首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Daptomycin is a lipopeptide antibiotic that kills Gram-positive bacteria by membrane depolarization. While it has long been assumed that the mode of action of daptomycin involves the formation of membrane-associated oligomers, this has so far not been experimentally demonstrated. We here use FRET between native daptomycin and an NBD-labeled daptomycin derivative to show that such oligomerization indeed occurs. The oligomers are observed in the presence of calcium ions on membrane vesicles isolated from Bacillus subtilis, as well as on model membranes containing the negatively charged phospholipid phosphatidylglycerol. In contrast, oligomerization does not occur on membranes containing phosphatidylcholine only, nor in solution at micromolar daptomycin concentrations. The requirements for oligomerization of daptomycin resemble those previously reported for antibacterial activity, suggesting that oligomerization is necessary for the activity.  相似文献   

2.
There has been increasing interest in recent years in describing the lateral organization of membranes and the formation of membrane domains. Much of the focus in this area has been on the formation of cholesterol-rich domains in mammalian membranes. However, it is likely that there are domains in all biological membranes. One of the challenges has been to define the chemical composition, lifetime and size of these domains. There is evidence that bacteria have domains that are enriched in cardiolipin. In addition, the formation of lipid domains can be induced in bacteria by clustering negatively charged lipids with polycationic substances. Many antimicrobial compounds have multiple positive charges. Such polycationic compounds can sequester anionic lipids to induce lipid phase separation. The molecular interactions among lipids and their lateral packing density will be different in a domain from its environment. This will lead to phase boundary defects that will lower the permeability barrier between the cell and its surroundings. The formation of these clusters of anionic lipids may also alter the stability or composition of existing membrane domains that may affect bacterial function. Interestingly many antimicrobial agents are polycationic and therefore likely have some effect in promoting lipid phase segregation between anionic and zwitterionic lipids. However, this mechanism is expected to be most important for substances with sequential positive charges contained within a flexible molecule that can adapt to the arrangement of charged groups on the surface of the bacterial cell. When this mechanism is dominant it can allow the prediction of the bacterial species that will be most affected by the agent as a consequence of the nature of the lipid composition of the bacterial membrane.  相似文献   

3.
There has been increasing interest in recent years in describing the lateral organization of membranes and the formation of membrane domains. Much of the focus in this area has been on the formation of cholesterol-rich domains in mammalian membranes. However, it is likely that there are domains in all biological membranes. One of the challenges has been to define the chemical composition, lifetime and size of these domains. There is evidence that bacteria have domains that are enriched in cardiolipin. In addition, the formation of lipid domains can be induced in bacteria by clustering negatively charged lipids with polycationic substances. Many antimicrobial compounds have multiple positive charges. Such polycationic compounds can sequester anionic lipids to induce lipid phase separation. The molecular interactions among lipids and their lateral packing density will be different in a domain from its environment. This will lead to phase boundary defects that will lower the permeability barrier between the cell and its surroundings. The formation of these clusters of anionic lipids may also alter the stability or composition of existing membrane domains that may affect bacterial function. Interestingly many antimicrobial agents are polycationic and therefore likely have some effect in promoting lipid phase segregation between anionic and zwitterionic lipids. However, this mechanism is expected to be most important for substances with sequential positive charges contained within a flexible molecule that can adapt to the arrangement of charged groups on the surface of the bacterial cell. When this mechanism is dominant it can allow the prediction of the bacterial species that will be most affected by the agent as a consequence of the nature of the lipid composition of the bacterial membrane.  相似文献   

4.
Miura T  Yoda M  Takaku N  Hirose T  Takeuchi H 《Biochemistry》2007,46(41):11589-11597
The conformational conversion of prion protein (PrP) from an alpha-helix-rich normal cellular isoform (PrPC) to a beta-sheet-rich pathogenic isoform (PrPSc) is a key event in the development of prion diseases, and it takes place in caveolae, cavelike invaginations of the plasma membrane. A peptide homologous to residues 106-126 of human PrP (PrP106-126) is known to share several properties with PrPSc, e.g., the capability to form a beta-sheet and toxicity against PrPC-expressing cells. PrP106-126 is thus expected to represent a segment of PrP that is involved in the formation of PrPSc. We have examined the effect of lipid membranes containing negatively charged ganglioside, an important component of caveolae, on the secondary structure of PrP106-126 by circular dichroism. The peptide forms an alpha-helical or a beta-sheet structure on the ganglioside-containing membranes. The beta-sheet content increases with an increase of the peptide:lipid ratio, indicating that the beta-sheet formation is linked with self-association of the positively charged peptide on the negatively charged membrane surface. Analogous beta-sheet formation is also induced by membranes composed of negatively charged and neutral glycerophospholipids with high and low melting temperatures, respectively, in which lateral phase separation and clustering of negatively charged lipids occur as shown by Raman spectroscopy. Since ganglioside-containing membranes also exhibit lateral phase separation, clustered negative charges are concluded to be responsible for the beta-sheet formation of PrP106-126. In caveolae, clustered ganglioside molecules are likely to interact with the residue 106-126 region of PrPC to promote the PrPC-to-PrPSc conversion.  相似文献   

5.
The actions of bee venom melittin and delta-lysin from Staphylococcus aureus on membranes have been monitored by solid-state deuterium and phosphorus NMR and shown to differ depending on temperature and on the lipid-to-peptide molar ratio Ri. In the gel phase of phosphatidylcholine model membranes, for lipid-to-peptide ratios Ri greater than 15, melittin induces isotropic lines interpreted as reflecting the presence of small discoidal structures, whereas delta-lysin does not. These small objects are metastable, that is, within a time-scale of hours they return to large lipid bilayers. The kinetics of this process depend on the lecithin chain length. In the fluid phases, at temperatures greater than that of the gel-to-fluid transition Tc, analysis of the quadruplar splittings in terms of chain ordering indicates that both melittin and delta-lysin similarly disorder the membrane. At temperatures above but close to Tc, melittin preferentially orders the center of the bilayer, while delta-lysin promotes ordering throughout the entire bilayer thickness. These effects are interpreted as reflecting different locations of the peptides with respect to the membrane surface. The addition of greater amounts of toxins, Ri = 4, on phosphatidylcholine model membranes induces very small structures irrespective of the temperature in the case of melittin, but only above Tc for delta-lysin. NMR spectral features similar to those characterizing the small fast-tumbling objects with phosphatidylcholine are also observed with egg phosphatidylethanolamine and erythrocyte membranes. The formation of small structures is thus inferred as a general process which reflects membrane supramolecular reorganization.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Antimicrobial peptides are known to interact strongly with negatively charged lipid membranes, initially by peripheral insertion of the peptide into the bilayer, which for some antimicrobial peptides will be followed by pore formation, and successive solubilization of the membranes resulting in mixed peptide-lipid micelles. We have investigated the mode of action of the antimicrobial peptide mastoparan-X using isothermal titration calorimetry (ITC) and cryo-transmission electron microscopy (cryo-TEM). The results show that mastoparan-X induces a range of structural transitions of POPC/POPG (3:1) lipid membranes at different peptide/lipid ratios. It has been established that ITC can be used as a fast method for localizing membrane transitions and when combined with DLS and cryo-TEM can elucidate structural changes, including the threshold for pore formation and micellation. Cryo-TEM was employed to confirm the structural changes associated with the thermodynamic transitions found by ITC. The pore-formation process has furthermore been investigated in detail and the thermodynamic parameters of pore formation have been characterized using a system-specific temperature where the enthalpy of peptide partitioning becomes zero (Tzero). This allows for an exclusive study of the pore-formation process. The use of ITC to find Tzero allows for characterization of the thermodynamic parameters of secondary processes on lipid membranes.  相似文献   

7.
Magainin 2, a polycationic peptide, displays bactericidal and tumoricidal activity, presumably interacting with negatively charged phospholipids in the membrane hosts. In this work, we investigate the role played by the lipid head-group in the interactions and self-association of magainin 2 during pore formation in lipid bilayers. Two methods are used: single-channel and macroscopic incorporation into planar lipid membranes. Single-channel incorporation showed that magainin 2 did not interact with zwitterionic membranes, while the addition of negatively charged dioleoylphosphatidylglycerol to the membrane leads to channel formation. On the other hand, magainin 2 did not form channels in membranes made up of dioleoylphosphatidylserine (DOPS), although the addition of ergosterol to DOPS membranes leads to channel formation. This finding could indicate that ergosterol may be a possible target of magainin 2 in fungal membranes. Further support for this hypothesis comes from experiments in which the addition of ergosterol to palmitoyloleoylphosphatidylcholine membranes induced channel formation. Besides the role of negatively charged membranes, this study has shown that magainin 2 also forms channels in membranes lacking heads, such as monoolein and oxidized cholesterol, indicating an interaction of magainin 2 with acyl chains and cholesterol, respectively. This finding provides further evidence that peptide binding and assembly in lipid membranes is a complex process driven by electrostatic and/or hydrophobic interactions, depending on the structure of the peptide and the membrane composition.  相似文献   

8.
Influence of charge and molecular size on membrane stabilization   总被引:1,自引:0,他引:1  
We have reported that the antihaemolytic effect of low concentrations of chlorpromazine is decreased after enzymic removal of sialopeptides from red cell membranes, suggesting that an interaction between negatively charged sialic acids and positively charged chlorpromazine is involved in its membrane stabilizing effect. We have now investigated the antihaemolytic action of simpler molecules with different charges Removal of membrane sialopeptides did not affect the membrane stabilizing actions of simple aliphatic mono- or diamines nor of similar aliphatic molecules carrying strong positive or negative charges, where those positively charged were more potent than those with negative charges. It appears, therefore, that membrane stabilizing activity is determined primarily by lipophilicity and secondarily by polarity and that it does not depend on interactions with enzymically accessible sialopeptides on the outer surface of biological membranes.  相似文献   

9.
The interaction between a positively charged peptide (poly-L-lysine) and model membranes containing charged lipids has been investigated. Conformational changes of the polypeptide as well as changes in the membrane lipid distribution were observed upon lipid-protein agglutination: 1. The strong binding of polylysine is shown directly by the use of spinlabelled polypeptide. Upon binding to phosphatidic acid a shift in the hyperfine coupling constant from 16.5 to 14.6 Oe is observed. The spectrum of the lipid-bound peptide is superimposed on the spectrum of polylysine in solution. Half of the lysine groups are bound to the charged membranes. A change in the conformation of polylysine from a random coil to a partially ordered configuration is suggested. 2. Spin labelling of the lipid component gives evidence concerning the molecular organization of a lipid mixture containing charged phosphatitid acid. Addition of polylysine induces the formation of crystalline patches of bound phosphatidic acid. 3. Excimer forming pyrene decanoic acid has been employed. Addition of positively charged polylysine (pH 9.0) to phosphatidic acid membranes increases the transition temperature of the lipid from Tt = 50 to Tt = 62 degrees C. Thus, a lipid segregation of lipid into regions of phosphatidic acid bound to the peptide which differ in their microviscosity from the surrounding membrane is induced. One lysine group binds one phosphatidic acid molecule, but only half of the phosphatidic acid is bound. 4. Direct evidence for charge induced domain formation in lipid mixtures containing phosphatidic acid is given by electron microscopy. Addition of polylysine leads to a change in the surface curvature of the bound charged lipid. The domain size is estimated from the electron micrographs. The number of domains present is dependent on both the ratio of charged to uncharged lipids as well as on the amount of polylysine added to the vesicles. The size of the domains is not dependent on membrane composition. However, the size seems to increase in a stepwise manner that is correlated with a multiple of the area covered by one polylysine molecule.  相似文献   

10.
rBPI21 belongs to the antimicrobial peptide and protein (AMP) family. It has high affinity for lipopolysaccharide (LPS), acting mainly against Gram-negative bacteria. This work intends to elucidate the mechanism of action of rBPI21 at the membrane level. Using isothermal titration calorimetry, we observed that rBPI21 interaction occurs only with negatively charged membranes (mimicking bacterial membranes) and is entropically driven. Differential scanning calorimetry shows that membrane interaction with rBPI21 is followed by an increase of rigidity on negatively charged membrane, which is corroborated by small angle X-ray scattering (SAXS). Additionally, SAXS data reveal that rBPI21 promotes the multilamellarization of negatively charged membranes. The results support the proposed model for rBPI21 action: first it may interact with LPS at the bacterial surface. This entropic interaction could cause the release of ions that maintain the packed structure of LPS, ensuring peptide penetration. Then, rBPI21 may interact with the negatively charged leaflets of the outer and inner membranes, promoting the interaction between the two bacterial membranes, ultimately leading to cell death.  相似文献   

11.
Peripheral proteins can trigger the formation of domains in mixed fluid-like lipid membranes. We analyze the mechanism underlying this process for proteins that bind electrostatically onto a flat two-component membrane, composed of charged and neutral lipid species. Of particular interest are membranes in which the hydrocarbon lipid tails tend to segregate owing to nonideal chain mixing, but the (protein-free) lipid membrane is nevertheless stable due to the electrostatic repulsion between the charged lipid headgroups. The adsorption of charged, say basic, proteins onto a membrane containing anionic lipids induces local lipid demixing, whereby charged lipids migrate toward (or away from) the adsorption site, so as to minimize the electrostatic binding free energy. Apart from reducing lipid headgroup repulsion, this process creates a gradient in lipid composition around the adsorption zone, and hence a line energy whose magnitude depends on the protein's size and charge and the extent of lipid chain nonideality. Above a certain critical lipid nonideality, the line energy is large enough to induce domain formation, i.e., protein aggregation and, concomitantly, macroscopic lipid phase separation. We quantitatively analyze the thermodynamic stability of the dressed membrane based on nonlinear Poisson-Boltzmann theory, accounting for both the microscopic characteristics of the proteins and lipid composition modulations at and around the adsorption zone. Spinodal surfaces and critical points of the dressed membranes are calculated for several different model proteins of spherical and disk-like shapes. Among the models studied we find the most substantial protein-induced membrane destabilization for disk-like proteins whose charges are concentrated in the membrane-facing surface. If additional charges reside on the side faces of the proteins, direct protein-protein repulsion diminishes considerably the propensity for domain formation. Generally, a highly charged flat face of a macroion appears most efficient in inducing large compositional gradients, hence a large and unfavorable line energy and consequently lateral macroion aggregation and, concomitantly, macroscopic lipid phase separation.  相似文献   

12.
The adsorption free energy of charged proteins on mixed membranes, containing varying amounts of (oppositely) charged lipids, is calculated based on a mean-field free energy expression that accounts explicitly for the ability of the lipids to demix locally, and for lateral interactions between the adsorbed proteins. Minimization of this free energy functional yields the familiar nonlinear Poisson-Boltzmann equation and the boundary condition at the membrane surface that allows for lipid charge rearrangement. These two self-consistent equations are solved simultaneously. The proteins are modeled as uniformly charged spheres and the (bare) membrane as an ideal two-dimensional binary mixture of charged and neutral lipids. Substantial variations in the lipid charge density profiles are found when highly charged proteins adsorb on weakly charged membranes; the lipids, at a certain demixing entropy penalty, adjust their concentration in the vicinity of the adsorbed protein to achieve optimal charge matching. Lateral repulsive interactions between the adsorbed proteins affect the lipid modulation profile and, at high densities, result in substantial lowering of the binding energy. Adsorption isotherms demonstrating the importance of lipid mobility and protein-protein interactions are calculated using an adsorption equation with a coverage-dependent binding constant. Typically, at bulk-surface equilibrium (i.e., when the membrane surface is "saturated" by adsorbed proteins), the membrane charges are "overcompensated" by the protein charges, because only about half of the protein charges (those on the hemispheres facing the membrane) are involved in charge neutralization. Finally, it is argued that the formation of lipid-protein domains may be enhanced by electrostatic adsorption of proteins, but its origin (e.g., elastic deformations associated with lipid demixing) is not purely electrostatic.  相似文献   

13.
Syringomycin E channel: a lipidic pore stabilized by lipopeptide?   总被引:2,自引:0,他引:2       下载免费PDF全文
Highly reproducible ion channels of the lipopeptide antibiotic syringomycin E demonstrate unprecedented involvement of the host bilayer lipids. We find that in addition to a pronounced influence of lipid species on the open-channel ionic conductance, the membrane lipids play a crucial role in channel gating. The effective gating charge, which characterizes sensitivity of the conformational equilibrium of the syringomycin E channels to the transmembrane voltage, is modified by the lipid charge and lipid dipolar moment. We show that the type of host lipid determines not only the absolute value but also the sign of the gating charge. With negatively charged bilayers, the gating charge sign inverts with increased salt concentration or decreased pH. We also demonstrate that the replacement of lamellar lipid by nonlamellar with the negative spontaneous curvature inhibits channel formation. These observations suggest that the asymmetric channel directly incorporates lipids. The charges and dipoles resulting from the structural inclusion of lipids are important determinants of the overall energetics that underlies channel gating. We conclude that the syringomycin E channel may serve as a biophysical model to link studies of ion channels with those of lipidic pores in membrane fusion.  相似文献   

14.
The cecropin-melittin hybrid antimicrobial peptide BP100 (H-KKLFKKILKYL-NH2) is selective for Gram-negative bacteria, negatively charged membranes, and weakly hemolytic. We studied BP100 conformational and functional properties upon interaction with large unilamellar vesicles, LUVs, and giant unilamellar vesicles, GUVs, containing variable proportions of phosphatidylcholine (PC) and negatively charged phosphatidylglycerol (PG). CD and NMR spectra showed that upon binding to PG-containing LUVs BP100 acquires α-helical conformation, the helix spanning residues 3–11. Theoretical analyses indicated that the helix is amphipathic and surface-seeking. CD and dynamic light scattering data evinced peptide and/or vesicle aggregation, modulated by peptide:lipid ratio and PG content. BP100 decreased the absolute value of the zeta potential (ζ) of LUVs with low PG contents; for higher PG, binding was analyzed as an ion-exchange process. At high salt, BP100-induced LUVS leakage requires higher peptide concentration, indicating that both electrostatic and hydrophobic interactions contribute to peptide binding. While a gradual release took place at low peptide:lipid ratios, instantaneous loss occurred at high ratios, suggesting vesicle disruption. Optical microscopy of GUVs confirmed BP100-promoted disruption of negatively charged membranes. The mechanism of action of BP100 is determined by both peptide:lipid ratio and negatively charged lipid content. While gradual release results from membrane perturbation by a small number of peptide molecules giving rise to changes in acyl chain packing, lipid clustering (leading to membrane defects), and/or membrane thinning, membrane disruption results from a sequence of events – large-scale peptide and lipid clustering, giving rise to peptide-lipid patches that eventually would leave the membrane in a carpet-like mechanism.  相似文献   

15.
Enterovirus 2B viroporin has been involved in membrane permeabilization processes occurring late during cell infection. Even though 2B lacks an obvious signal sequence for translocation, the presence of a Lys-based amphipathic domain suggests that this product bears the intrinsic capacity for partitioning into negatively charged cytofacial membrane surfaces. Pore formation by poliovirus 2B attached to a maltose-binding protein (MBP) has been indeed demonstrated in pure lipid vesicles, a fact supporting spontaneous insertion into and direct permeabilization of membranes. Here, biochemical evidence is presented indicating that both processes are modulated by phosphatidylinositol and phosphatidylserine, the main anionic phospholipids existing in membranes of target organelles. Insertion into lipid monolayers and partitioning into phospholipid bilayers were sustained by both phospholipids. However, MBP-2B inserted into phosphatidylserine bilayers did not promote membrane permeabilization and addition of this lipid inhibited the leakage observed in phosphatidylinositol vesicles. Mathematical modelling of pore formation in membranes containing increasing phosphatidylserine percentages was consistent with its inhibitory effect arising from a higher reversibility of MBP-2B surface aggregation. These results support that 2B insertion and pore-opening are mechanistically distinguishable events modulated by the target membrane anionic phospholipids.  相似文献   

16.
The release of granulysin, a 9-kDa cationic protein, from lysosomal granules of cytotoxic T lymphocytes and natural killer cells plays an important role in host defense against microbial pathogens. Granulysin is endocytosed by the infected target cell via lipid rafts and kills subsequently intracellular bacteria. The mechanism by which granulysin binds to eukaryotic and prokaryotic cells but lyses only the latter is not well understood. We have studied the effect of granulysin on large unilamellar vesicles (LUVs) and supported bilayers with prokaryotic and eukaryotic lipid mixtures or model membranes with various lipid compositions and charges. Binding of granulysin to bilayers with negative charges, as typically found in bacteria and lipid rafts of eukaryotic cells, was shown by immunoblotting. Fluorescence release assays using LUV revealed an increase in permeability of prokaryotic, negatively charged and lipid raft-like bilayers devoid of cholesterol. Changes in permeability of these bilayers could be correlated to defects of various sizes penetrating supported bilayers as shown by atomic force microscopy. Based on these results, we conclude that granulysin causes defects in negatively charged cholesterol-free membranes, a membrane composition typically found in bacteria. In contrast, granulysin is able to bind to lipid rafts in eukaryotic cell membranes, where it is taken up by the endocytotic pathway, leaving the cell intact.  相似文献   

17.
The islet amyloid polypeptide (IAPP) and insulin are coproduced by the β-cells of the pancreatic islets of Langerhans. Both peptides can interact with negatively charged lipid membranes. The positively charged islet amyloid polypeptide partially inserts into these membranes and subsequently forms amyloid fibrils. The amyloid fibril formation of insulin is also accelerated by the presence of negatively charged lipids, although insulin has a negative net charge at neutral pH-values. We used water-polymer model interfaces to differentiate between the hydrophobic and electrostatic interactions that can drive these peptides to adsorb at an interface. By applying neutron reflectometry, the scattering-length density profiles of IAPP and insulin, as adsorbed at three different water-polymer interfaces, were determined. The islet amyloid polypeptide most strongly adsorbed at a hydrophobic poly-(styrene) surface, whereas at a hydrophilic, negatively charged poly-(styrene sulfonate) interface, the degree of adsorption was reduced by 50%. Almost no IAPP adsorption was evident at this negatively charged interface when we added 100 mM NaCl. On the other hand, negatively charged insulin was most strongly attracted to a hydrophilic, negatively charged interface. Our results suggest that IAPP is strongly attracted to a hydrophobic surface, whereas the few positive charges of IAPP cannot warrant a permanent immobilization of IAPP at a hydrophilic, negatively charged surface at an ionic strength of 100 mM. Furthermore, the interfacial accumulation of insulin at a hydrophilic, negatively charged surface may represent a favorable precondition for nucleus formation and fibril formation.  相似文献   

18.
Papo N  Shai Y 《Biochemistry》2003,42(2):458-466
Lytic peptides comprise a large group of membrane-active peptides used in the defensive and offensive systems of all organisms. Differentiating between their modes of interaction with membranes is crucial for understanding how these peptides select their target cells. Here we utilized SPR to study the interaction between lytic peptides and lipid bilayers (L1 sensor chip). Using studies also on hybrid monolayers (HPA sensor chip) revealed that SPR is a powerful tool for obtaining a real-time monitoring of the steps involved in the mode of action of membrane-active peptides, some of which previously could not be detected directly by other techniques and reported here for the first time. We investigated the mode of action of peptides that represent two major families: (i) the bee venom, melittin, as a model of a non-cell-selective peptide that forms transmembrane pores and (ii) magainin and a diastereomer of melittin (four amino acids were replaced by their D enantiomers), as models of bacteria-selective non-pore-forming peptides. Fitting the SPR data to different interaction models allows differentiating between two major steps: membrane binding and membrane insertion. Melittin binds to PC/cholesterol approximately 450-fold better than its diastereomer and magainin, mainly because it is inserted into the inner leaflet (2/3 of the binding energy), whereas the other two are not. In contrast, there is only a slight difference in the binding of all the peptides to negatively charged PE/PG mono- and bilayer membranes (in the first and second steps), indicating that the inner leaflet contributes only slightly to their binding to PE/PG bilayers. Furthermore, the 100-fold stronger binding of the cell-selective peptides to PE/PG as compared with PC/cholesterol resulted only from electrostatic attraction to the negatively charged headgroups of the outer leaflet. These results clearly differentiate between the two general mechanisms: pore formation by melittin only in zwitterionic membranes and a detergent-like effect (carpet mechanism) for all the peptides in negatively charged membranes, in agreement with their biological function.  相似文献   

19.
Nisin is a positively charged antibacterial peptide that binds to the negatively charged membranes of gram-positive bacteria. The initial interaction of the peptide with the model membrane of negatively charged DPPG (dipalmitoylphosphatidylglycerol) was studied by cyclic voltammetry and a.c. impedance spectroscopy. Nisin could induce pores in the supported bilayer lipid membrane, thus, it led to the marker ions Fe(CN)(6)(3-/4-) crossing the lipid membrane and giving the redox reaction on the glassy carbon electrode (GCE). Experimental results suggested that the pore formation on supported bilayer lipid membrane was dependent on the concentration of nisin and it included three main concentration stages: low, middling, high concentration.  相似文献   

20.
A dye-release method for investigating the effect of a competitive lipid environment on the activity of two membrane-disrupting antimicrobial peptides (AMP), maculatin 1.1 and aurein 1.2, is presented. The results support the general conclusion that AMP have greater affinity for negatively charged membranes, for example bacterial membranes, than for the neutral membrane surface found in eukaryotic cells, but only within a competitive lipid environment. Indeed, in a single-model membrane environment, both peptides were more potent against neutral vesicles than against charged vesicles. The approach was also used to investigate the effect of pre-incubating the peptides in a neutral lipid environment then introducing charged lipid vesicles. Maculatin was shown to migrate from the neutral lipid bilayers, where pores had already formed, to the charged membrane bilayers. This result was also observed for charged-to-charged bilayers but, interestingly, not for neutral-to-neutral lipid interfaces. Aurein was able to migrate from either lipid environment, indicating weaker binding to lipid membranes, and a different molecular mechanism for lysis of lipid bilayers. Competitive lipid environments could be used to assess other critical conditions that modulate the activity of membrane peptides or proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号