首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the 4 yr since the molecular biology of DNA in Naegleria was last reviewed several major advances have been made, and these are reviewed here: isolation and characterization of mitochondrial and ribosomal DNAs; enumeration of chromosomal DNAs by pulsed field gel electrophoresis; sequence analysis of differentially expressed genes; phylogenetic placement of the genus Naegleria among the eukarayotes and Naegleria species within the genus.  相似文献   

2.
The free-living amoeboflagellate genus Naegleria includes one pathogenic and two potentially pathogenic species (Naegleria fowleri, Naegleria italica, and Naegleria australiensis) plus numerous benign organisms. Monitoring of bathing water, water supplies, and cooling systems for these pathogens requires a timely and reliable method for identification, but current DNA sequence-based methods identify only N. fowleri or require full sequencing to identify other species in the genus. A novel closed-tube method for distinguishing thermophilic Naegleria species is presented, using a single primer set and the DNA intercalating dye SYTO9 for real-time PCR and melting-curve analysis of the 5.8S ribosomal DNA gene and flanking noncoding spacers (ITS1, ITS2). Collection of DNA melting data at close temperature intervals produces highly informative melting curves with one or more recognizable melting peaks, readily distinguished for seven Naegleria species and the related Willaertia magna. Advantages over other methods used to identify these organisms include its comprehensiveness (encompassing all species tested to date), simplicity (no electrophoresis required to verify the product), and sensitivity (unambiguous identification from DNA equivalent to one cell). This approach should be applicable to a wide range of microorganisms of medical importance.  相似文献   

3.
ABSTRACT. Didascalus thorntoni , Singh 1952 has been classified alternately as a separate genus or as a species of Naegleria. In the 18th edition of the American Type Culture Collection catalogue it is classified as Naegleria thorntoni. To resolve the question of its identity we have used riboprinting and sequencing of the small subunit ribosomal DNA. The results indicate that D. thorntoni does not belong to the genus Naegleria. The sequence of the small subunit ribosomal DNA differs only in 20 nucleotides (1%) from that of the Paratetramitus jugosus. The difference is much smaller than between some species of Naegleria. Therefore, it is not clear whether D. thorntoni should be considered as a species of Paratetramitus or as a separate genus. The strain used in different laboratories as the type strain of Adelophamoeba gleacystis has been identified as a Naegleria strain. We believe that the type strain of A. galeacystis was mislabeled prior to submission to the American Type Culture Collection and to the Culture Collection of Algae and Protozoa. A recent isolate, which on the basis of morphology was identified as a strain of A. Galeacystis , has the identical small subunit ribosomal DNA sequence as D. throntoni. Our results prove Page was right when he stated that Adelphamoeba might be a synonym of Didascalus.  相似文献   

4.
We have found a Naegleria lineage in which the SSUrDNA contains a group I intron with a length of 375 nucleotides. This is a unique finding because all group I introns detected until now in Naegleria are 1.3 kilobases long and contain an open reading frame coding for 245 amino acids. Sequence data show that the 375 nucleotide-long intron is at the same place in the SSUrDNA as, and is descendant from, the 1.3 kilobase group I intron present in other species of Naegleria. Our data indicate that in one lineage of Naegleria the group I intron lost part of its DNA that is not contributing to the secondary structure but that carries the open reading frame. The amoeboflagellate genus Naegleria contains strains without the intron and strains with the intron, with or without an open reading frame. Therefore, this genus provides a unique opportunity to study the function and evolution of both the group I intron and the open reading frame.  相似文献   

5.
De Jonckheere JF 《Protist》2004,155(1):89-103
To investigate the variability within species of the genus Naegleria, the ITS1,5.8S and ITS2 rDNA were sequenced of several strains of N. lovaniensis and its Western Australian variants, N. australiensis, N. fowleri, N. andersoni, N. jamiesoni, N. tihangensis, N. pringsheimi, N. pagei, N. gruberi sensu lato and a Naegleria lineage that lost a group I intron from the SSUrDNA twintron. As a result, it is possible to define a molecular species within the Naegleria genus. In addition, one strain of each different allozyme cluster was sequenced to investigate whether they belong to described species or should be treated as distinct new species. This leads to the proposal of eleven new species. The sequencing results from those Naegleria spp. of which several strains are available indicate that these species are ubiquitous. The only exception might be the species represented by the WA variants. However, there are still many Naegleria spp. for which only one strain has been isolated, hence, it is important that the search for more isolates should be continued worldwide.  相似文献   

6.
A rapid RNA sequencing technique was used to partially sequence the small-subunit ribosomal RNA (srRNA) of four species of the amoeboid genus Naegleria. The extent of nucleotide sequence divergence between the two most divergent species was roughly similar to that found between mammals and frogs. However, the pattern of variation among the Naegleria species was quite different from that found for those species of tetrapods characterized to date. A phylogenetic analysis of the consensus Naegleria sequence showed that Naegleria was not monophyletic with either Acanthamoeba castellanii or Dictyostelium discoideum, two other amoebas for which sequences were available. It was shown that the semiconserved regions of the srRNA molecule evolve in a clocklike fashion and that the clock is time dependent rather than generation dependent.  相似文献   

7.
ABSTRACT. Fossil protist cysts are reported from the mid-Cretaceous amber of Ellsworth County, Kansas, which is rich in terrestrial microfossils but contains no known macrofossils. On the basis of their distinctive morphology, the cysts can be referred to the genus Naegleria (Schizopyrenida); they most closely resemble cysts of the living species Naegleria gruberi. This is the first known fossil record for this group of amoebas. the current phylogenetic position and paleoecological role of Naegleria are discussed in relation to this find; it provides direct confirmation of morphological stasis in this group, which had previously been inferred from rRNA sequence divergence data.,  相似文献   

8.
Using isoelectric focusing, the zymograms of 23 pathogenic and nonpathogenic Naegleria strains were studied for the activity of 16 enzymes. Certain enzymes (lactate dehydrogenase, L-threonine dehydrogenase, superoxide dismutase, acid phosphatase, malic enzyme, and leucine aminopeptidase) proved particularly useful from a practical point of view as they allow easy and reliable identification of pathogenic N. fowleri and N. australiensis as well as nonpathogenic N. lovaniensis strains. Genetic interpretation of these zymograms gave estimates of genetic distances that largely confirmed the taxonomic position of the Naegleria species. In addition, the genetic data suggest that there are two main phylogenetic groups in the genus Naegleria.  相似文献   

9.
Twenty-three freshwater samples with sediment taken from two regions in the Arctic, Spitzbergen and Greenland, and one region in sub-Antarctica, Ile de la Possession, were cultured for amoebae at 37 degrees C and room temperature (RT). Only two samples yielded amoebae at 37 degrees C and the two isolates were identified from their morphological features to belong to the genus Acanthamoeba. Vahlkampfiid amoebae were isolated from 11 samples at RT. Morphological analysis of the cysts identified all 11 isolates as belonging to the genus Naegleria, although only about half of them (45%) transformed into flagellates. Ribosomal DNA sequence analysis demonstrated that these isolates represent novel species and that N. antarctica, N. dobsoni and N. chilensis are their closest relatives. Not surprisingly, these three species also grow at lower temperatures (<37 degrees C) than the majority of described Naegleria spp. Two of the eight new species were found in both Arctic and sub-Antarctic regions, and other new species from the Arctic are closely related to new species from the sub-Antarctic. Therefore, it seems the Naegleria gene pool present in the polar regions is different from that found in temperate and tropical regions.  相似文献   

10.
The free-living amoeboflagellate genus Naegleria includes one pathogenic and two potentially pathogenic species (Naegleria fowleri, Naegleria italica, and Naegleria australiensis) plus numerous benign organisms. Monitoring of bathing water, water supplies, and cooling systems for these pathogens requires a timely and reliable method for identification, but current DNA sequence-based methods identify only N. fowleri or require full sequencing to identify other species in the genus. A novel closed-tube method for distinguishing thermophilic Naegleria species is presented, using a single primer set and the DNA intercalating dye SYTO9 for real-time PCR and melting-curve analysis of the 5.8S ribosomal DNA gene and flanking noncoding spacers (ITS1, ITS2). Collection of DNA melting data at close temperature intervals produces highly informative melting curves with one or more recognizable melting peaks, readily distinguished for seven Naegleria species and the related Willaertia magna. Advantages over other methods used to identify these organisms include its comprehensiveness (encompassing all species tested to date), simplicity (no electrophoresis required to verify the product), and sensitivity (unambiguous identification from DNA equivalent to one cell). This approach should be applicable to a wide range of microorganisms of medical importance.  相似文献   

11.
The genus Naegleria is comprised of a group of free-living ameboflagellates found in diverse habitats worldwide. Over 30 species have been isolated from soil and water but only Naegleria fowleri (N. fowleri) has been associated with human disease. Naegleria fowleri causes primary amebic meningoencephalitis (PAM), a fatal disease of the central nervous system. The pathogenesis of PAM and the role of host immunity to N. fowleri are poorly understood. Strategies for combating infection are limited because disease progression is rapid and N. fowleri has developed strategies to evade the immune system. The medical significance of these free-living ameboflagellates should not be underestimated, not only because they are agents of human disease, but also because they can serve as reservoirs of pathogenic bacteria.  相似文献   

12.
An extrachromosomal DNA was discovered in Naegleria gruberi. The 3,000 to 5,000 copies per cell of this 14-kilobase-pair circular plasmid carry all the 18S, 28S, and 5.8S rRNA genes. The presence of the ribosomal DNA of an organism exclusively on a circular extrachromosomal element is without precedent, and Naegleria is only the third eucaryotic genus in which a nuclear plasmid DNA has been found.  相似文献   

13.
Isolation of free-living amoebas from the intestinal contents of reptiles   总被引:1,自引:0,他引:1  
A total of 508 reptiles captured at Canary Islands (Spain) was examined for free-living amoebas. Two hundred seventy-three clones of amoebas were isolated by culture of gut contents, 157 of them belonging to the genus Acanthamoeba and 12 to the genus Naegleria.  相似文献   

14.
We have amplified the large subunit ribosomal DNA (LSUrDNA) of the 12 described Naegleria spp. and of 34 other Naegleria lineages that might be distinct species. Two strains yielded a product that is longer than 3 kb, which is the length of the LSUrDNA of all described Naegleria spp. Sequencing data revealed that the insert in one of these strains is a group I intron without an open reading frame (ORF), while the other strain contains two different group I introns, of which the second intron has an ORF of 175 amino acids. In the latter ORF there is a conserved His-Cys box, as in the homing endonucleases present in group I introns in the small subunit ribosomal DNA (SSUrDNA) of Naegleria spp. Although the group I introns in the LSUrDNA differ in sequence, they are more related to each other than they are to the group I introns in the SSUrDNA of Naegleria spp. The three group I introns in the LSUrDNA in Naegleria are at different locations and are probably acquired by horizontal transfer, contrary to the SSUrDNA group I introns in this genus which are of ancestral origin and are transmitted vertically.  相似文献   

15.
Samples from 24 aquaria were incubated at 28, 37, and 45 degrees C for the isolation of Naegleria and Acanthamoeba. Naegleria was the predominant genus (60.9%), whereas Acanthamoeba represented 15.5% of the isolates. No pathogenic N. fowleri was identified, although a high number of strains were closely related to this species. One isolate (Aq/9/1/45D) was compared with an aquarium isolate (PPMFB-6) from Australia. The Belgian isolate was found to be more related to N. fowleri, whereas the Australian isolate was closer to N. gruberi.  相似文献   

16.
Soil from a roadside ditch at Lake Waccamaw, North Carolina, was tested for cyst-forming free-living amoebae, and water from the same ditch was tested for fecal coliform bacteria. Soil samples incubated at room temperature (21-23° C) yielded Acanthamoeba polyphaga, Amoeba sp., Hyperamaeba sp., Mayorella penardi. Naegleria gruberi, Naegleria minor , and unidentified ciliates, testaceans and slime molds. Incubation at 37-39° C yielded Acanthamoeba jacobsi, Platyamoeba schaefferi , and a new amoeba to be described herein. Fecal contamination of the ditch was confirmed by a direct membrane filtration technique that yielded a mean of 1,410 + 134 bacteria/ ml. The new amoeba is assigned to the class Heterolobosea Page & Blanton, 1985 on the basis of promitotic nuclear division, and a flagellated stage with a cytostome as seen in the genus Tetramitus. Amoebae studied in hanging drop preparations were flattened and irregular as described for the genus Stachyamoeba in the family Gruberellidae but changed to a lobose cylindrical form as described for species of Vahlkampfia in the family Vahlkampfiidae. A new genus and species, Learamoeba waccamawensis , is proposed for the amoeba described herein.  相似文献   

17.
18.
ABSTRACT: Naegleria spp. are widely distributed free-living amebas, but one species in the genus, N. fowleri , causes acute fulminant primary amebic meningoencephalitis in humans and other animals. Thus, it is important to differentiate N. fowleri from the rest in the genus of Naegleria , and to develop tools for the detection of intra-specific genetic variations. In this study, one isolate each of N. australiensis, N. gruberi, N. jadini , and N. lovaniensis and 22 isolates of N. fowleri were characterized at the internal transcribed spacers (ITS) and mitochondrial small subunit rRNA (mtSSU rRNA) gene. The mtSSU rRNA primers designed amplified DNA of all isolates, with distinct sequences obtained from all species examined. In contrast, the ITS primers only amplified DNA from N. lovaniensis and N. fowleri , with minor sequence differences between the two. Three genotypes of N. fowleri were found among the isolates analyzed in both the mtSSU rRNA gene and ITS. The extent of sequence variation was greater in the mtSSU rRNA gene, but the ITS had the advantage of length polymorphism. These data should be useful in the development of molecular tools for rapid species differentiation and genotyping of Naegleria spp.  相似文献   

19.
Samples from 24 aquaria were incubated at 28, 37, and 45 degrees C for the isolation of Naegleria and Acanthamoeba. Naegleria was the predominant genus (60.9%), whereas Acanthamoeba represented 15.5% of the isolates. No pathogenic N. fowleri was identified, although a high number of strains were closely related to this species. One isolate (Aq/9/1/45D) was compared with an aquarium isolate (PPMFB-6) from Australia. The Belgian isolate was found to be more related to N. fowleri, whereas the Australian isolate was closer to N. gruberi.  相似文献   

20.
Using restriction enzyme analysis, mitochondrial DNA fragment patterns from seven strains of pathogenic and nonpathogenic Naegleria and one strain of Vahlkampfia were compared to estimate nucleotide sequence divergence. Significantly high levels of estimated genetic variation between strains of N. gruberi, N. fowleri, and N. jadini support the current taxonomic level of the individual Naegleria species and suggest a distinct phylogeny for each group. Naegleria lovaniensis, strain TS, was shown to have significant nucleotide sequence homology with N. gruberi, strain EGs, suggesting that the two groups share a close taxonomic relationship. The pathogenic strain MB-41 of N. fowleri exhibited distinct genetic divergence from the highly homologous, pathogenic strain Nf66 and the drug-cured strain 6088. Morphologically distinct strains EGs and 1518/la of N. gruberi exhibited significantly large sequence divergence consistent with a more distant taxonomic relationship. Amoebae from the genus Vahlkampfia expressed genetic similarity with strains of N. gruberi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号