crops have been assembled, and hundreds of core germplasms for each vegetable have been sequenced. However, these data are not currently easily accessible because they are stored on different public databases. Therefore, a vegetable crop SNP database should be developed that hosts SNPs demonstrated to have a high success rate in genotyping for genetic research (herein, “alpha SNPs”). We constructed a database (VegSNPDB, http://www.vegsnpdb.cn/) containing the sequence data of 2032 germplasms from 16 vegetable crop species. VegSNPDB hosts 118,725,944 SNPs of which 4,877,305 were alpha SNPs. SNPs can be searched by chromosome number, position, SNP type, genetic population, or specific individuals, as well as the values of MAF, PIC, and heterozygosity. We hope that VegSNPDB will become an important SNP database for the vegetable research community.  相似文献   

12.
The increase in availability of resequencing data is greatly accelerating SNP discovery and has facilitated the development of SNP genotyping assays. This, in turn, is increasing interest in annotation of individual SNPs. Currently, these data are only available through curation, or comparison to a reference genome. Many species lack a reference genome, but are still important genetic models or are significant species in agricultural production or natural ecosystems. For these species, it is possible to annotate SNPs through comparison with cDNA, or data from well‐annotated genes in public repositories. We present SNPMeta, a tool which gathers information about SNPs by comparison with sequences present in GenBank databases. SNPMeta is able to annotate SNPs from contextual sequence in SNP assay designs, and SNPs discovered through genotyping by sequencing (GBS) approaches. However, SNPs discovered through GBS occur throughout the genome, rather than only in gene space, and therefore do not annotate at high rates. SNPMeta can therefore be used to annotate SNPs in nonmodel species or species that lack a reference genome. Annotations generated by SNPMeta are highly concordant with annotations that would be obtained from a reference genome.  相似文献   

13.
Single nucleotide polymorphisms (SNPs) are the most abundant form of genetic variations amongst species. With the genome‐wide SNP discovery, many genome‐wide association studies are likely to identify multiple genetic variants that are associated with complex diseases. However, genotyping all existing SNPs for a large number of samples is still challenging even though SNP arrays have been developed to facilitate the task. Therefore, it is essential to select only informative SNPs representing the original SNP distributions in the genome (tag SNP selection) for genome‐wide association studies. These SNPs are usually chosen from haplotypes and called haplotype tag SNPs (htSNPs). Accordingly, the scale and cost of genotyping are expected to be largely reduced. We introduce binary particle swarm optimization (BPSO) with local search capability to improve the prediction accuracy of STAMPA. The proposed method does not rely on block partitioning of the genomic region, and consistently identified tag SNPs with higher prediction accuracy than either STAMPA or SVM/STSA. We compared the prediction accuracy and time complexity of BPSO to STAMPA and an SVM‐based (SVM/STSA) method using publicly available data sets. For STAMPA and SVM/STSA, BPSO effective improved prediction accuracy for smaller and larger scale data sets. These results demonstrate that the BPSO method selects tag SNP with higher accuracy no matter the scale of data sets is used. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

14.
《Genomics》2020,112(5):3238-3246
Knowledge on population structure and genetic diversity is a focal point for association mapping studies and genomic selection. Genotyping by sequencing (GBS) represents an innovative method for large scale SNP detection and genotyping of genetic resources. Here we used the GBS approach for the genome-wide identification of SNPs in a collection of Cynoglossus semilaevis and for the assessment of the level of genetic diversity in C. semilaevis genotypes. GBS analysis generated a total of 55.12 Gb high-quality sequence data, with an average of 0.63 Gb per sample. The total number of SNP markers was 563, 109. In order to explore the genetic diversity of C. semilaevis and to select a minimal core set representing most of the total genetic variation with minimum redundancy, C. semilaevis sequences were analyzed using high quality SNPs. Based on hierarchical clustering, it was possible to divide the collection into 2 clusters. The marine fishing populations were clustered and clearly separated from the cultured populations, and the cultured populations from Hebei was also distinct from the other two local populations. These analyses showed that genotypes were clustered based on species-related features. Differential significant SNPs were also captured and validated by GBS and SNaPshot, with linkage disequilibrium and haplotype analysis, seven SNPs have been confirmed to have obvious differentiation in two populations, which may be used as the characteristic evaluation sites of sea-captured and cultured Cynoglossus semilaevis populations. And SNP markers and information on population structure developed in this study will undoubtedly support genome-wide association mapping studies and marker-assisted selection programs. These differential SNPs could be also employed as the characteristic evaluation sites of sea-captured and cultured Cynoglossus semilaevis populations in future.  相似文献   

15.
SNP discovery in associating genetic variation with human disease phenotypes   总被引:11,自引:0,他引:11  
Suh Y  Vijg J 《Mutation research》2005,573(1-2):41-53
With the completion of the human genome project, attention is now rapidly shifting towards the study of individual genetic variation. The most abundant source of genetic variation in the human genome is represented by single nucleotide polymorphisms (SNPs), which can account for heritable inter-individual differences in complex phenotypes. Identification of SNPs that contribute to susceptibility to common diseases will provide highly accurate diagnostic information that will facilitate early diagnosis, prevention, and treatment of human diseases. Over the past several years, the advancement of increasingly high-throughput and cost-effective methods to discover and measure SNPs has begun to open the door towards this endeavor. Genetic association studies are considered to be an effective approach towards the detection of SNPs with moderate effects, as in most common diseases with complex phenotypes. This requires careful study design, analysis and interpretation. In this review, we discuss genetic association studies and address the prospect for candidate gene association studies, comparing the strengths and weaknesses of indirect and direct study designs. Our focus is on the continuous need for SNP discovery methods and the use of currently available prescreening methods for large-scale genetic epidemiological research until more advanced sequencing methods currently under development will become available.  相似文献   

16.
We have developed a software package named PEAS to facilitate analyses of large data sets of single nucleotide polymorphisms (SNPs) for population genetics and molecular phylogenetics studies. PEAS reads SNP data in various formats as input and is versatile in data formatting; using PEAS, it is easy to create input files for many popular packages, such as STRUCTURE, frappe, Arlequin, Haploview, LDhat, PLINK, EIGENSOFT, PHASE, fastPHASE, MEGA and PHYLIP. In addition, PEAS fills up several analysis gaps in currently available computer programs in population genetics and molecular phylogenetics. Notably, (i) It calculates genetic distance matrices with bootstrapping for both individuals and populations from genome-wide high-density SNP data, and the output can be streamlined to MEGA and PHYLIP programs for further processing; (ii) It calculates genetic distances from STRUCTURE output and generates MEGA file to reconstruct component trees; (iii) It provides tools to conduct haplotype sharing analysis for phylogenetic studies based on high-density SNP data. To our knowledge, these analyses are not available in any other computer program. PEAS for Windows is freely available for academic users from http://www.picb.ac.cn/~xushua/index.files/Download_PEAS.htm.  相似文献   

17.
Single nucleotide polymorphisms (SNPs), due to their abundance and low mutation rate, are very useful genetic markers for genetic association studies. However, the current genotyping technology cannot afford to genotype all common SNPs in all the genes. By making use of linkage disequilibrium, we can reduce the experiment cost by genotyping a subset of SNPs, called Tag SNPs, which have a strong association with the ungenotyped SNPs, while are as independent from each other as possible. The problem of selecting Tag SNPs is NP-complete; when there are large number of SNPs, in order to avoid extremely long computational time, most of the existing Tag SNP selection methods first partition the SNPs into blocks based on certain block definitions, then Tag SNPs are selected in each block by brute-force search. The size of the Tag SNP set obtained in this way may usually be reduced further due to the inter-dependency among blocks. This paper proposes two algorithms, TSSA and TSSD, to tackle the block-independent Tag SNP selection problem. TSSA is based on A* search algorithm, and TSSD is a heuristic algorithm. Experiments show that TSSA can find the optimal solutions for medium-sized problems in reasonable time, while TSSD can handle very large problems and report approximate solutions very close to the optimal ones.  相似文献   

18.
Interactions of single nucleotide polymorphisms (SNPs) are assumed to be responsible for complex diseases such as sporadic breast cancer. Important goals of studies concerned with such genetic data are thus to identify combinations of SNPs that lead to a higher risk of developing a disease and to measure the importance of these interactions. There are many approaches based on classification methods such as CART and random forests that allow measuring the importance of single variables. But none of these methods enable the importance of combinations of variables to be quantified directly. In this paper, we show how logic regression can be employed to identify SNP interactions explanatory for the disease status in a case-control study and propose 2 measures for quantifying the importance of these interactions for classification. These approaches are then applied on the one hand to simulated data sets and on the other hand to the SNP data of the GENICA study, a study dedicated to the identification of genetic and gene-environment interactions associated with sporadic breast cancer.  相似文献   

19.
SNP analysis to dissect human traits   总被引:5,自引:0,他引:5  
The analysis of complex human diseases has been spurred by the number of published genomic sequence variants - many identified in the course of sequencing the human genome. But, to be useful for genetic analysis, variants have to be mapped accurately, their frequencies in various populations determined, and automated high-throughput assay techniques developed. Recently proposed methods address these issues: the use of 'reduced representation shotgun' methods for more efficient detection of single nucleotide polymorphisms (SNPs), the employment of high-throughput genotyping techniques, the development of SNP maps that incorporate information about linkage disequilibrium, and the use of SNPs in identifying susceptibility genes for common illnesses.  相似文献   

20.
Few intraspecific genetic linkage maps have been reported for cultivated tomato, mainly because genetic diversity within Solanum lycopersicum is much less than that between tomato species. Single nucleotide polymorphisms (SNPs), the most abundant source of genomic variation, are the most promising source of polymorphisms for the construction of linkage maps for closely related intraspecific lines. In this study, we developed SNP markers based on expressed sequence tags for the construction of intraspecific linkage maps in tomato. Out of the 5607 SNP positions detected through in silico analysis, 1536 were selected for high-throughput genotyping of two mapping populations derived from crosses between ‘Micro-Tom’ and either ‘Ailsa Craig’ or ‘M82’. A total of 1137 markers, including 793 out of the 1338 successfully genotyped SNPs, along with 344 simple sequence repeat and intronic polymorphism markers, were mapped onto two linkage maps, which covered 1467.8 and 1422.7 cM, respectively. The SNP markers developed were then screened against cultivated tomato lines in order to estimate the transferability of these SNPs to other breeding materials. The molecular markers and linkage maps represent a milestone in the genomics and genetics, and are the first step toward molecular breeding of cultivated tomato. Information on the DNA markers, linkage maps, and SNP genotypes for these tomato lines is available at http://www.kazusa.or.jp/tomato/.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号