首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The 15N abundance of soybean (Glycine max L. Merrill var Harosoy) nodules is usually greater than it is for other tissues or for atmospheric N2. Results of experiments in which nodules were separated by size show that the magnitude of the 15N enrichment is correlated with nodule mass. The results support the hypothesis that 15N enrichment of nodules results from differential N isotopic fractionation for synthesis of nodule tissue versus synthesis of compounds for export from the nodule. The physiological significance of this hypothesis is that it requires that a substantial fraction of the N for nodule tissue synthesis in 15N-enriched nodules be N recently fixed within the same nodule.  相似文献   

2.
Sucrose synthase (UDPglucose: d-fructose 2-α-d-glucosyl transferase, EC 2.4.1.13) has been purified from the plant cytosolic fraction of soybean (Glycine max L. Merr cv Williams) nodules. The native enzyme had a molecular weight of 400,000. The subunit molecular weight was 90,000 and a tetrameric structure is proposed for soybean nodule sucrose synthase. Optimum activity in the sucrose cleavage and synthesis directions was at pH 6 and pH 9.5 respectively, and the enzyme displayed typical Michaelis-Menten kinetics. Soybean nodule sucrose synthase had a high affinity for UDP (Km, 5 micromolar) and a relatively low affinity for ADP (apparent Km, 0.13 millimolar) and CDP (apparent Km, 1.1 millimolar). The Km for sucrose was 31 millimolar. In the synthesis direction, UDPglucose (Km, 0.012 millimolar) was a more effective glucosyl donor than ADPglucose (Km, 1.6 millimolar) and the Km for fructose was 3.7 millimolar. Divalent cations stimulated activity in both the cleavage and synthesis directions and the enzyme was very sensitive to inhibition by heavy metals.  相似文献   

3.
Asparagine formation in soybean nodules   总被引:1,自引:3,他引:1       下载免费PDF全文
15NH4+ and [15N](amide)-glutamine externally supplied to detached nodules from soybean plants (cv. Tamanishiki) were incorporated within nodule tissues by vacuum infiltration and metabolized to various nitrogen compounds during 60 minutes of incubation time. In the case of 15NH4+ - feeding, the 15N abundance ratio was highest in the amide nitrogen of glutamine, followed by glutamate and the amide nitrogen of asparagine. In 15N content (micrograms excess 15N), the amide nitrogen of asparagine was most highly enriched after 60 minutes. 15NH4+ was also appreciably assimilated into alanine.  相似文献   

4.
Two auxin-induced endo-1,4-β-glucanases (EC 3.2.1.4) were purified from pea (Pisum sativum L. var. Alaska) epicotyls and used to degrade purified pea xyloglucan. Hydrolysis yielded nonasaccharide (glucose/xylose/galactose/fucose, 4:3:1:1) and heptasaccharide (glucose/xylose, 4:3) as the products. The progress of hydrolysis, as monitored viscometrically (with amyloid xyloglucan) and by determination of residual xyloglucan-iodine complex (pea) confirmed that both pea glucanases acted as endohydrolases versus xyloglucan. Km values for amyloid and pea xyloglucans were approximately the same as those for cellulose derivatives, but Vmax values were lower for the xyloglucans. Auxin treatment of epicotyls in vivo resulted in increases in net deposits of xyloglucan and cellulose in spite of a great increase (induction) of endogenous 1,4-β-glucanase activity. However, the average degree of polymerization of the resulting xyloglucan was much lower than in controls, and the amount of soluble xyloglucan increased. When macromolecular complexes of xyloglucan and cellulose (cell wall ghosts) were treated in vitro with pea 1,4-β-glucanase, the xyloglucan component was preferentially hydrolyzed and solubilized. It is concluded that xyloglucan is the main cell wall substrate for pea endo-1,4-β-glucanase in growing tissue.  相似文献   

5.
6.
The natural 15N abundance (15N value) in acetylpropyl derivatives of amino acids and in ethyloxycarbonyl derivatives of polyamines was determined using a gas chromatography/combustion/mass spectrometer-(GC/C/MS). 15N value determined for 12 amino acids and five polyamines by GC/C/MS were identical to those obtained by a direct combustion method using an automatic nitrogen and carbon analysis (ANCA) mass spectrometer, the difference being less than 1.0% in most cases. The GC/C/MS method was used to analyse 15N values in the amino acids and polyamines from root nodules of pea and faba bean and from stem nodules of Sesbania rostrata. The analysis of 15N values revealed that homospermidine had high 15N values, as much as +40%, while the amino acids investigated had 15N values between -3 and +6%, putrescine between +2 and +8%, cadaverine between +1 and +7%, spermidine between -2 and +4%, and spermine between 0 and +6%. The mechanism of 15N enrichment in homospermidine is discussed.  相似文献   

7.
Nitrate metabolism in soybean root nodules   总被引:1,自引:0,他引:1  
The nitrate metabolism in nodules induced by Bradyrhizobium japonicum strain PJ17 on roots of soybean [ Glycine max (L.) Merr. cv. Hodgson] has been characterized by the nitrate reductase (NR; EC 1.6.6.1 and EC 1.6.6.3) activity of both partners of the symbiosis. NR activities of bacteroids and nodular cytosol were comparable and significantly higher than those of the roots. Nitrate reduction led to nitrite accumulation in root nodules, which was maximum after pod filling. The nodule had the capacity to metabolize nitrite via nitrite reductase (NiR; EC 1.6.6.4), at least in the cytosolic fraction. This activity was partly inhibited by the low content of free O2 in the nodule. Indeed, nitrite accumulation decreased in the presence of an increased external pressure of O2.  相似文献   

8.
Soybean (Glycine max cv Forrest) root nodule homogenates oxidized aldrin to its epoxide, dieldrin. In crude tissue brei, addition of an NADPH-generating system was inhibitory to epoxidation. However, anaerobic gel filtration and sucrose density separation removed factors required for inhibition by NADPH, allowing a normal stimulation by the NADPH-generating system. In fractions from sucrose density gradients, activity was found predominantly at a density containing rough microsomes, with additional activities in the soluble and other fractions. Epoxidase activity was 2–4-times greater in the nitrogen-fixing nodules than in roots. This demonstration of active epoxidation indicates the capacity of nodules to detoxify other pesticides and xenobiotics.  相似文献   

9.
Reversible dark-induced senescence of soybean root nodules   总被引:2,自引:5,他引:2       下载免费PDF全文
Nodule senescence was induced in intact soybean [Glycine max. (L.) Merr., cv Woodworth] plants by an 8-day dark treatment. Dark-induced senescence resulted in the complete loss of acetylene reduction activity, a 67% loss of total soluble protein, and an almost complete loss in total leghemoglobin of nodule extracts. Isoelectric focusing gels demonstrated a preferential loss of certain proteins, which was correlated with an increase in endoprotease specific activity toward azocasein. Nodules were completely green after the 8-day dark treatment. If plants were returned to a normal photoperiod after 8 days in the dark, nodules recovered from the dark treatment in 12 to 16 days. Acetylene reduction activity returned to normal, and both total soluble protein and leghemoglobin were resynthesized while protease activity against azocasein decreased to the level of control nodules. The nodule population that had turned green after 8 days in the dark exhibited a progressive increase in red color starting nearest the exterior of the nodule, and after 16 days of recovery nodules were indistinguishable from control nodules maintained under a normal photoperiod.  相似文献   

10.
Ascorbate peroxidase from soybean root nodules.   总被引:9,自引:3,他引:6       下载免费PDF全文
  相似文献   

11.
Propionate in heme biosynthesis in soybean nodules   总被引:5,自引:1,他引:4       下载免费PDF全文
Jackson EK  Evans HJ 《Plant physiology》1966,41(10):1673-1680
When soybean nodules are incubated with propionate-2-14C the heme moiety of leghemoglobin becomes labeled. The incorporation of propionate-2-14C into heme is linear with time and it appears that propionate is utilized without a lag period. The rate of incorporation of propionate-2-14C into heme is more rapid than the rate of incorporation of succinate-2-14C and citrate-1,5-14C, however, these rates of incorporation may be influenced by different sizes of endogenous pools of organic acids.  相似文献   

12.
Summary The respiration rate of individual soybean (Glycine max Merr.) nodules was measured as a function of pO2 and temperature. At 23°, as the pO2 was increased from 0.1 to 0.9 atm, there was a linear increase in respiration rate. At 13°, similar results were obtained, except that there was an abrupt saturation of respiration at approximately 0.5 atm pO2. When measurements were made on the same nodule, the rate of increase in respiration with pO2 was the same at 13° and 23°. Additional results were that 5% CO in the gas phase had no effect on respiration, except for a small decrease in the pO2 at which respiration became saturated. Also, nodules still attached to the soybean root displayed the same respiratory behavior as detached nodules. A model for oxygen transport in the nodule is presented which explains these results quantitatively. The essence of the model is that the respiration rate of the central tissue of the nodule is almost entirely determined by the rate of oxygen diffusion to the respiratory enzymes. Evidence is given that the nodule cortex is the site of almost all of the resistance to oxygen diffusion within the nodule.  相似文献   

13.
Ferric leghemoglobin reductase from soybean root nodules   总被引:5,自引:0,他引:5  
An NADH: (acceptor) oxidoreductase from the cytosol of soybean root nodules was purified by ammonium sulfate fractionation, hydroxylapatite adsorption, and Sephacryl S-200 Superfine chromatography. The native molecular weight of the reductase was found to be 100,000 by analytical gel filtration and 83,000 by equilibrium ultracentrifugation. The subunit molecular weight was 54,000 as determined by sodium dodecyl sulfate-polyacrylamide slab gel electrophoresis. The pI of the enzyme was 5.5. With ferric leghemoglobin (Lb) as the substrate, nearly identical initial velocities were obtained using either CO or O2 to ligate the enzymatically produced ferrous leghemoglobin. With CO as the ligand in the reaction, the product of the enzyme-catalyzed, NADH-dependent reduction of ferric Lb was spectrally identified as LbCO. Initial velocity was a linear function of increasing enzyme concentration. NADPH was only 31% as effective an electron donor as NADH as determined by initial velocity. The Michaelis constants (Km) for ferric Lba and NADH were 9.5 and 18.8 microM, respectively. Myoglobin, Lba, Lbc1, Lbc2, Lbc3, and Lbd were reduced at similar rates by the reductase. At pH 5.2, acetate-bound ferric Lb and nicotinate-bound ferric Lb were reduced by the enzyme at 83 and 5%, respectively, of rates observed in the absence of these ligands. The rate of enzymatic reduction of ferric Lb was constant between pH 6.5 and 7.6 but increased approximately threefold at pH 5.2. The results indicate that the NADH: (acceptor) oxidoreductase could be identified as a ferric Lb reductase.  相似文献   

14.
Janet I. Sprent 《Planta》1969,89(4):372-375
Summary The fine structural features of the symbiotic relationship between Neottia and the fungus Rhizoctonia have been examined. Different stages of development of the fungus within the orchid's root cells are described. The fungus-attacked Neottia cells show striking changes. The central vacuole is partly filled by a conspicuous plasmatic network while the nucleus enlarges considerably. Of special interest is the development of an extended rough-surfaced ER.This work was supported by Deutsche Forschungsgemeinschaft. A more detailed contribution is in preparation.  相似文献   

15.
The reduction of ferric leghemoglobin (Lb3+) from soybean (Glycine max (L.) Merr.) nodules by riboflavin, FMN and FAD in the presence of NAD(P)H was studied in vitro. The system NAD(P)H + flavin reduced Lb3+ to oxyferrous (Lb2+ · O2) or deoxyferrous (Lb2+) leghemoglobin in aerobic or anaerobic conditions, respectively. In the absence of O2 the reaction was faster and more effective (i.e. less NAD(P)H oxidized per mole Lb3+ reduced) than in the presence of O2; this phenomenon was probably because O2 competes with Lb3+ for reductant, thus generating activated O2 species. The flavin-mediated reduction of Lb3+ did not entail production of superoxide or peroxide, indicating that NAD(P)H-reduced flavins were able to reduce Lb3+ directly. The NAD(P)H + flavin system also reduced the complexes Lb3+ · nicotinate and Lb3+ · acetate to Lb2+ · O2, Lb2+ or Lb2+ · nicotinate, depending on the concentrations of ligands and of O2. In the presence of 200 M nitrite most Lb remained as Lb3+ in aerobic conditions but the nitrosyl complex (Lb2+ · NO) was generated in anaerobic conditions. The above-mentioned characteristics of the NAD(P)H + flavin system, coupled with its effectiveness in reducing Lb3+ at physiological levels of NAD(P)H and flavins in soybean nodules, indicate that this mechanism may be especially important for reducing Lb3+ in vivo.Abbreviations and Terminology FLbR ferric leghemoglobin reductase - Hb2+ /Hb3+ hemoglobin containing Fe2+ /Fe2+ - Lb2+ /Lb3+ leghemoglobin containing Fe2+ /Fe3+ - Lb3+ · nicotinate/acetate Lb in which nicotinate or acetate are complexed to Lb3+ - Lb2+ · O2/CO/NO/nicotinate Lb in which O2, CO, NO or nicotinate are complexed to Lb2+ - Rfl riboflavin - SOD superoxide dismutase (EC 1.15.1.1) Published as Paper No. 9237, Journal Series, Nebraska Agricultural Research DivisionWe thank M.B. Crusellas for his skillful drawings. M. Becana thanks the Spanish Ministry of Education and Science/Fulbright Commission for financial support.  相似文献   

16.
Nitrogen fixation in breis of soybean root nodules   总被引:2,自引:0,他引:2  
  相似文献   

17.
Heat evolved by isolated soybean (Glycine max cv Clark) nodules was measured to estimate more directly the metabolic cost associated with the symbiotic N2 fixation system. A calorimeter constructed by modifying standard laboratory equipment allowed measurement on 1 gram of detached nodules under a controlled gas stream. Simultaneous gas balance and heat output determinations were made.

There was major heat output by nodules for all of the nitrogenase substrates tested (H+, N2, N2O, and C2H2) further establishing the in vivo energy inefficiency of biological N2 fixation. Exposure to a short burst of 100% O2 partially inactivated nitrogenase to permit calculations of heat evolved per mole of substrate reduced. The specific rate of heat evolution for H+ reductions was 171 ± 6 kilocalories per mole H2 evolved in an Ar-O2 atmosphere, that for N2 fixation was 784 ± 26 kilocalories per mole H2 evolved and N2 fixed, and that for C2H2 reduction was 250 ± 12 kilocalories/mole C2H4 formed. When the appropriate thermodynamic parameters are taken into account for the different substrates and products, a ΔH′ of −200 kilocalories per mole 2e is shown to be associated with active transfer of electrons by the nitrogenase system. These values lead to a calculated N2 fixation cost of 9.5 grams glucose per gram N2 fixed or 3.8 grams C per gram N2, which is in close agreement with earlier calculations based on nodular CO2 production.

  相似文献   

18.
19.
Reduction of ferric leghemoglobin in soybean root nodules   总被引:1,自引:0,他引:1       下载免费PDF全文
Lee KK  Klucas RV 《Plant physiology》1984,74(4):984-988
Callus tissue cultures were developed from apical meristem regions of tumor-like ineffective root nodules of alfalfa. Callus growth was a function of tissue source and hormone composition and concentration. Callus derived from ineffective nodules also were shown not to contain Rhizobium meliloti.

Glutamate dehydrogenase, glutamine synthetase, glutamate synthase, glutamate oxaloacetate transaminase and phosphoenolpyruvate carboxylase activities were present in callus cultures and in the respective nodule source used for callus induction. The mean specific activity of all enzymes evaluated was higher in callus cultures than in ineffective nodules. Quantitative but not qualitative differences in enzyme activities were evident between ineffective nodules and callus derived from these nodules. Tissue cultures derived from ineffective nodules may provide a model system to evaluate host plant-Rhizobium interactions.

  相似文献   

20.
Energy status and functioning of phosphorus-deficient soybean nodules   总被引:10,自引:1,他引:9       下载免费PDF全文
Sa TM  Israel DW 《Plant physiology》1991,97(3):928-935
Characterization of the effects of long-term P deficiency and of onset and recovery from P deficiency on bacteroid mass and number per unit nodule mass and energy status of soybean (Glycine max L. Merr.) nodules was used to investigate the mechanisms by which P deficiency decreases symbiotic N2 fixation. The continuous P deficiency treatment (0.05 millimolar P) significantly decreased the whole plant dry mass, P, and N by 62, 90, and 78%, respectively, relative to the P-sufficient control (1.0 millimolar) at 44 days after transplanting. Specific nitrogenase activity was decreased an average of 28% over a 16-day experimental period by P deficiency. Whole nodules of P-deficient controls contained 70 to 75% lower ATP concentrations than nodules of P-sufficient controls. Energy charge and ATP concentrations in the bacteroid fraction of nodules were not significantly affected by P treatment. However, ATP and total adenylate concentrations and energy charge in the plant cell fraction of nodules were significantly decreased 91, 62, and 50%, respectively, by the P deficiency treatment. Specific nitrogenase activity, energy charge, and ATP concentration in the plant cell fraction increased to the levels of nonstressed controls within 2, 2, and 4 days, respectively, after alleviation of external P limitation, whereas bacteroid mass per unit nodule mass and bacteroid N concentration did not increase to the level of nonstressed controls until 7 days after alleviation of external P limitation. All of these parameters except bacteroid mass per unit nodule mass decreased to the levels of the P-deficient controls by 11 days after onset of external P limitation. Concentration of ATP in the bacteroid fraction was not significantly affected by alteration in the external P supply. Energy charge in the bacteroid fraction from plants recovering from P deficiency was decreased to a small (10%) but significant extent (P < 0.05) at two sampling dates relative to P-sufficient controls. These ATP concentration and energy charge measurements indicate that P deficiency impaired oxidative phosphorylation in the plant cell fraction of nodules to a much greater extent than in the bacteroids. The concurrence of significant changes in specific nitrogenase activity (2 days) and in the energy charge (2 days) and ATP concentration (4 days) in the plant cell fraction during recovery from external P limitation is consistent with the conclusion that P deficiency decreases the specific nitrogenase activity by inhibiting an energy-dependent reaction(s) in the plant cell fraction of the nodules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号