首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Action potential (AP) prolongation is a hallmark of failing myocardium. Functional downregulation of K currents is a prominent feature of cells isolated from failing ventricles. The detailed changes in K current expression differ depending on the species, the region of the heart, and the mechanism of induction of heart failure. We used complementary approaches to study K current downregulation in pacing tachycardia-induced heart failure in the rabbit. The AP duration (APD) at 90% repolarization was significantly longer in cells isolated from failing hearts compared with controls (539 +/- 162 failing vs. 394 +/- 114 control, P < 0.05). The major K currents in the rabbit heart, inward rectifier potassium current (I(K1)), transient outward (I(to)), and delayed rectifier current (I(K)) were functionally downregulated in cells isolated from failing ventricles. The mRNA levels of Kv4.2, Kv1.4, KChIP2, and Kir2.1 were significantly downregulated, whereas the Kv4.3, Erg, KvLQT1, and minK were unaltered in the failing ventricles compared with the control left ventricles. Significant downregulation in the long splice variant of Kv4.3, but not in the total Kv4.3, Kv4.2, and KChIP2 immunoreactive protein, was observed in cells isolated from the failing ventricle with no change in Kv1.4, KvLQT1, and in Kir2.1 immunoreactive protein levels. Multiple cellular and molecular mechanisms underlie the downregulation of K currents in the failing rabbit ventricle.  相似文献   

2.
Oxidative stress and the resulting change in cell redox state are proposed to contribute to pathogenic alterations in ion channels that underlie electrical remodeling of the diseased heart. The present study examined whether K(+) channel remodeling is controlled by endogenous oxidoreductase systems that regulate redox-sensitive cell functions. Diabetes was induced in rats by streptozotocin, and experiments were conducted after 3-5 wk of hyperglycemia. Spectrophotometric assays of ventricular tissue extracts from diabetic rat hearts revealed divergent changes in two major oxidoreductase systems. The thioredoxin (TRX) system in diabetic rat heart was characterized by a 52% decrease in TRX reductase (TRXR) activity from control heart (P < 0.05), whereas TRX activity was 1.7-fold greater than control heart (P < 0.05). Diabetes elicited similar changes in the glutaredoxin (GRX) system: glutathione reductase was decreased 35% from control level (P < 0.05), and GRX activity was 2.5-fold greater than in control heart (P < 0.05). The basal activity of glucose-6-phosphate dehydrogenase, which generates NADPH required by the TRX and GRX systems, was not altered by diabetes. Voltage-clamp studies showed that the characteristically decreased density of the transient outward K(+) current (I(to)) in isolated diabetic rat myocytes was normalized by in vitro treatment with insulin (0.1 microM) or the metabolic activator dichloroacetate (1.5 mM). The effect of these agonists on I(to) was blocked by inhibitors of glucose-6-phosphate dehydrogenase. Moreover, inhibitors of TRXR, which controls the reducing activity of TRX, also blocked upregulation of I(to) by insulin and dichloroacetate. These data suggest that K(+) channels underlying I(to) are regulated in a redox-sensitive manner by the TRX system and the remodeling of I(to) that occurs in diabetes may be due to decreased TRXR activity. We propose that oxidoreductase systems are an important repair mechanism that protects ion channels and associated regulatory proteins from irreversible oxidative damage.  相似文献   

3.
Regulation of voltage-gated K(+) (K(v)) channel expression may be involved in controlling contractility of uterine smooth muscle cells during pregnancy. Functional expression of these channels is not only controlled by the levels of pore-forming subunits, but requires their association with auxiliary subunits. Specifically, rapidly inactivating K(v) current is prominent in myometrial cells and may be carried by complexes consisting of Kv4 pore-forming and KChIP auxiliary subunits. To determine the molecular identity of the channel complexes and their changes during pregnancy, we examined the expression and localization of these subunits in rat uterus. RT-PCR analysis revealed that rat uterus expressed all three Kv4 pore-forming subunits and KChIP2 and -4 auxiliary subunits. The expression of mRNAs for these subunits was dynamically and region selectively regulated during pregnancy. In the corpus, Kv4.2 mRNA level increased before parturition, whereas the expression of Kv4.1 and Kv4.3 mRNAs decreased during pregnancy. A marked increase in KChIP2 mRNA level was also seen at late gestation. In the cervix, the expression of all three pore-forming and two auxiliary subunit mRNAs increased at late gestation. Immunoprecipitation followed by immunoblot analysis indicated that Kv4.2-KChIP2 complexes were significant in uterus at late pregnancy. Kv4.2- and KChIP2-immunoreactive proteins were present in both circular and longitudinal myometrial cells. Finally, Kv4.2 and KChIP2 mRNA levels were similarly elevated in pregnant and nonpregnant corpora of one side-conceived rats. These results suggest that diffusible factors coordinate the pregnancy-associated changes in molecular compositions of myometrial Kv4-KChIP channel complexes.  相似文献   

4.
5.
6.
The Ca(2+)-binding protein, K(+) channel-interacting protein 1 (KChIP1), modulates Kv4 channels. We show here that KChIP1 affects Kv4.1 and Kv4.2 currents differently. KChIP1 slows Kv4.2 inactivation but accelerates the Kv4.1 inactivation time course. Kv4.2 activation is shifted in a hyperpolarizing direction, whereas a depolarizing shift occurs for Kv4.1. On the other hand, KChIP1 increases the current amplitudes and accelerates recovery from inactivation of both currents. An involvement of the Kv4 N-terminus in these differential effects is demonstrated using chimeras of Kv4.2 and Kv4.1. These results reveal a novel interaction of KChIP1 with these two Kv4 members. This represents a mechanism to further increase the functional diversity of K(+) channels.  相似文献   

7.
KChIPs are a family of Kv4 K(+) channel ancillary subunits whose effects usually include slowing of inactivation, speeding of recovery from inactivation, and increasing channel surface expression. We compared the effects of the 270 amino acid KChIP2b on Kv4.3 and a Kv4.3 inner pore mutant [V(399, 401)I]. Kv4.3 showed fast inactivation with a bi-exponential time course in which the fast time constant predominated. KChIP2b expressed with wild-type Kv4.3 slowed the fast time constant of inactivation; however, the overall rate of inactivation was faster due to reduction of the contribution of the slow inactivation phase. Introduction of [V(399, 401)I] slowed both time constants of inactivation less than 2-fold. Inactivation was incomplete after 20s pulse durations. Co-expression of KChIP2b with Kv4.3 [V(399, 401)I] slowed inactivation dramatically. KChIP2b increased the rate of recovery from inactivation 7.6-fold in the wild-type channel and 5.7-fold in Kv4.3 [V(399,401)I]. These data suggest that inner pore structure is an important factor in the modulatory effects of KChIP2b on Kv4.3 K(+) channels.  相似文献   

8.
Association of Kv channel-interacting proteins (KChIPs) with Kv4 channels leads to modulation of these A-type potassium channels (An, W. F., Bowlby, M. R., Betty, M., Cao, J., Ling, H. P., Mendoza, G., Hinson, J. W., Mattsson, K. I., Strassle, B. W., Trimmer, J. S., and Rhodes, K. J. (2000) Nature 403, 553-556). We cloned a KChIP2 splice variant (KChIP2.2) from human ventricle. In comparison with KChIP2.1, coexpression of KChIP2.2 with human Kv4 channels in mammalian cells slowed the onset of Kv4 current inactivation (2-3-fold), accelerated the recovery from inactivation (5-7-fold), and shifted Kv4 steady-state inactivation curves by 8-29 mV to more positive potentials. The features of Kv4.2/KChIP2.2 currents closely resemble those of cardiac rapidly inactivating transient outward currents. KChIP2.2 stimulated the Kv4 current density in Chinese hamster ovary cells by approximately 55-fold. This correlated with a redistribution of immunoreactivity from perinuclear areas to the plasma membrane. Increased Kv4 cell-surface expression and current density were also obtained in the absence of KChIP2.2 when the highly conserved proximal Kv4 N terminus was deleted. The same domain is required for association of KChIP2.2 with Kv4 alpha-subunits. We propose that an efficient transport of Kv4 channels to the cell surface depends on KChIP binding to the Kv4 N-terminal domain. Our data suggest that the binding is necessary, but not sufficient, for the functional activity of KChIPs.  相似文献   

9.
Rapidly activating Kv4 voltage-gated ion channels are found in heart, brain, and diverse other tissues including colon and uterus. Kv4.3 can co-assemble with KChIP ancillary subunits, which modify kinetic behavior. We examined the affinity and use dependence of nifedipine block on Kv4.3 and its modulation by KChIP2b. Nifedipine (150 microM) reduced peak Kv4.3 current approximately 50%, but Kv4.3/KChIP2b current only approximately 27%. Nifedipine produced a very rapid component of open channel block in both Kv4.3 and Kv4.3/KChIP2b. However, recovery from the blocked/inactivated state was strongly sensitive to KChIP2b. Kv4.3 Thalf,recovery was slowed significantly by nifedipine (120.0+/-12.4 ms vs. 213.1+/-18.2 ms), whereas KChIP2b eliminated nifedipine's effect on recovery: Kv4.3/KChIP2b Thalf,recovery was 45.3+/-7.2 ms (control) and 47.8+/-8.2 ms (nifedipine). Consequently, Kv4.3 exhibited use-dependent nifedipine block in response to a series of depolarizing pulses which was abolished by KChIP2b. KChIPs alter drug affinity and use dependence of Kv4.3.  相似文献   

10.
Ping Liang 《Biophysical journal》2010,98(12):2867-2876
KChIP4a shows a high homology with other members of the family of Kv channel-interacting proteins (KChIPs) in the conserved C-terminal core region, but exhibits a unique modulation of Kv4 channel gating and surface expression. Unlike KChIP1, the KChIP4 splice variant KChIP4a has been shown to inhibit surface expression and function as a suppressor of channel inactivation of Kv4. In this study, we sought to determine whether the multitasking KChIP4a modulates Kv4 function in a clamping fashion similar to that shown by KChIP1. Injection of Kv4.3 T1 zinc mutants into Xenopus oocytes resulted in the nonfunctional expression of Kv4.3 channels. Coexpression of Kv4.3 zinc mutants with WT KChIP4a gave rise to the functional expression of Kv4.3 current. Oocyte surface labeling results confirm the correlation between functional rescue and enhanced surface expression of zinc mutant proteins. Chimeric mutations that replace the Kv4.3 N-terminus with N-terminal KChIP4a or N-terminal deletion of KChIP4a further demonstrate that the functional rescue of Kv4.3 channel tetramerization mutants depends on the KChIP4a core region, but not its N-terminus. Structure-guided mutation of two critical residues of core KChIP4a attenuated functional rescue and tetrameric assembly. Moreover, size exclusion chromatography combined with fast protein liquid chromatography showed that KChIP4a can drive zinc mutant monomers to assemble as tetramers. Taken together, our results show that KChIP4a can rescue the function of tetramerization-defective Kv4 monomers. Therefore, we propose that core KChIP4a functions to promote tetrameric assembly and enhance surface expression of Kv4 channels by a clamping action, whereas its N-terminus inhibits surface expression of Kv4 by a mechanism that remains elusive.  相似文献   

11.
Kv channel-interacting proteins (KChIPs) are auxiliary subunits of the heteromultimeric channel complexes that underlie neuronal I(SA), the subthreshold transient K(+) current that dynamically regulates membrane excitability, action potential firing properties, and long term potentiation. KChIPs form cytoplasmic associations with the principal pore-forming Kv4 subunits and typically mediate enhanced surface expression and accelerated recovery from depolarization-induced inactivation. An exception is KChIP4a, which dramatically suppresses Kv4 inactivation while promoting neither surface expression nor recovery. These unusual properties are attributed to the effects of a K channel inactivation suppressor domain (KISD) encoded within the variable N terminus of KChIP4a. Here, we have functionally and biochemically characterized two brain KChIP isoforms, KChIP2x and KChIP3x (also known as KChIP3b) and show that they also contain a functional KISD. Like KChIP4a and in contrast with non-KISD-containing KChIPs, both KChIP2x and KChIP3x strongly suppress inactivation and slow activation and inhibit the typical increases in surface expression of Kv4.2 channels. We then examined the properties of the KISD to determine potential mechanisms for its action. Subcellular fractionation shows that KChIP4a, KChIP2x, and KChIP3x are highly associated with the membrane fraction. Fluorescent confocal imaging of enhanced green fluorescent proteins (eGFP) N-terminally fused with KISD in HEK293T cells indicates that KISDs of KChIP4a, KChIP2x, and KChIP3x all autonomously target eGFP to intracellular membranes. Cell surface biotinylation experiments on KChIP4a indicate that the N terminus is exposed extracellularly, consistent with a transmembrane KISD. In summary, KChIP4a, KChIP2x, and KChIP3x comprise a novel class of KChIP isoforms characterized by an unusual transmembrane domain at their N termini that modulates Kv4 channel gating and trafficking.  相似文献   

12.
Rapidly activating and inactivating somatodendritic voltage-gated K(+) (Kv) currents, I(A), play critical roles in the regulation of neuronal excitability. Considerable evidence suggests that native neuronal I(A) channels function in macromolecular protein complexes comprising pore-forming (α) subunits of the Kv4 subfamily together with cytosolic, K(+) channel interacting proteins (KChIPs) and transmembrane, dipeptidyl peptidase 6 and 10 (DPP6/10) accessory subunits, as well as other accessory and regulatory proteins. Several recent studies have demonstrated a critical role for the KChIP subunits in the generation of native Kv4.2-encoded channels and that Kv4.2-KChIP complex formation results in mutual (Kv4.2-KChIP) protein stabilization. The results of the experiments here, however, demonstrate that expression of DPP6 in the mouse cortex is unaffected by the targeted deletion of Kv4.2 and/or Kv4.3. Further experiments revealed that heterologously expressed DPP6 and DPP10 localize to the cell surface in the absence of Kv4.2, and that co-expression with Kv4.2 does not affect total or cell surface DPP6 or DPP10 protein levels. In the presence of DPP6 or DPP10, however, cell surface Kv4.2 protein expression is selectively increased. Further addition of KChIP3 in the presence of DPP10 markedly increases total and cell surface Kv4.2 protein levels, compared with cells expressing only Kv4.2 and DPP10. Taken together, the results presented here demonstrate that the expression and localization of the DPP accessory subunits are independent of Kv4 α subunits and further that the DPP6/10 and KChIP accessory subunits independently stabilize the surface expression of Kv4.2.  相似文献   

13.
The Ca(2+)-binding proteins KChIP1-4 (KChIP3 is also known as DREAM and calsenilin) act as auxiliary subunits for voltage-gated K(+) channels in the Kv4 family. Here we identify three splicing isoforms of rat KChIP2 with variable N-terminal peptides. The two longer isoforms, which contain the 32-amino acid peptide, produce larger increases in Kv4.3 protein level and current density and more effectively localize themselves and their associated channels at the plasma membrane than the shortest variant. The 32-amino acid peptide contains potential palmitoylation cysteines. Metabolic labeling demonstrates that these cysteines in the KChIP2 isoforms, as well as the corresponding sites in KChIP3, are palmitoylated. Mutating these cysteines reduces their plasma membrane localization and the enhancement of Kv4.3 current density. Thus, palmitoylation of the KChIP auxiliary subunits controls plasma membrane localization of their associated channels.  相似文献   

14.
Enhanced Trafficking of Tetrameric Kv4.3 Channels by KChIP1 Clamping   总被引:1,自引:0,他引:1  
Cui YY  Liang P  Wang KW 《Neurochemical research》2008,33(10):2078-2084
The cytoplamsic auxiliary KChIPs modulate surface expression and gating properties of Kv4 channels. Recent co-crystal structure of Kv4.3 N-terminus and KChIP1 reveals a clamping action of the complex in which a single KChIP1 molecule laterally binds two neighboring Kv4.3 N-termini at different locations, thus forming two contact interfaces involved in the protein–protein interaction. In the second interface, it functions to stabilize the tetrameric assembly, but the role it plays in channel trafficking remains elusive. In this study, we examined the effects of KChIP1 on Kv4 protein trafficking in COS-7 cells expressing EGFP-tagged Kv4.3 channels using confocal microscopy. Mutations either in KChIP1 (KChIP1 L39E-Y57A-K61A) or Kv4.3 (Kv4.3 E70A-F73E) that disrupt the protein–protein interaction within the second interface can reduce surface expression of Kv4 channel proteins. Kv4.3 C110A, the Zn2+ binding site mutation in T1 domain, that disrupts the tetrameric assembly of the channels can be rescued by WT KChIP1, but not the KChIP1 triple mutant. These results were further confirmed by whole cell current recordings in oocytes. Our findings show that key residues of second interface involved in stabilizing tetrameric assembly can regulate the channel trafficking, indicating an intrinsic link between tetrameric assembly and channel trafficking. The results also suggest that formation of octameric Kv4 and KChIP complex by KChIPs clamping takes place before their trafficking to final destination on the cell surface. Special issue article in honor of Dr. Ji-Sheng Han.  相似文献   

15.
The family of calcium binding proteins called KChIPs associates with Kv4 family K(+) channels and modulates their biophysical properties. Here, using mutagenesis and X-ray crystallography, we explore the interaction between Kv4 subunits and KChIP1. Two regions in the Kv4.2 N terminus, residues 7-11 and 71-90, are necessary for KChIP1 modulation and interaction with Kv4.2. When inserted into the Kv1.2 N terminus, residues 71-90 of Kv4.2 are also sufficient to confer association with KChIP1. To provide a structural framework for these data, we solved the crystal structures of Kv4.3N and KChIP1 individually. Taken together with the mutagenesis data, the individual structures suggest that that the Kv4 N terminus is required for stable association with KChIP1, perhaps through a hydrophobic surface interaction, and that residues 71-90 in Kv4 subunits form a contact loop that mediates the specific association of KChIPs with Kv4 subunits.  相似文献   

16.
K channelinteracting proteins (KChIPs) enhance functional expression of Kv4 channels by binding to an N‐terminal regulatory region located in the first 40 amino acids of Kv4.2 that we call the functional expression regulating N‐terminal (FERN) domain. Mutating two residues in the FERN domain to alanines, W8A and F11A, disrupts KChIP binding and regulation of Kv4.2 without eliminating the FERN domain's control of basal expression level or regulation by DPP6. When Kv4.2(W8A,F11A) is co‐expressed with wild type Kv4.2 and KChIP3 subunits, a dominant negative effect is seen where the current expression is reduced to levels normally seen without KChIP addition. The dominant negative effect correlates with heteromultimeric channels remaining on intracellular membranes despite KChIP binding to non‐mutant Kv4.2 subunits. In contrast, the deletion mutant Kv4.2(Δ1‐40), eliminating both KChIP binding and the FERN domain, has no dominant negative effect even though the maximal conductance level is 5x lower than seen with KChIP3. The 5x increased expression seen with KChIP integration into the channel is fully apparent even when a reduced number of KChIP subunits are incorporated as long as all FERN domains are bound. Our results support the hypothesis that KChIPs enhances Kv4.2 functional expression by a 1 : 1 suppression of the N‐terminal FERN domain and by producing additional positive regulatory effects on functional channel expression.  相似文献   

17.
Mechanisms underlying Kv4 channel inactivation and recovery are presently unclear, although there is general consensus that the basic characteristics of these processes are not consistent with Shaker (Kv1) N- and P/C-type mechanisms. Kv4 channels also differ from Shaker in that they can undergo significant inactivation from pre-activated closed-states (closed-state inactivation, CSI), and that inactivation and recovery kinetics can be regulated by intracellular KChIP2 isoforms. To gain insight into the mechanisms regulating Kv4.3 CSI and recovery, we have analyzed the effects of increasing [K(+)](o) from 2 mM to 98 mM in the absence and in the presence of KChIP2b, the major KChIP2 isoform expressed in the mammalian ventricle. In the absence of KChIP2b, high [K(+)](o) promoted Kv4.3 inactivated closed-states and significantly slowed the kinetics of recovery from both macroscopic and closed-state inactivation. Coexpression of KChIP2b in 2 mM [K(+)](o) promoted non-inactivated closed-states and accelerated the kinetics of recovery from both macroscopic and CSI. In high [K(+)](o), KChIP2b eliminated or significantly reduced the slowing effects on recovery. Attenuation of CSI by the S4 charge-deletion mutant R302A, which produced significant stabilization of non-inactivated closed-states, effectively eliminated the opposing effects of high [K(+)](o) and KChIP2b on macroscopic recovery kinetics, confirming that these results were due to alterations of CSI. Elevated [K(+)](o) therefore slows Kv4.3 recovery by stabilizing inactivated closed-states, while KChIP2b accelerates recovery by destabilizing inactivated closed-states. Our results challenge underlying assumptions of presently popular Kv4 gating models and suggest that Kv4.3 possesses novel allosteric mechanisms, which are absent in Shaker, for coupling interactions between intracellular KChIP2b binding motifs and extracellular K(+)-sensitive regulatory sites.  相似文献   

18.
Zhou W  Qian Y  Kunjilwar K  Pfaffinger PJ  Choe S 《Neuron》2004,41(4):573-586
Four Kv channel-interacting proteins (KChIP1 through KChIP4) interact directly with the N-terminal domain of three Shal-type voltage-gated potassium channels (Kv4.1, Kv4.2, and Kv4.3) to modulate cell surface expression and function of Kv4 channels. Here we report a 2.0 Angstrom crystal structure of the core domain of KChIP1 (KChIP1*) in complex with the N-terminal fragment of Kv4.2 (Kv4.2N30). The complex reveals a clam-shaped dimeric assembly. Four EF-hands from each KChIP1 form each shell of the clam. The N-terminal end of Kv4.2 forming an alpha helix (alpha1) and the C-terminal alpha helix (H10) of KChIP1 are enclosed nearly coaxially by these shells. As a result, the H10 of KChIP1 and alpha1 of Kv4.2 mediate interactions between these two molecules, structurally reminiscent of the interactions between calmodulin and its target peptides. Site-specific mutagenesis combined with functional characterization shows that those interactions mediated by alpha1 and H10 are essential to the modulation of Kv4.2 by KChIPs.  相似文献   

19.
Members of the K+ channel-interacting protein (KChIP) family bind the distal N termini of members of the Shal subfamily of voltage-gated K+ channel (Kv4) pore-forming (α) subunits to generate rapidly activating, rapidly inactivating neuronal A-type (IA) and cardiac transient outward (Ito) currents. In heterologous cells, KChIP co-expression increases cell surface expression of Kv4 α subunits and Kv4 current densities, findings interpreted to suggest that Kv4·KChIP complex formation enhances forward trafficking of channels (from the endoplasmic reticulum or the Golgi complex) to the surface membrane. The results of experiments here, however, demonstrate that KChIP2 increases cell surface Kv4.2 protein expression (∼40-fold) by an order of magnitude more than the increase in total protein (∼2-fold) or in current densities (∼3-fold), suggesting that mechanisms at the cell surface regulate the functional expression of Kv4.2 channels. Additional experiments demonstrated that KChIP2 decreases the turnover rate of cell surface Kv4.2 protein by inhibiting endocytosis and/or promoting recycling. Unexpectedly, the experiments here also revealed that Kv4.2·KChIP2 complex formation stabilizes not only (total and cell surface) Kv4.2 but also KChIP2 protein expression. This reciprocal protein stabilization and Kv4·KChIP2 complex formation are lost with deletion of the distal (10 amino acids) Kv4.2 N terminus. Taken together, these observations demonstrate that KChIP2 differentially regulates total and cell surface Kv4.2 protein expression and Kv4 current densities.  相似文献   

20.
Potassium channel-interacting proteins (KChIPs) are EF-hand calcium-binding proteins of the recoverin/neuronal calcium sensor 1 family that co-assemble with the pore-forming Kv4 alpha-subunits and thus control surface trafficking of the voltage-gated potassium channels mediating the neuronal I(A) and cardiac I(to) currents. Different from the other KChIPs, KChIP4a largely reduces surface expression of the Kv4 channel complexes. Using solution NMR we show that the unique N terminus of KChIP4a forms a 6-turn alpha-helix that is connected to the highly conserved core of the KChIP protein via a solvent-exposed linker. As identified by chemical shift changes, N-terminal alpha-helix and core domain of KChIP4a interact with each other through the same hydrophobic surface pocket that is involved in intermolecular interaction between the N-terminal helix of Kv4alpha and KChIP in Kv4-KChIP complexes. Electrophysiological recordings and biochemical interaction assays of complexes formed by wild-type and mutant Kv4alpha and KChIP4a proteins suggest that competition of these two helical domains for the surface groove is responsible for the reduced trafficking of Kv4-KChIP4a complexes to the plasma membrane. Surface expression of Kv4 complexes may thus be controlled by an auto-inhibitory domain in the KChIP subunit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号