首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Increased blood pressure (BP) and heart rate during exercise characterizes the exercise pressor reflex. When evoked by static handgrip, mechanoreceptors and metaboreceptors produce regional changes in blood volume and blood flow, which are incompletely characterized in humans. We studied 16 healthy subjects aged 20-27 yr using segmental impedance plethysmography validated against dye dilution and venous occlusion plethysmography to noninvasively measure changes in regional blood volumes and blood flows. Static handgrip while in supine position was performed for 2 min without postexercise ischemia. Measurements of heart rate and BP variability and coherence analyses were used to examine baroreflex-mediated autonomic effects. During handgrip exercise, systolic BP increased from 120 +/- 10 to 148 +/- 14 mmHg, whereas heart rate increased from 60 +/- 8 to 82 +/- 12 beats/min. Heart rate variability decreased, whereas BP variability increased, and transfer function amplitude was reduced from 18 +/- 2 to 8 +/- 2 ms/mmHg at low frequencies of approximately 0.1 Hz. This was associated with marked reduction of coherence between BP and heart rate (from 0.76 +/- 0.10 to 0.26 +/- 0.05) indicative of uncoupling of heart rate regulation by the baroreflex. Cardiac output increased by approximately 18% with a 4.5% increase in central blood volume and an 8.5% increase in total peripheral resistance, suggesting increased cardiac preload and contractility. Splanchnic blood volume decreased reciprocally with smaller decreases in pelvic and leg volumes, increased splanchnic, pelvic and calf peripheral resistance, and evidence for splanchnic venoconstriction. We conclude that the exercise pressor reflex is associated with reduced baroreflex cardiovagal regulation and driven by increased cardiac output related to enhanced preload, cardiac contractility, and splanchnic blood mobilization.  相似文献   

2.
3.
The regional blood flow through the myocardium of the left ventricle was measured in 11 dogs after ligation of the left anterior descending coronary artery, by means of a local injection of 133Xe depot and precordial detection of its washout 2 hours after ligation. Immediately after ligation the blood flow in the ischaemic area declined considerably but at the same time there was a significant increase of blood flow in the non-ischaemic left ventricular myocardium. The regional flow in the ischaemic and non-ischaemic area increased insignificantly for 2 hrs. These changes were not due to alterations in coronary artery pressure, as the mean arterial pressure declined significantly during the first hour. After temporary ischaemia by ligation of the left anterior descending coronary artery for 2--4 minutes, an intensive reactive hyperaemia developed in the ischaemic region (the blood flow reached 221% of control values on the average) which was the more intensive, the greater the drop of blood flow in the ischaemic area after ligation.  相似文献   

4.
5.
We describe a novel software system that utilizes automated algorithms to perform edge detection and wall tracking of high-resolution B-mode arterial ultrasound images, combined with synchronized Doppler waveform envelope analysis, to calculate conduit arterial blood flow (BF) across the cardiac cycle. Furthermore, we describe changes in brachial arterial BF to the resting forearm during incremental cycle ergometry in eight subjects. During exercise, peak BF during the cardiac cycle increased at each workload (P < 0.001), because of increased velocity in the presence of unaltered cross-sectional area. In contrast, mean BF calculated across each cardiac cycle decreased at lower workloads before increasing at 100 and 160 W (P < 0.001). Differences in the pattern of peak and mean cardiac cycle flows were due to the influence of retrograde diastolic flow, which had a larger impact on mean flows at lower workloads. In conclusion, BF can be measured with high temporal resolution across the cardiac cycle in humans. Resting brachial arterial flow, including retrograde flow, increases during lower limb exercise.  相似文献   

6.
7.
Topulos, George P., Nina R. Lipsky, John L. Lehr, Rick A. Rogers, and James P. Butler. Fractional changes in lung capillary blood volume and oxygen saturation during the cardiac cycle in rabbits.J. Appl. Physiol. 82(5):1668-1676, 1997.Changes in local pulmonary capillary bloodvolume (Vc) and oxygen saturation (S) have been difficult to measure inlive animals. By utilizing the differences in absorptionof light at two wavelengths (650 and 800 nm), we estimated thefractional change in Vc and S during the course of the cardiac cycle ineight anesthetized, ventilated rabbits at low and high lung volumes.Observations were made of the pattern of diffusely backscattered light,from an ~1-cm3 volume of lungilluminated with a point source placed on the pleural surface through athoracotomy. At low lung volume, the fractional change in Vc was~13%, the change in S was ~4.6%, and the mean S was close to77%. The fluctuations in Vc and S lagged behind peaksystemic blood pressure by about one-fifth and three-fifths of a cycle,respectively. At high lung volume, there were no important fluctuationsin Vc or S, and the mean S was ~82%. These results areconsistent with fluctuations in pulmonary capillary pressure and gasexchange over the cardiac cycle, and with decreasing capillary compliance with increasing lung volume.

  相似文献   

8.
9.
10.
This investigation compared patterns of regional cerebral blood flow (rCBF) during exercise recovery both with and without postexercise hypotension (PEH). Eight subjects were studied on 3 days with randomly assigned conditions: 1) after 30 min of rest; 2) after 30 min of moderate exercise (M-Ex) at 60-70% heart rate (HR) reserve during PEH; and 3) after 30 min of light exercise (L-Ex) at 20% HR reserve with no PEH. Data were collected for HR, mean blood pressure (MBP), and ratings of perceived exertion and relaxation, and rCBF was assessed by use of single-photon-emission computed tomography. With the use of ANOVA across conditions, there were differences (P < 0.05; mean +/- SD) from rest during exercise recovery from M-Ex (HR = +12 +/- 3 beats/min; MBP = -9 +/- 2 mmHg), but not from L-Ex (HR = +2 +/- 2 beats/min; MBP = -2 +/- 2 mmHg). After M-Ex, there were decreases (P < 0.05) for the anterior cingulate (-6.7 +/- 2%), right and left inferior thalamus (-10 +/- 3%), right inferior insula (-13 +/- 3%), and left inferior anterior insula (-8 +/- 3%), not observed after L-Ex. There were rCBF decreases for leg sensorimotor regions after both M-Ex (-15 +/- 4%) and L-Ex (-12 +/- 3%) and for the left superior anterior insula (-7 +/- 3% and -6 +/- 3%), respectively. Data show that there are rCBF reductions within specific regions of the insular cortex and anterior cingulate cortex coupled with a postexercise hypotensive response after M-Ex. Findings suggest that these cerebral cortical regions, previously implicated in cardiovascular regulation during exercise, may also be involved in PEH.  相似文献   

11.
12.
Changes in chromatin structure during the mitotic cycle   总被引:3,自引:0,他引:3  
P. W. Barlow 《Protoplasma》1977,91(2):207-211
Summary Optical density profiles of Feulgen-stained nuclei ofBryonia dioica at different stages of the mitotic cycle were determined. Nuclei in the G2 phase have a greater fraction of dense chromatin than nuclei in G1 phase. However, nuclei at the end of the S phase have dispersed chromatin of minimal density. Thus, chromatin density oscillates during the mitotic cycle of this species, consequently the progressive increase in density previously recorded throughout the intermitotic period of two other species (onion and mouse) cannot be a general rule.  相似文献   

13.
14.
15.
16.
Bollwein H  Mayer R  Weber F  Stolla R 《Theriogenology》2002,57(8):2043-2051
Transrectal color Doppler ultrasound was used for the noninvasive investigation of luteal blood flow during the estrous cycle in six mares. Color was displayed in Power-Mode, in which the number of color pixels on the ultrasound image is related to the number of moving blood cells. Three pictures with a maximum number of color pixels of the corpus luteum (CL) during an examination period of about 20 min were selected and digitized on a laptop equipped with an external frame grabber card. The intra-class correlation coefficient for the number of color pixels was 0.90. In all estrous cycles similar patterns of changes in (C), in the cross-sectional area of sectional planes of the CL (A), and in plasma progesterone levels (P) occurred. Variance component estimates for the effect of the mare on (C), (A) and (P) were 14, 23 and 4%, for the influence of day of estrous cycle they were 41, 5 and 58% and for the effect of estrous cycle they were 7, 5 and 5%, respectively. There were high positive correlations between cyclic changes in (C) and (P) (r = 0.58; P < 0.0001). The increase in (C) between Days 0 and 5 (Day 0: ovulation) remained at high levels until Day 7 and then decreased until Day 15. There were relationships between (C) and (A) (r = 0.37; P < 0.0001) and between (A) and (P) (r = 0.24; P < 0.05), but correlation coefficients were not as high as between (C) and (P). Differences in (C), (A) and (P) between estrous cycles within mares and between mares were not related to each other (P > 0.05). The results show that transrectal color Doppler sonography is a useful, noninvasive method for examining luteal blood flow in mares, and that there are cyclic changes and individual differences in the vascularization of the CL. The possible influence of luteal perfusion on fertility in mares needs to be investigated in further studies.  相似文献   

17.
18.
During exercise: the Kety-Schmidt-determined cerebral blood flow (CBF) does not change because the jugular vein is collapsed in the upright position. In contrast, when CBF is evaluated by (133)Xe clearance, by flow in the internal carotid artery, or by flow velocity in basal cerebral arteries, a approximately 25% increase is detected with a parallel increase in metabolism. During activation, an increase in cerebral O(2) supply is required because there is no capillary recruitment within the brain and increased metabolism becomes dependent on an enhanced gradient for oxygen diffusion. During maximal whole body exercise, however, cerebral oxygenation decreases because of eventual arterial desaturation and marked hyperventilation-related hypocapnia of consequence for CBF. Reduced cerebral oxygenation affects recruitment of motor units, and supplemental O(2) enhances cerebral oxygenation and work capacity without effects on muscle oxygenation. Also, the work of breathing and the increasing temperature of the brain during exercise are of importance for the development of so-called central fatigue. During prolonged exercise, the perceived exertion is related to accumulation of ammonia in the brain, and data support the theory that glycogen depletion in astrocytes limits the ability of the brain to accelerate its metabolism during activation. The release of interleukin-6 from the brain when exercise is prolonged may represent a signaling pathway in matching the metabolic response of the brain. Preliminary data suggest a coupling between the circulatory and metabolic perturbations in the brain during strenuous exercise and the ability of the brain to access slow-twitch muscle fiber populations.  相似文献   

19.
In vivo radial strain measurements at the rabbit aortic bifurcation were made at different times during the cardiac cycle. At the peak of the pressure pulse, the radial strain at the bifurcation is positive in the plane perpendicular to the bifurcation but negative in the plane of the bifurcation. Thus the cross-sectional geometry at this location distorts from an elliptical shape in diastole toward a more circular shape in systole.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号