首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Four episodes of transient severe insulin resistance in diabetic ketoacidosis, possibly of immunological origin, have been described. Severe insulin resistance was diagnosed when insulin requirement exceeded 100 units per hour. Treatment comprised of doubling the insulin dose intravenously every two hours till there was a satisfactory response and administration of steroids when 100 units per hour of insulin were being administered. Contrary to the usual response, ketosis responded first followed by hyperglycaemia. When insulin resistance was overcome, plasma glucose continued to fall despite witholding insulin and late hypoglycaemia occurred in three episodes.  相似文献   

2.
To determine whether the metabolism of diet-derived triglycerides (TG) is acutely regulated by the consumption of insulinogenic carbohydrates, we measured the effects of glucose ingestion on oral and intravenous fat tolerance, and on serum triglyceride concentrations obtained during duodenal fat perfusion. Postprandial lipemia was diminished by the ingestion of 50 g (148 +/- 121 mg.dl-1 x 7 h-1 vs 192 +/- 124 mg.dl-1 x 7 h-1, P less than 0.05) and 100 g (104 +/- 106 mg.dl-1 x 7 h-1 vs 171 +/- 104 mg.dl-1 x 7 h-1, P less than 0.05) glucose. Peak postprandial TG concentrations occurred later after meals containing glucose and fat than after meals containing fat alone. This effect could be reproduced when an iso-osmotic quantity of urea was substituted for glucose in the test meal. Starch ingestion had no discernible effect on postprandial lipemia. Intravenous fat tolerance was similar before (4.9 +/- 1.2%.min-1) and 2 h (4.4 +/- 1.3%.min-1) and 4 h (4.8 +/- 1.5%.min-1) after 50 g glucose ingestion. During duodenal fat perfusion, glucose ingestion caused a progressive decrease in plasma triglyceride concentrations. These data suggest that glucose ingestion diminishes postprandial lipemia in a dose-dependent manner, but that this effect is not due to increased clearance of triglyceride from the circulation. The hypotriglyceridemic effects of glucose appear to reflect delayed gastric emptying and decreased hepatic secretion of triglyceride.  相似文献   

3.
Background/ObjectiveCoronavirus disease 2019 (COVID-19) is thought to contribute to diabetic ketoacidosis (DKA) and worse outcomes in patients with diabetes. This study compared the cumulative insulin dose required to achieve DKA resolution in the intensive care unit among patients with type 2 diabetes and COVID-19 infection versus without COVID-19 infection.MethodsThis retrospective cohort study evaluated 100 patients—50 patients with COVID-19 in cohort 1 and 50 patients without COVID-19 in cohort 2—treated with insulin infusions for DKA at a tertiary care teaching hospital. The primary outcome was to compare the cumulative insulin dose required to achieve DKA resolution in each cohort. The secondary outcomes included time to DKA resolution, mean insulin infusion rate, and mean weight-based cumulative insulin infusion dose required to achieve DKA resolution. All endpoints were adjusted for confounders.ResultsThe mean cumulative insulin dose was 190.3 units in cohort 1 versus 116.4 units in cohort 2 (P = .0038). Patients receiving steroids had a mean time to DKA resolution of 35.9 hours in cohort 1 versus 15.6 hours in cohort 2 (P = .0014). In cohort 1 versus cohort 2, the mean insulin infusion rate was 7.1 units/hour versus 5.3 units/hour (P = .0025), whereas the mean weight-based cumulative insulin infusion dose was 2.1 units/kg versus 1.5 units/kg (P = .0437), respectively.ConclusionCOVID-19-infected patients required a significantly larger cumulative insulin dose, longer time to DKA resolution, higher insulin infusion rate, and higher weight-based insulin infusion dose to achieve DKA resolution versus non–COVID-19-infected patients with type 2 diabetes.  相似文献   

4.
《Endocrine practice》2019,25(5):407-412
Objective: To determine the efficacy and safety of a diabetic ketoacidosis (DKA)-Power Plan (PP) for guiding intravenous (IV) insulin infusions prior to anion gap (AG) closure and administering subcutaneous (SC) insulin ≥1 hour before discontinuing IV insulin.Methods: Retrospective chart review of patients with DKA before (pre-PP) (n = 60) and following (post-PP) (n = 60) implementation of a DKA-PP. Groups were compared for percentage of patients for whom IV insulin therapy was continued until AG closure, the percentage of patients receiving SC insulin ≥1 hour before discontinuation of IV insulin, and percentage of patients with rebound DKA during the index hospitalization.Results: Admission plasma glucose (514 mg/dL vs. 500 mg/dL; P = .36) and venous pH (7.2 vs. 7.2; P = .57) were similar in pre- and post-PP groups. Inappropriate discontinuation of IV insulin occurred less frequently in post-PP patients (28% vs. 7%; P = .007), with a lower frequency of rebound DKA (40% vs. 8%; P = .001) following acute management. More post-PP patients received SC insulin ≥1 hour before discontinuation of IV insulin (65% vs. 78%; P = .05).Conclusion: Implementation of a DKA-PP was associated with appropriate discontinuation of IV insulin in more patients, more frequent administration of SC insulin ≥1 hour prior to discontinuation of IV insulin, and fewer episodes of rebound DKA.Abbreviations: ADA = American Diabetes Association; AG = anion gap; BG = blood glucose; DKA = diabetic ketoacidosis; DKA-PP = DKA-Power Plan; ICU = intensive care unit; IQR = interquartile range; IV = intravenous; IVF = IV fluid; LOS = length of stay; SC = subcutaneous  相似文献   

5.
The effectiveness of combining the subcutaneous administration of short- and intermediate-acting insulin with the intravenous infusion of glucose in maintaining normoglycemia during labour and delivery in insulin-dependent diabetic women was tested. Fifty women were given intermediate-acting insulin twice daily in doses that were fractions of their usual dose, based on the projected duration of labour. In addition, they were given regular (i.e., short-acting) insulin every 6 hours, the dose being 1% of their total daily insulin dose for every increase of 10 mg/dl above 100 mg/dl (5.6 mmol/l) in the plasma glucose level 1 hour previously; the levels were measured every 3 hours. All the patients were fasting and received a basal intravenous infusion of 6 g/h of glucose; the rate of infusion was increased by 1 g/h for every decrease of 10 mg/dl in the plasma glucose level below 100 mg/dl. The mean plasma glucose levels (+/- standard deviation) were 90 +/- 46 mg/dl after 3 hours of labour, 92 +/- 35 mg/dl after 6 hours, 97 +/- 49 mg/dl after 9 hours and 107 +/- 65 mg/dl after 12 hours. With only one exception, in a premature infant, the 5-minute Apgar scores were identical to those of the infants of nondiabetic women.  相似文献   

6.
The effect of hyperglycaemia on hepatic glucose production (Ra) was investigated in nine healthy men using sequential clamp protocols during somatostatin infusion and euglycaemia (0-150 min), at plasma glucose levels of 165 mg x dl-1 (9.2 mM, 150-270 min) and during insulin infusion (1.0 mU x kg-1 x min-1, 270-360 min) in study 1 or during hypo-insulinaemia and plasma glucose levels of 220 mg x dl-1 (12.2 mM; 270-390 min) in study 2. Somatostatin decreased Ra and glucose disposal rate (Rd) but increased plasma free fatty acids (FFA) and lipid oxidation during euglycaemia. Increasing plasma glucose to 165 mg x dl-1 (9.2 mM) and hypo-insulinaemia increased Rd, but no suppressive effects on Ra, plasma FFA and lipid oxidation were observed. By contrast hyperinsulinaemia (study 1), as well as a further increase in plasma glucose (study 2), both decreased Ra. However, more pronounced hyperglycaemia increased insulin secretion despite somatostatin resulting in a fall in plasma FFA and lipid oxidation. Our data questions the accepted dogma that hyperglycaemia inhibits Ra independently of insulin action.  相似文献   

7.
The absorption of insulin mixed with sodium deoxycholate (DOC) or sodium cholate from the rectal mucosa of diabetic and non-diabetic rats was measured by the effect on blood glucose levels. Blood sugar was lowere by 50% one hour after administration of 12 u soluble insulin mixed with 1–10 mg/ml DOC, or 2–20 mg/ml sodium cholate. There was a linear correlation between the reduction in blood glucose and the amount of insulin administered (1–64 units) when mixed with 5 mg/ml DOC. Radioimmuno-assay of plasma insulin showed an increase from 16.2 μu/ml to 3335 muuu/ml after rectal administration of 12 u soluble insulin. We conclude that insulin when mixed with bile salts can be absorbed by the intestine to reach the circulation in a biologically active form.  相似文献   

8.
《Endocrine practice》2012,18(3):394-398
ObjectiveTo investigate the effects of intravenous chromium on serum glucose and insulin infusion rates in hospitalized patients with severe insulin resistance.MethodsIn this retrospective study, we reviewed hospital records from January 1, 2008, to December 1, 2008, to identify patients for whom intravenous chromium was ordered at our academic medical center. To be included, patients were required to demonstrate profound insulin resistance and uncontrolled hyperglycemia (defined as the inability to achieve a blood glucose value less than 200 mg/ dL during the 12 hours before chromium was given despite administration of continuous insulin infusion at a rate of 20 or more units/h) and to have received a continuous infusion of chromium chloride at 20 mcg/h for 10 to 15 hours for a total dose of 200 to 240 mcg.ResultsFourteen patients met our inclusion criteria. Over the hour preceding intravenous chromium infusion, the mean ± standard deviation rate of insulin infusion was 31 ± 15 units/h, and blood glucose was 326 ± 86 mg/dL. Twelve hours after the initiation of chromium, these values were 16 ± 16 units/h and 162 ± 76 mg/dL, respectively (P = .011 for difference in mean insulin rate from baseline, P <.001 for difference in mean blood glucose from baseline) and 24 hours after, these values were 12 ± 15 units/h and 144 ± 48 mg/dL, respectively (P <.001 for both).ConclusionsIntravenous chromium decreases insulin needs and improves glucose control at 12 and 24 hours compared with baseline values. Chromium appears to improve hyperglycemia and insulin resistance in acutely ill patients and represents a potential new therapy. Future prospective randomized controlled trials are needed to confirm these results. (Endocr Pract. 2012;18:394-398)  相似文献   

9.
The mechanisms by which insulin deficiency affects muscle glucose transport were investigated. Epitrochlearis muscles from rats with streptozotocin-induced diabetes and from controls were incubated in vitro for 0.5-14 h. The incubation was shown not to impair muscle energy stores or tissue oxygenation. Diabetes decreased basal 3-O-methylglucose transport by 40% (p less than 0.01), and insulin-stimulated (20 milli-units/ml) glucose transport capacity by 70% (p less than 0.001). In vitro incubation gradually normalized insulin responsiveness (3.77 +/- 0.38 before versus 8.97 +/- 0.65 mumol X ml-1 X h-1 after 12 h of incubation). Basal glucose transport remained significantly reduced. The reversal of the insulin responsiveness did not require the presence of rat serum and, furthermore, took place even in the absence of insulin. In fact, insulin responsiveness was higher after incubation (14 h) with no insulin than with 100 microunits/ml insulin (9.85 +/- 0.59 versus 8.06 +/- 0.59 mumol X ml-1 X h-1, p less than 0.05). Glucose at 30 mM did not affect the normalization of the insulin-stimulated glucose transport capacity, whereas incubation in serum from diabetic rats resulted in a slightly (26%) blunted reversal (7.60 +/- 0.39 versus 8.89 +/- 0.45 mumol X ml-1 X h-1 with diabetic versus control serum for 14 h, p less than 0.05; before incubation the value was 3.87 +/- 0.40). Inhibition of protein synthesis by cycloheximide blocked the normalization by 80%. These results suggest the presence in diabetic serum of some labile factor that might inhibit the glucose transport system. The results indicate that the decreased insulin-stimulated glucose transport capacity, in the insulin-deficient diabetic muscle, is not a direct consequence of the lack of insulin or of high glucose concentrations.  相似文献   

10.
Ginsenoside Rh2, one of the ginsenosides contained in the Panax ginseng root, was employed to screen the effect on insulin resistance of rats induced by a diet containing 60% fructose. Single intravenous injection of ginsenoside Rh2 decreased the plasma glucose concentrations in 60 minutes in a dose-dependent manner from 0.1 mg/kg to 1 mg/kg in rats with insulin resistance induced by fructose-rich chow. Repeated intravenous injection of ginsenoside Rh2 (1 mg/kg per injection, 3 times daily) into rats which received fructose-rich chow for 3 consecutive days decreased the value of glucose-insulin index, the product of the areas under the curve of glucose and insulin during the intraperitoneal (i.p.) glucose tolerance test. This means that ginsenoside Rh2 has an ability to improve insulin action on glucose disposal. The plasma glucose lowering action of tolbutamide, induced by the secretion of endogenous insulin, is widely used to characterize the formation of insulin resistance. Time for the loss of plasma glucose lowering response to tolbutamide (10 mg/kg, i.p.) in rats during insulin resistance induction by fructose-rich chow was also markedly delayed by the repeated treatment of ginsenoside Rh2, as compared to the vehicle-treated control. Thus, the repeated treatment of ginsenoside Rh2 delayed the development of insulin resistance in high fructose feeding rats. Increase of insulin sensitivity by ginsenoside Rh2 was further identified using the plasma glucose lowering action of exogenous insulin in streptozotocin-induced diabetic rats (STZ-diabetic rats). Repeated injection of ginsenoside Rh2 at the same dosing (1 mg/kg, 3 times daily) into STZ-diabetic rats for 10 days made an increase of the responses to exogenous insulin. Taken together, it can be concluded that ginsenoside Rh2 has an ability to improve insulin sensitivity and it seems suitable to use ginsenoside Rh2 as an adjuvant for diabetic patients and/or the subjects wishing to increase insulin sensitivity.  相似文献   

11.
Whole body glucose uptake (BGU) and hepatic glucose production (HGP) at maximal plasma insulin concentrations (+/- 5000 microU/ml) were determined by eu- (EC) (6 mM) and hyperglycemic (HC) (20 mM) clamps (120 min), combined with [3-3H]glucose infusion, in normal and streptozotocin-treated (65 mg/kg) 3-day diabetic, conscious rats. In normal rats, during EC, BGU was 12.4 +/- 0.4 mg/min and during HC, when urinary glucose loss was 0.54 +/- 0.09 mg/min, BGU was 25.5 +/- 1.6 mg/min. However, throughout the final 60 min of HC, glucose infusion rate (GIR) was not constant but a linear decline in time (r = -0.99) of 17%, P less than 0.0001, was observed indicating a hyperglycemia-induced desensitization process. In diabetic rats, during EC, BGU was 7.7 +/- 0.3 mg/min and during HC, BGU was 15.5 +/- 1.4 mg/min. Throughout the final 60 min of HC, GIR was constant, suggesting that the hyperglycemia-induced desensitization process was already completed. In normal and diabetic rats, HGP was similar: during EC 0.2 +/- 0.5 mg/min and 0.1 +/- 0.5 mg/min, and during HC 0.4 +/- 0.4 mg/min and 0.5 +/- 0.6 mg/min, respectively. In vitro adipocyte and muscle insulin receptor studies showed normal to increased receptor number and increased receptor autophosphorylation in diabetic compared to normal rats. In conclusion: (i) 3-day diabetic rats show, at maximal plasma insulin concentrations, insulin resistance to BGU, but not to HGP. The resistance to BGU is equally present (reduction of 38%) at eu- and hyperglycemic levels as compared to normal rats. (ii) 3-day diabetic rats reveal no defect in adipocyte and muscle insulin receptor function. These data indicate that the diabetes induced insulin resistance for BGU is at the post-receptor level and due to a decreased maximal capacity (Vmax) for glucose uptake, with no change in affinity, or Km.  相似文献   

12.
《Endocrine practice》2021,27(8):813-818
ObjectiveFrequent, finger-prick capillary blood glucose measurement is standard care, used to drive insulin infusion rates for inpatients being resuscitated from diabetic ketoacidosis (DKA). Over recent years there has been a shift toward continuous interstitial glucose monitoring, allowing monitoring of glucose without repeated invasive testing. While continuous interstitial glucose monitoring has been safely and reliably utilized in the outpatient setting, it has yet to be studied in acutely unwell patients with DKA. The aim of this study, allowing for physiologically lower interstitial compared to capillary glucose, was to determine if interstitial flash glucose monitoring (FGM) would lead to insulin infusion rates that were similar to capillary blood glucose (CapBG) in DKA.MethodsIn this study, 10 patients with diabetes mellitus, assessed to be in DKA, were enrolled. At the same time as standard DKA management commencement, simultaneous FGM measurements were obtained. Duplicate paired glucose readings were then analyzed for agreement.ResultsActual (CapBG-driven) and predicted (FGM determined) insulin infusion rates were similar. Minor differences in predicted insulin infusion rates were noted in 2/10 patients at higher glucose concentrations, which may relate to the lag in change in glucose in the interstitial space.ConclusionBased on our results, a trial of clinical outcomes in patients with DKA treated with insulin infusion rates driven by CapBG versus subcutaneous FGM appears justified. The FGM method of testing may improve patient comfort, obviate fatigue, improve staff time and direct patient contact, and potentially facilitate rapid discharge.  相似文献   

13.
Two separate experiments were conducted with alloxan-induced, diabetic ewes. In one study it was found that the diabetes induced by alloxan could be stabilized with exogenous insulin (1.2-1.3 U h-1). Feed intake and milk yield were maintained at normal levels even though a mild hyperglycaemia persisted. Despite this, milk fat content tended to increase, an observation that is consistent with insulin being a key factor in the aetiology of the low-milk-fat syndrome in the ruminant. Interruption of insulin infusion then resumption at 90% of the rate previously required to stabilize the diabetes was followed by marked changes in glucose kinetics. Initially, glucose production increased with little change in glucose utilization. This resulted in an increase in plasma glucose, which remained high even though both glucose production and utilization increased, to be similar on resumption of insulin infusions. It seems that the changed sensitivity to insulin reflects 'up-regulation' of insulin receptors. In a second study, exogenous recombinant bovine growth hormone (rebGH) was administered to insulin-stabilized, diabetic ewes. Immediately after the first injection of rebGH, glucose production increased with little change in glucose utilization, which led to increased plasma glucose. This observation suggests that rebGH was glucogenic. Ultimately, it was necessary to increase the dose of insulin to stabilize plasma glucose and by the fourth day of injection of rebGH, the insulin infusion rate required to stabilize the ewes had doubled from c. 1.5 to c. 3 U h-1. After cessation of injections of rebGH the dose of insulin required to stabilize the ewes decreased. These observations confirm the diabetogenic activity of growth hormone (GH) in the sheep.  相似文献   

14.
BackgroundSodium-glucose cotransporter-2 (SGLT2) inhibitors (SGLT2i) showed benefits in type 1 diabetes mellitus (T1DM), but the risk of diabetic ketoacidosis (DKA) limits their use. Ability to predict DKA risk and therapeutic responses would enable appropriate patient selection for SGLT2i. We conducted a meta-analysis and meta-regression of randomized controlled trials (RCTs) evaluating SGLT2i in T1DM to assess moderators of the relative risk (RR) of DKA, of glycemic (HbA1c, fasting plasma glucose, continuous glucose monitoring parameters, insulin dose, and insulin sensitivity indices) and non-glycemic (body mass index (BMI), systolic BP, renal function, albuminuria, and diabetic eye disorders) efficacy, and of other safety outcomes (including hypoglycemia, infections, major adverse cardiovascular events, and death).Methods and findingsWe searched MEDLINE, Cochrane Library, EMBASE, ClinicalTrials.gov, Cochrane CENTRAL Register of Controlled Trials, and other electronic sources through August 30, 2020, for RCTs comparing SGLT2i with active comparators or placebo in adult patients with T1DM. Reviewers extracted data for relevant outcomes, performed random effects meta-analyses, subgroup analyses, and multivariable meta-regression. The strength of evidence was summarized with the GRADE approach. Among 9,914 records identified, 18 placebo-controlled RCTs (7,396 participants, 50% males, mean age 42 y (range 23 to 55 y), 5 different SGLT2i evaluated), were included. Main outcome measures were effect sizes and moderators of glycemic and non-glycemic efficacy and of safety outcomes. In a multivariable meta-regression model, baseline BMI (β = 0.439 [95% CI: 0.211, 0.666], p < 0.001) and estimated glucose disposal rate (eGDR) (β = −0.766 [−1.276, −0.256], p = 0.001) were associated with the RR of DKA (RR: 2.81; 95% CI:1.97, 4.01; p < 0.001, R2 = 61%). A model including also treatment-related parameters (insulin dose change-to-baseline insulin sensitivity ratio and volume depletion) explained 86% of variance across studies in the risk of DKA (R2 = 86%). The association of DKA with a BMI >27 kg/m2 and with an eGDR <8.3 mg/kg/min was confirmed also in subgroup analyses. Among efficacy outcomes, the novel findings were a reduction in albuminuria (WMD: −9.91, 95% CI: −16.26, −3.55 mg/g, p = 0.002), and in RR of diabetic eye disorders (RR: 0.27[0.11, 0.67], p = 0.005) associated with SGLT2i. A SGLT2i dose-response gradient was consistently observed for main efficacy outcomes, but not for adverse events (AEs). Overall, predictors of DKA and of other AEs differed substantially from those of glycemic and non-glycemic efficacy. A limitation of our analysis was the relatively short (≤52 weeks) duration of included RCTs. The potential relevance for clinical practice needs also to be confirmed by real-world prospective studies.ConclusionsIn T1DM, the risk of DKA and main therapeutic responses to SGLT2i are modified by baseline BMI and insulin resistance, by total insulin dose reduction-to-baseline insulin sensitivity ratio, and by volume depletion, which may enable the targeted use of these drugs in patients with the greatest benefit and the lowest risk of DKA.

Giovanni Musso and colleagues conduct a meta-analysis to identify risk factors of diabetic ketoacidosis in patients with Type 1 diabetes taking SGLT2 inhibitors.  相似文献   

15.

Aims

Subgroups of patients with type 2 diabetes mellitus demand large insulin doses to maintain euglycemia. These patients are characterized by severe skeletal muscle insulin resistance and the underlying pathology remains unclear. The purpose of this study was to examine protein expression of the principal glucose transporter, GLUT4, and associated proteins in skeletal muscle from type 2 diabetic patients characterized by severe insulin resistance.

Methods

Seven type 2 diabetic patients with severe insulin resistance (mean insulin dose 195 IU/day) were compared with seven age matched type 2 diabetic patients who did not require insulin treatment, and with an age matched healthy control group. Protein expression of GLUT4 and associated proteins was assessed in muscle and fat biopsies using standard western blotting techniques.

Results

GLUT4 protein expression was significantly reduced by ∼30 pct in skeletal muscle tissue from severely insulin resistant type 2 diabetic subjects, compared with both healthy controls and type 2 diabetic subjects that did not require insulin treatment. In fat tissue, GLUT4 protein expression was reduced in both diabetic groups. In skeletal muscle, the reduced GLUT4 expression in severe insulin resistance was associated with decreased ubiquitin-conjugating enzyme 9 (UBC9) expression while expression of GLUT1, TBC1D1 and AS160 was not significantly different among type 2 diabetic patients and matched controls.

Conclusions

Type 2 diabetic patients with severe insulin resistance have reduced expression of GLUT4 in skeletal muscle compared to patients treated with oral antidiabetic drugs alone. GLUT4 protein levels may therefore play a role in the pathology behind type 2 diabetes mellitus among subgroups of patients, and this may explain the heterogeneous response to insulin treatment. This new finding contributes to the understanding of the underlying mechanisms for the development of extreme insulin resistance.  相似文献   

16.
In the experiment performed on lactating goats, insulin was infused into the jugular vein over during 2 days every day at the rate 2 mg/kg/hour during 6 hour synchronously with glucose at variable rate to maintain euglycaemia; the transport activity (T, in clearance units) was estimated using the equation: T = Q x E/ (1-E), where Q is plasma flow and E is extraction efficiency. At the end of infusion of the 1st and 2nd days, insulin level in the blood was increased by 63 and 82%, mammary plasma flow by 38 and 78%, milk secretion rate by 23.7 and 31.3 %, milk protein yield by 21.4 and 40%, transport activity of glucose by 63 %, and amino acids by 18% (all p < 0.05) compared to control, respectively. The data obtained suggest that productive effect resulted from elevated metabolic activity of secretory cells and increased mammary blood flow.  相似文献   

17.
In 3T3-L1 adipocytes, we previously reported that glucosamine impairs insulin stimulation of glucose transport, which is accompanied by impaired insulin stimulation of serine/threonine kinase Akt. To examine the role of Akt in glucosamine-induced insulin resistance, we investigated time course for insulin stimulation of Akt activity and glucose transport during recovery from glucosamine-induced insulin resistance. After induction of insulin resistance by glucosamine, we washed cells to remove glucosamine and incubated them for various times. After one hour, insulin stimulated-glucose transport was significantly increased and continued to increase up to 6-24 h. Insulin stimulation of Akt, however, did not increase after 1-3 h and began to slightly increase after 6 h. Next, we investigated effects of osmotic shock and vanadate on glucose transport in glucosamine-treated cells and found that glucosamine completely inhibited their actions in these cells. These data suggest that an Akt-independent mechanism is operative in glucosamine-induced insulin resistance and glucosamine impairs glucose transport stimulated by various stimuli involving and not involving Akt activation.  相似文献   

18.
Morphological and functional changes of rat pancreatic islets caused by administration of streptozotocin (STZ) and the bioavailability of insulin formulations administered to STZ-induced diabetic rats with fasting (12 h) or non-fasting were investigated. Islets isolated from normal rats maintained a good three-dimensional structure and the islet yield was 962.5±86.5 islet equivalent number (IEQ, islets converted to an average diameter of 150 μm). In the diabetic group (>500 mg/ml blood glucose), the islet yield was only 44.4±8.3 IEQ and the islet was severely damaged. The minimum reduction of blood glucose of each formulation, such as insulin solution, microcrystal, and insulin microcrystal capsule, was shown to be 11.3, 11.0, and 16.3 mg/dl, respectively, at 6 h in fasting with diabetic rats. These results indicated that the administration of insulin formulations to the fasting groups increased the severe hypoglycemic effect of insulin action more than in non-fasting diabetic rats. The diabetic rat with fasting has a regulatory disorder in maintaining the blood glucose level. Accordingly, the validity of pharmacological availability as an optimal modeling of insulin formulations is best in non-fasting STZ-induced diabetic rats.  相似文献   

19.
Morphological and functional changes of rat pancreatic islets caused by administration of streptozotocin (STZ) and the bioavailability of insulin formulations administered to STZ-induced diabetic rats with fasting (12 h) or non-fasting were investigated. Islets isolated from normal rats maintained a good three-dimensional structure and the islet yield was 962.5+/-86.5 islet equivalent number (IEQ, islets converted to an average diameter of 150 microm). In the diabetic group (>500 mg/ml blood glucose), the islet yield was only 44.4+/-8.3 IEQ and the islet was severely damaged. The minimum reduction of blood glucose of each formulation, such as insulin solution, microcrystal, and insulin microcrystal capsule, was shown to be 11.3, 11.0, and 16.3 mg/dl, respectively, at 6 h in fasting with diabetic rats. These results indicated that the administration of insulin formulations to the fasting groups increased the severe hypoglycemic effect of insulin action more than in non-fasting diabetic rats. The diabetic rat with fasting has a regulatory disorder in maintaining the blood glucose level. Accordingly, the validity of pharmacological availability as an optimal modeling of insulin formulations is best in non-fasting STZ-induced diabetic rats.  相似文献   

20.
The relationship between maternal plasma and amniotic fluid (AF) concentrations of glucose, insulin, C-peptide and 3-hydroxybutyrate (3-HB) was analysed between 45 to 140 minutes after a standardized breakfast in 8 type I diabetic women without residual betacell function and in 13 nondiabetic control women during the last trimester of gestation. AF levels of both glucose and C-peptide were slightly and AF insulin levels significantly (P less than 0.05) elevated above normal in the diabetic women. 3-HB levels in plasma and in AF were significantly (P less than 0.05) elevated in the diabetic group between 45 to 65 minutes after breakfast. AF insulin and glucose was significantly correlated in the diabetic group (r = 0.96, P less than 0.05). During the 2 hour study period AF levels of glucose, insulin and C-peptide remained essentially unchanged in both groups of women. Changes in maternal plasma 3-HB concentrations seemed to be more rapidly reflected in AF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号