首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Replication of the miniF plasmid pML31 was examined during the division cycle of Escherichia coli growing with doubling times between 40 and 90 min at 37 degrees C and compared to the replication of plasmid pBR322 and the minichromosome pAL70. The replication pattern of pML31 was indistinguishable from that of pBR322 at all growth rates and very different from the cell-cycle-specific replication of the minichromosome. It is concluded that both pML31 and pBR322 plasmids can replicate at all stages of the division cycle, with a probability of replication that increases gradually, but perhaps not exponentially, during the cycle. In contrast, the modes of segregation of pML31 and pBR322 plasmids into daughter cells at division appeared to differ, raising the possibility that pML31 may segregate in a nonrandom fashion similar to that of chromosomes and minichromosomes.  相似文献   

2.
DNA from the replication control region of plasmid NR1 or of the Inc- copy mutant pRR12 was cloned into a pBR322 vector plasmid. These pBR322 derivatives were mutagenized in vitro with hydroxylamine and transformed into Escherichia coli cells that harbored either NR1 or pRR12. After selection for the newly introduced pBR322 derivatives only, those cells which retained the unselected resident NR1 or pRR12 plasmids were examined further. By this process, 134 plasmids with Inc- mutations in the cloned NR1 or pRR12 DNA were obtained. These mutants fell into 11 classes. Two of the classes had plasmids with deletions or insertions in the NR1 DNA and were not examined further. Plasmids with apparent point mutations were classified by examining (i) their ability to reconstitute a functional NR1-derived replicon (Rep+ or Rep-), (ii) the copy numbers of the Rep+ reconstituted replicons, (iii) the cross-reactivity of incompatability among the various mutant classes and parental plasmids, and (iv) the trans effects of the mutants on the copy number and stable inheritance of a coresident plasmid.  相似文献   

3.
The incompatibility properties of IncFII R plasmid NR1 were compared with those of two of its copy number mutants, pRR12 and pRR21. pRR12 produced an altered incompatibility product and also had an altered incompatibility target site. The target site appeared to be located within the incompatibility gene, which is located more than 1,200 base pairs from the plasmid origin of replication. The incompatibility properties of pRR21 were indistinguishable from those of NR1. Lambda phages have been constructed which contain the incompatibility region of NR1 or of one of its copy mutants fused to the lacZ gene. In lysogens constructed with these phages, beta-galactosidase was produced under the control of a promoter located within the plasmid incompatibility region. Lysogens containing prophages with the incompatibility regions from pRR12 and pRR21 produced higher levels of beta-galactosidase than did lysogens containing prophages with the incompatibility region from the wild-type NR1. The introduction into these inc-lac lysogens of pBR322 plasmids carrying the incompatibility regions of the wild-type or mutant plasmids resulted in decreased levels of beta-galactosidase production. For a given lysogen, the decrease was greater when the pBR322 derivative expressed a stronger incompatibility toward the plasmid from which the fragment in the prophage was derived. This suggested that the incompatibility product acts on its target to repress gene expression in the plasmid replication region.  相似文献   

4.
Replication of polyoma plasmid recombinants in mouse cells   总被引:6,自引:0,他引:6  
A series of pBR322 recombinants containing the intact early region and origin of replication of polyoma were constructed and tested for their ability to replicate in permissive mouse cells. During the first 60 hours after transfection of these plasmids into mouse cells there was an accumulation of material similar to that observed with non-cloned polyoma DNA, though none of the plasmids replicated up to as high a copy number as non-cloned polyoma DNA. The mouse-replicated plasmid DNAs had undergone changes in their methylation patterns consistent with their having been propagated in eukaryotic cells. They could be recovered efficiently by transfection back into Escherichia coli, and the structure of the recovered plasmids indicated that at least small plasmids were faithfully replicated in mouse cells.  相似文献   

5.
H Masai  K Arai 《Journal of bacteriology》1989,171(6):2975-2980
Plasmid pBR322 was unable to replicate in a temperature-sensitive dnaT1 strain at a nonpermissive temperature, whereas a pBR322-derived plasmid carrying the wild-type dnaT+ gene was able to replicate under the same conditions. In contrast to pBR322, plasmid R1 could replicate in the dnaT1 strain at a nonpermissive temperature. In keeping with this finding, in vitro replication of plasmid R1 did not require DnaT protein.  相似文献   

6.
The plasmid pACYC184 was introduced into Shewanella putrefaciens MR-1 by electroporation. In 100% of the transformants examined, the plasmid was maintained as a free replicon outside the chromosome. This was the case whether or not the plasmid contained a 224-bp DNA insert derived from an open-reading frame of MR-1 genomic DNA. Therefore, in contrast to a report in the literature, plasmids containing the p15A origin of replication can replicate freely in S. putrefaciens MR-1, and do not make convenient vectors for gene replacement in this bacterium. However, we found that plasmids with the pMB1 origin of replication (e.g. pBR322) cannot replicate in MR-1 and could therefore have potential as vectors for gene replacement.  相似文献   

7.
F plasmid replication during the Escherichia coli division cycle was investigated by using the membrane-elution technique to produce cells labeled at different times during the division cycle and scintillation counting for quantitative analysis of radioactive plasmid DNA. The F plasmid replicated, like the minichromosome, during a restricted portion of the bacterial division cycle; i.e., F plasmid replication is cell-cycle specific. The F plasmid replicated at a different time during the division cycle than a minichromosome present in the same cell. F plasmid replication coincided with doubling in the rate of enzyme synthesis from a plasmid-encoded gene. When the cell cycle age of replication of the F plasmid was determined over a range of growth rates, the cell size at which the F plasmid replicated followed the same rules as did replication of the bacterial chromosome--initiation occurred when a constant mass per origin was achieved--except that the initiation mass per origin for the F plasmid was different from that for the chromosome origin. In contrast, the high-copy mini-R6K plasmid replicated throughout the division cycle.  相似文献   

8.
Two-dimensional (2D) agarose gel electrophoresis is progressively replacing electron microscopy as the technique of choice to map the initiation and termination sites for DNA replication. Two different versions were originally developed to analyze the replication of the yeast 2 microns plasmid. Neutral/Neutral (N/N) 2D agarose gel electrophoresis has subsequently been used to study the replication of other eukaryotic plasmids, viruses and chromosomal DNAs. In some cases, however, the results do not conform to the expected 2D gel patterns. In order to better understand this technique, we employed it to study the replication of the colE1-like plasmid, pBR322. This was the first time replicative intermediates from a unidirectionally replicated plasmid have been analyzed by means of N/N 2D agarose gel electrophoresis. The patterns obtained were significantly different from those obtained in the case of bidirectional replication. We showed that identification of a complete are corresponding to molecules containing an internal bubble is not sufficient to distinguish a symmetrically located bidirectional origin from an asymmetrically located unidirectional origin. We also showed that unidirectionally replicated fragments containing a stalled fork can produce a pattern with an inflection point. Finally, replication appeared to initiate at only some of the potential origins in each multimer of pBR322 DNA.  相似文献   

9.
Transmission of ColE1/pMB1-derived plasmids, such as pBR322, from Escherichia coli donor strains was shown to be an efficient way to introduce these plasmids into Agrobacterium. This was accomplished by using E. coli carrying the helper plasmids pGJ28 and R64drd11 which provide the ColE1 mob functions and tra functions, respectively. For example, the broad host-range replication plasmid, pGV1150, a co-integrate plasmid between pBR322 and the W-type mini-Sa plasmid, pGV1106, was transmitted from E. coli to A. tumefaciens with a transfer frequency of 4.5 x 10(-3). As pBR322 clones containing pTiC58 fragments were unable to replicate in Agrobacterium, these clones were found in Agrobacterium only if the acceptor carried a Ti plasmid, thus allowing a co-integration of the pBR322 clones with the Ti plasmid by homology recombination. These observations were used to develop an efficient method for site-specific mutagenesis of the Ti plasmids. pTiC58 fragnents, cloned in pBR322, were mutagenized in vitro and transformed into E. coli. The mutant clones were transmitted from an E. coli donor strain containing pGJ28 and R64drd11 to an Agrobacterium containing a target Ti plasmid. Selecting for stable transfer of the mutant clone utilizing its antibiotic resistance marker(s) gave exconjugants that already contained a co-integrate plasmid between the mutant clone and the Ti plasmid. A second recombination can dissociate the co-integrate plasmid into the desired mutant Ti plasmid and a non-replicating plasmid formed by the vector plasmid pBR322 and the target Ti fragment. These second recombinants lose the second plasmid and they are identified by screening for the appropriate marker combination.  相似文献   

10.
The replication patterns of several plasmids were measured simultaneously during the cell division cycle of Escherichia coli B/r. F plasmids harboring oriS, both oriS and oriV, pSC101, and pBR322 were found to replicate at all stages of the cell division cycle with kinetics which were indistinguishable from one another and clearly different from the periodic synthesis of the minichromosomes pAL49 and pAL70.  相似文献   

11.
We analyzed the mechanism of recombination-dependent DNA replication in bacteriophage T4-infected Escherichia coli using plasmids that have sequence homology to the infecting phage chromosome. Consistent with prior studies, a pBR322 plasmid, initially resident in the infected host cell, does not replicate following infection by T4. However, the resident plasmid can be induced to replicate when an integrated copy of pBR322 vector is present in the phage chromosome. As expected for recombination-dependent DNA replication, the induced replication of pBR322 required the phage-encoded UvsY protein. Therefore, recombination-dependent plasmid replication requires homology between the plasmid and phage genomes but does not depend on the presence of any particular T4 DNA sequence on the test plasmid. We next asked whether T4 recombination-dependent DNA replication can be triggered by a double-strand break (dsb). For these experiments, we generated a novel phage strain that cleaves its own genome within the nonessential frd gene by means of the I-TevI endonuclease (encoded within the intron of the wild-type td gene). The dsb within the phage chromosome substantially increased the replication of plasmids that carry T4 inserts homologous to the region of the dsb (the plasmids are not themselves cleaved by the endonuclease). The dsb stimulated replication when the plasmid was homologous to either or both sides of the break but did not stimulate the replication of plasmids with homology to distant regions of the phage chromosome. As expected for recombination-dependent replication, plasmid replication triggered by dsbs was dependent on T4-encoded recombination proteins. These results confirm two important predictions of the model for T4-encoded recombination-dependent DNA replication proposed by Gisela Mosig (p. 120-130, in C. K. Mathews, E. M. Kutter, G. Mosig, and P. B. Berget (ed.), Bacteriophage T4, 1983). In addition, replication stimulated by dsbs provides a site-specific version of the process, which should be very useful for mechanistic studies.  相似文献   

12.
R J Zagursky  M L Berman 《Gene》1984,27(2):183-191
We have constructed chimeric plasmid vectors with the origin and intergenic region from M13 phage cloned into the PvuII ( pZ145 ) and AhaIII ( pZ150 , pZ152 ) sites of pBR322. In the absence of M13 phage, these plasmids replicate like any other ColE1-derived plasmid and confer both ampicillin and tetracycline resistance (Amp, Tet). Upon infection with M13 phage, the viral origin present on the plasmids permits phage-directed plasmid replication and results in high yields of single-stranded (ss) plasmid DNA in M13-like particles. This ssDNA, which represents only one of the plasmid strands, is useful as a substrate for rapid DNA sequence determination by the dideoxy sequencing method described by Sanger et al. (1977). Since these plasmids contain an intact pBR322, the intergenic region can be transferred onto most pBR322 derivatives to yield ss plasmid DNA without affecting the recipient plasmid for further studies. We also constructed a deletion derivative of pZ145 , plasmid pZ146 , that does not exhibit interference with the growth of the M13 helper, although this plasmid is encapsidated into phage particles. This result confirms the theory that the intergenic region consists of two domains: one domain being a segment involved in phage morphogenesis and the other being a region of functional origin which interferes with M13 replication.  相似文献   

13.
With the mutagenesis of specific, virulence-associated genes of Legionella pneumophila as the eventual goal, methods for gene transfer to these bacteria were developed. Following the observations of others that conjugative, broad-host-range plasmids could be transferred from Escherichia coli to L. pneumophila at low frequency, we constructed a small mobilizable vector, pTLP1, which carries oriV from pBR322, oriT from pRK2, Kmr from Tn5, and an L. pneumophila-derived fragment to permit chromosomal integration. In triparental matings including an E. coli with a conjugative (Tra+) helper plasmid, kanamycin-resistance was transferred from E. coli to L. pneumophila. Southern hybridization of L. pneumophila transconjugants showed that pTLP1 was replicated autonomously. Additional matings of plasmids having deletions or substitutions of pTLP1 sequences confirmed that replication in L. pneumophila requires oriV only. pTLP1 was maintained in L. pneumophila with passage on medium containing kanamycin but was rapidly lost after passage on nonselective medium. This plasmid instability in L. pneumophila is most likely due to rapid generation of plasmid-free segregants because of plasmid multimerization and low plasmid copy number. We conclude that mobilizable pBR322-derived plasmids can be used as shuttle vectors to transfer cloned genes to L. pneumophila, a feature that can be exploited for the purposes of mutagenesis or genetic complementation.  相似文献   

14.
Plasmids have cell cycle replication patterns that need to be considered in models of their replication dynamics. To compare current theories for control of plasmid replication with experimental data for timing of plasmid replication with the cell cycle, a Monte Carlo simulation of plasmid replication and partition was developed. High-copy plasmid replication was simulated by incorporating equations previously developed from the known molecular biology of ColE1-type plasmids into the cell-cycle simulation. Two types of molecular mechanisms for low-copy plasmid replication were tested: accumulation of an initiator protein in proportion to cell mass and binding of the plasmid origin to the cell membrane. The low-copy plasmids were partitioned actively, with a specific mechanism to mediate the transfer from mother to daughter cells, whereas the high-copy plasmids were partitioned passively with cell mass.The simulation results and experimental data demonstrate cell-cycle-specific replication for the low-copy F plasmid and cell-cycle-independent replication for the high-copy pBR322, ColBM, and R6K plasmids. The simulation results indicate that synchronous replication at multiple plasmid origins is critical for the cell-cycle-specific pattern observed in rapidly growing cells. Variability in the synchrony of initiation of multiple plasmid origins give rise to a cell-cycle-independent pattern and is offered as a plausible explanation for the controversy surrounding the replication pattern of the low-copy plasmids. A comparison of experimental data and simulation results for the low-copy F plasmid at several growth rates indicates that either initiation mechanism would be sufficient to explain the timing of replication with the cell cycle. The simulation results also demonstrate that, although cell-cycle-specific and cell-cycle independent replication patterns give rise to very different gene-expression patterns during short induction periods in age-selected populations, long-term expression of genes encoded on low-copy and high-copy plasmids in exponentially growing cells have nearly the same patterns. These results may be important for the future use of low-copy plasmids as expression vectors and validate the use of simpler models for high-copy plasmids that do not consider cell-cycle phenomena. (c) 1996 John Wiley & Sons, Inc.  相似文献   

15.
Wang Z  Le G  Shi Y  Wegrzyn G  Wrobel B 《Plasmid》2002,47(2):69-78
It has been previously observed that various ColE1-like plasmids replicate differentially in Escherichia coli cells during the relaxed response to amino acid starvation. Here we develop a kinetic model to explain these observations based on the possibility of interaction of the 3' CCA-OH sequence with the UGG triplets in loops of RNA I and RNA II encoded by ColE1-like plasmids. According to our model, when the interaction of uncharged CCA with RNA I is possible, the replication of the ColE1-like plasmid is affected by differences in the concentration of various tRNAs in the starved cell, but it is not affected by the tRNA concentration if the hypothetical pairing occurs between the CCA-OH and RNA II. Using the previously determined parameters for the pBR322 plasmid, the concentration of uncharged tRNAs in the amino acid starved relaxed strains and the assumed efficiency of binding of tRNA and RNA I, we show that our model explains the differences in pBR322 copy number in the relaxed strain starved for several amino acids.  相似文献   

16.
The nonheterocystous filamentous CyanobacteriumPlectonema boryanum strain UTEX 594 contains at least two plasmids. A small 145 kb plasmid was cloned in pBR322. It has no homology with the bigger resident plasmid or with chromosomal DNA. A small fraction of the plasmid is present in the form of multimers or concatemers. Copy number and hybridization patterns of the plasmid were similar under dinitrogen-fixing and non-fixing conditions. Restriction site mapping of the plasmid was done to enable its use in the development of cyanobacterial cloning vectors. It is among the smallest natural plasmids reported from bacteria.  相似文献   

17.
The role of the primosome assembly and protein n' recognition site in replication of pBR322 plasmid was examined. The following evidence indicates that the primosome is involved in lagging-strand synthesis of pBR322 plasmid replication in vitro. Early replicative intermediates with newly synthesized leading strand, approximately 1 kilobase pair long, immediately downstream of the replication origin accumulate in products synthesized in extracts from a dnaT strain that lacks primosomal protein i or in wild-type extracts supplemented with anti-protein i antibody. These intermediates are converted efficiently into full-length DNA by addition of purified protein i. Consistent with the previously proposed role of the primosome (Arai, K. and Kornberg, A. (1981) Proc. Natl. Acad. Sci. U. S. A. 78, 69-73), an n' site on the lagging strand, but not on the leading strand, is required for efficient replication of the plasmid in vitro. Plasmids lacking an n' site on the lagging strand replicate only to a limited extent in vitro and early replicative intermediates carrying nascent leading strands are accumulated, although a portion of the intermediates complete replication to yield full-length DNA. The latter reaction is completely inhibited by addition of anti-protein i antibody. Insertion of the n' site of phage phi X174 into pBR322 plasmids lacking lagging-strand n' sites restores the replicative ability of the mutant plasmid comparable to that of the wild-type plasmid. These results indicate that protein i is essential for lagging-strand synthesis of pBR322 plasmid in vitro and that it may play an important role in the priming events as a part of either an n' site-dependent primosome or an n' site-independent, as yet unidentified, priming complex.  相似文献   

18.
Summary The in vivo role of the Escherichia coli protein DnaA in the replication of plasmid pBR322 was investigated, using a plasmid derivative carrying an inducible dnaA + gene. In LB medium without inducer, the replication of this plasmid, like that of pBR322, was inhibited by heat inactivation of chromosomal DnaA46 protein so that plasmid accumulation ceased 1 to 2 h after the temperature shift. This inhibition did not occur when the plasmid dnaA + gene was expressed in the presence of the inducer isopropyl-1-thin--d-galactopyranoside (IPTG). Inhibition was also not observed in glycerol minimal medium or in the presence of low concentrations of rifampicin or chloramphenicol. Deletion of the DnaA binding site and the primosome assembly sites (pas, rri) downstream of the replication origin did not affect the plasmid copy number during exponential growth at 30° C, or after inactivation of DnaA by a shift to 42° C in a dnaA46 host, or after oversupply of DnaA, indicating that these sites are not involved in a rate-limiting step for replication in vivo. The accumulation of the replication inhibitor, RNAI, was independent of DnaA activity, ruling out the possibility that DnaA acts as a repressor of RNAI synthesis, as has been suggested in the literature. Changes in the rate of plasmid replication in response to changes in DnaA activity (in LB medium) could be resolved into an early, rom-dependent, and a late, rom-independent component. Rom plasmids show only the late effect. After heat inactivation of DnaC, plasmid replication ceased immediately. These results, together with previously published reports, suggest that DnaA plays no specific role during in vivo replication of ColE1 plasmids and that the gradual cessation of plasmid replication after heat inactivation of DnaA in LB medium results from indirect effects of the inhibition of chromosome replication and the ensuing saturation of promoters with RNA polymerase under nonpermissive growth conditions.  相似文献   

19.
Analysis of the physiological control of replication of ColE1-type plasmids   总被引:3,自引:0,他引:3  
The physiology of ColE1-type plasmid replication in a growing host has been examined both theoretically, using computer simulation, and experimentally, by observing replication of the plasmid pBR322 after a nutritional shift-up from glycerol minimal medium (doubling time 71 min) to LB medium (doubling time 24 min). The theory was based on a negative control model and uses three rate equations: for the accumulation of cell mass, for the accumulation of the replication inhibitor, and for the rate of plasmid synthesis. The implications of the theory were explored by simulating the effects of changes in the expression of replication control genes. The nutritional shift-up experiment showed that plasmid replication was blocked immediately after the shift for about half a mass doubling time; after that time, replication rapidly increased until plasmid numbers per unit volume of culture parallelled the increase in culture mass. After the establishment of steady-state growth in the post-shift medium, the plasmid concentration (plasmids per cell mass) was reduced in comparison to pre-shift growth in the same proportion as the culture doubling time. The results showed that plasmid replication factors are under metabolic control and that the changes in the control of these factors compensate one another during steady-state growth, but not immediately after the medium shift.  相似文献   

20.
The replication pattern of the plasmid pBR322 was examined in the dnaA mutants of Escherichia coli. The rate of pBR322 DNA synthesis is markedly decreased after dnaA cells are shifted to the restrictive temperature of 42 degrees C. However, addition of rifampicin (RIF) to cultures of dnaA strains incubated at 42 degrees C after a lag of 90 min results in a burst of pBR322 synthesis. This RIF-induced pBR322 replication remains dependent on DNA polymerase I activity. Efficient plasmid pBR322 replication is observed at 42 degrees C in the double mutant dnaA46cos bearing an intragenic suppressor of dnaA46. Though replication of pBR322 in dnaA46cos growing at 42 degrees C is initially sensitive to RIF plasmid synthesis is restored after 90 min incubation in the presence of the drug. RIF-induced replication of the plasmid pBR327, lacking the rriB site implicated in RIF-resistant synthesis of the L strand of ColE1-like plasmids (Nomura and Ray 1981; Zipursky and Marians 1981), was observed also in dnaA46 at 42 degrees C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号