首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Current flow through the channel formed in planar phospholipid bilayer membranes by the PA65 fragment of anthrax toxin is blocked, in a voltage-dependent manner, by tetraalkylammonium ions (at micromolar concentrations), which bind to a blocking site within the channel lumen. We have presented evidence that diffusion plays a significant role in the kinetics of blocking by tetrabutylammonium ion (Bu4N+) from the cis (toxin-containing) side of the membrane (Blaustein, R. O., E. J. A. Lea, and A. Finkelstein. 1990. J. Gen. Physiol. 96:921-942); in this paper we examine the implications and consequences of diffusion control for binding kinetics. As expected for a diffusion-affected reaction, both the entry rate constant (kcis1) of Bu4N+ from the cis solution to the blocking site and the exit rate constant (kcis-1) of Bu4N+ from the blocking site to the cis solution are reduced if the viscosity of that medium is increased by the addition of dextran. In conformity with both thermodynamics and kinetic arguments, however, the voltage-dependent equilibrium binding constant, Keq (= kcis-1/kcis1), is not altered by the dextran-induced viscosity increase of the cis solution. The entry rate constants (kcis1) for tetrapentylammonium (Pe4N+), tetrahexylammonium (Hx4N+), and tetraheptylammonium (Hp4N+) are also diffusion controlled, and all of them, including that for Bu4N+, attain a voltage-independent plateau value at large positive cis voltages consistent with diffusion limitation. Although the plateau value of kcis1 for Hx4N+ is only a factor of 3 less than that for Bu4N+, the plateau value for Hp4N+ is a factor of 35 less. This precipitous fall in value indicates, from diffusion-limitation theory, that the diameter of the channel entrance facing the cis solution is not much larger than the diameter of Hp4N+, i.e., approximately 12 A.  相似文献   

2.
We have studied the effects of the tetra-n-alkylammonium (TAA) ions, (CnH2n+1)4N+, n = 1-6, on the potassium conductance of voltage-clamped squid giant axons. Studies using tetrahexylammonium were not quantitatively analyzed as its effect was insufficiently reversible. Each in this series of symmetric ions of graded size blocks the potassium conductance when added to the internal perfusion fluid. There is a general trend for blocking potency to increase with increasing size. We attribute this to stronger interactions of the longer alkyl side chains with hydrophobic regions of the membrane near the channels. Steady-state block by the TAA ions, n = 2-5, showed identical voltage dependence, apparently sensing about 15% of the transmembrane voltage, and kinetics block onset were qualitatively similar. We conclude that the site of action for these ions is the same. Block by TMA is about twice as steeply dependent on voltage. In its action, TMA resembles the alkali cations (French et al., 1979, Biophys, J. 25(2, pt. 2):307a) more than the larger TAA ions. Our results suggest that access to the inner mouth of the K channel is even less restricted than has been previously thought. A calculation indicates that the lumen of the channel cannot be both wide enough to admit the TAA ions and long enough to account for the voltage dependence of block. We consider possible ways to resolve this paradox.  相似文献   

3.
The rat connexin40 gap junction channel is permeable to monovalent cations including tetramethylammonium and tetraethylammonium ions. Larger tetraalkyammonium (TAA(+)) ions beginning with tetrabutylammonium (TBA(+)) reduced KCl junctional currents disproportionately. Ionic blockade by tetrapentylammonium (TPeA(+)) and tetrahexylammonium (THxA(+)) ions were concentration- and voltage-dependent and occurred only when TAA(+) ions were on the same side as net K(+) efflux across the junction, indicative of block of the ionic permeation pathway. The voltage-dependent dissociation constants (K(m)(V(j))) were lower for THxA(+) than TPeA(+), consistent with steric effects within the pore. The K(m)-V(j) relationships for TPeA(+) and THxA(+) were fit with different reaction rate models for a symmetrical (homotypic) connexin gap junction channel and were described by either a one- or two-site model that assumed each ion traversed the entire V(j) field. Bilateral addition of TPeA(+) ions confirmed a common site of interaction within the pore that possessed identical K(m)(V(j)) values for cis-trans concentrations of TPeA(+) ions as indicated by the modeled I-V relations and rapid channel block that precluded unitary current measurements. The TAA(+) block of K(+) currents and bilateral TPeA(+) interactions did not alter V(j)-gating of Cx40 gap junctions. N-octyl-tributylammonium and -triethylammonium also blocked rCx40 channels with higher affinity and faster kinetics than TBA(+) or TPeA(+), indicative of a hydrophobic site within the pore near the site of block.  相似文献   

4.
Previous studies have shown that symmetric tetraalkylammonium ions affect, in a voltage-dependent manner, the conductance of membranes containing many channels formed by the PA65 fragment of anthrax toxin. In this paper we analyze this phenomenon at the single-channel level for tetrabutylammonium ion (Bu4N+). We find that Bu4N+ induces a flickery block of the PA65 channel when present on either side of the membrane, and this block is relieved by large positive voltages on the blocking-ion side. At high frequencies (greater than 2 kHz) we have resolved individual blocking events and measured the dwell times in the blocked and unblocked states. These dwell times have single-exponential distributions, with time constants tau b and tau u that are voltage dependent, consistent with the two-barrier, single-well potential energy diagram that we postulated in our previous paper. The fraction of time the channel spends unblocked [tau u/(tau u + tau b)] as a function of voltage is identical to the normalized conductance-voltage relation determined from macroscopic measurements of blocking, thus demonstrating that these single channels mirror the behavior seen with many (greater than 10,000) channels in the membrane. In going from large negative to large positive voltages (-100 to +160 mV) on the cis (PA65-containing) side of the membrane, one sees the mean blocked time (tau b) increase to a maximum at +60 mV and then steadily decline for voltages greater than +60 mV, thereby clearly demonstrating that Bu4N+ is driven through the channel by positive voltages on the blocking-ion side. In other words, the channel is permeable to Bu4N+. An interesting finding that emerges from analysis of the voltage dependence of mean blocked and unblocked times is that the blocking rate, with Bu4N+ present on the cis side of the membrane, plateaus at large positive cis voltages to a voltage-independent value consistent with the rate of Bu4N+ entry into the blocking site being diffusion limited.  相似文献   

5.
Calcium- and voltage-dependent ion channels in Saccharomyces cerevisiae.   总被引:4,自引:0,他引:4  
Ion channels in both the tonoplast and the plasma membrane of Saccharomyces cerevisiae have been characterized at the single channel level by patch-clamp techniques. The predominant tonoplast channel is cation selective, has an open-channel conductance of 120 pS in 100 mM KCl, and conducts Na+ or K+ equally well, and Ca2+ to a lesser extent. Its open probability (Po) is voltage-dependent, peaking at about -80 mV (cytoplasm negative), and falling to near zero at +80 mV. Elevated cytoplasmic Ca2+, alkaline cytoplasmic pH, and reducing agents activate the channel. The predominant plasma membrane channel is highly selective for K+ over anions and other cations, and shows strong outward rectification of the time-averaged current-voltage curves in cell-attached experiments. In isolated inside-out patches with micromolar cytoplasmic Ca2+, this channel is activated by positive going membrane voltages: mean Po is zero at negative membrane voltages and near unity at 100 mV. At moderate positive membrane voltages (20-40 mV), elevating cytoplasmic Ca2+ activates the channel to open in bursts of several hundred milliseconds duration. At higher positive membrane voltages, however, elevating cytoplasmic Ca2+ blocks the channel in a voltage-dependent fashion for periods of 2-3 ms. The frequency of these blocking events depends on cytoplasmic Ca2+ and membrane voltage according to second-order kinetics. Alternative cations, such as Mg2+ or Na+, block the yeast plasma-membrane K+ channel in a similar but less pronounced manner.  相似文献   

6.
Chloride permeation through the cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel is blocked by a broad range of anions that bind tightly within the pore. Here we show that the divalent anion Pt(NO2)42- acts as an impermeant voltage-dependent blocker of the CFTR pore when added to the intracellular face of excised membrane patches. Block was of modest affinity (apparent Kd 556 microM), kinetically fast, and weakened by extracellular Cl- ions. A mutation in the pore region that alters anion selectivity, F337A, but not another mutation at the same site that has no effect on selectivity (F337Y), had a complex effect on channel block by intracellular Pt(NO2)42- ions. Relative to wild-type, block of F337A-CFTR was weakened at depolarized voltages but strengthened at hyperpolarized voltages. Current in the presence of Pt(NO2)42- increased at very negative voltages in F337A but not wild-type or F337Y, apparently due to relief of block by permeation of Pt(NO2)42- ions to the extracellular solution. This "punchthrough" was prevented by extracellular Cl- ions, reminiscent of a "lock-in" effect. Relief of block in F337A by Pt(NO2)42- permeation was only observed for blocker concentrations above 300 microM; as a result, block at very negative voltages showed an anomalous concentration dependence, with an increase in blocker concentration causing a significant weakening of block and an increase in Cl- current. We interpret this effect as reflecting concentration-dependent permeability of Pt(NO2)42- in F337A, an apparent manifestation of an anomalous mole fraction effect. We suggest that the F337A mutation allows intracellular Pt(NO2)42- to enter deeply into the CFTR pore where it interacts with multiple binding sites, and that simultaneous binding of multiple Pt(NO2)42- ions within the pore promotes their permeation to the extracellular solution.  相似文献   

7.
The conductance and selectivity of the Ca-activated K channel in cultured rat muscle was studied. Shifts in the reversal potential of single channel currents when various cations were substituted for Ki+ were used with the Goldman-Hodgkin-Katz equation to calculate relative permeabilities. The selectivity was Tl+ greater than K+ greater than Rb+ greater than NH4+, with permeability ratios of 1.2, 1.0, 0.67, and 0.11. Na+, Li+, and Cs+ were not measurably permeant, with permeabilities less than 0.05 that of K+. Currents with the various ions were typically less than expected on the basis of the permeability ratios, which suggests that the movement of an ion through the channel was not independent of the other ions present. For a fixed activity of Ko+ (77 mM), plots of single channel conductance vs. activity of Ki+ were described by a two-barrier model with a single saturable site. This observation, plus the finding that the permeability ratios of Rb+ and NH+4 to K+ did not change with ion concentration, is consistent with a channel that can contain a maximum of one ion at any time. The empirically determined dissociation constant for the single saturable site was 100 mM, and the maximum calculated conductance for symmetrical solutions of K+ was 640 pS. TEAi+ (tetraethylammonium ion) reduced single channel current amplitude in a voltage-dependent manner. This effect was accounted for by assuming voltage-dependent block by TEA+ (apparent dissociation constant of 60 mM at 0 mV) at a site located 26% of the distance across the membrane potential, starting at the inner side. TEAo+ was much more effective in reducing single channel currents, with an apparent dissociation constant of approximately 0.3 mM.  相似文献   

8.
The movement of ions across cell membranes is essential for a wide variety of fundamental physiological processes, including secretion, muscle contraction, and neuronal excitation. This movement is possible because of the presence in the cell membrane of a class of integral membrane proteins dubbed ion channels. Ion channels, thanks to the presence of aqueous pores in their structure, catalyze the passage of ions across the otherwise ion-impermeable lipid bilayer. Ion conduction across ion channels is highly regulated, and in the case of voltage-dependent K(+) channels, the molecular foundations of the voltage-dependent conformational changes leading to the their open (conducting) configuration have provided most of the driving force for research in ion channel biophysics since the pioneering work of Hodgkin and Huxley (Hodgkin, A. L., and Huxley, A. F. (1952) J. Physiol. 117, 500-544). The voltage-dependent K(+) channels are the prototypical voltage-gated channels and govern the resting membrane potential. They are responsible for returning the membrane potential to its resting state at the termination of each action potential in excitable membranes. The pore-forming subunits (alpha) of many voltage-dependent K(+) channels and modulatory beta-subunits exist in the membrane as one component of macromolecular complexes, able to integrate a myriad of cellular signals that regulate ion channel behavior. In this review, we have focused on the modulatory effects of beta-subunits on the voltage-dependent K(+) (Kv) channel and on the large conductance Ca(2+)- and voltage-dependent (BK(Ca)) channel.  相似文献   

9.
Summary We have investigated the effect of the skeletal muscle relaxant succinyl choline (SC) on the conduction of potassium ions through a monovalent cation-selective channel present in the cardiac muscle sarcoplasmic reticulum membrane (CSR). This channel has been studied under voltage-clamp conditions following the fusion of purified CSR membrane vesicles with preformed planar phospholipid bilayers. The channel assumes a fixed orientation in the bilayer and displays two conducting states (B. Tomlins, A.J. Williams & R.A.P. Montgomery, 1984,J. Membrane Biol. 80: 191–199). SC blocks potassium conductance through the channel in a voltage-dependent manner. Block occurs from both sides of the channel, in both conducting states and is resolved as discrete flickering events. Although SC is capable of blocking potassium conductance from both sides of the membrane, block is asymmetric. The zero-voltage dissociation constant for block from the cis side of the membrane is approximately threefold lower than that from thetrans side. Block from thecis side displays a linear dependence on SC concentration for both open states and is competitive with potassium ions at saturating potassium activities, consistent with a singlesite blocking model. The degree of SC-induced block is also influenced by membrane surface charge. SC block differs from that previously described for bis quaternary ammonium (bis Qn) compounds such as decamethonium in that SC blocks preferentially from thecis side of the channel.  相似文献   

10.
Potassium channels as multi-ion single-file pores   总被引:52,自引:36,他引:16       下载免费PDF全文
A literature review reveals many lines of evidence that both delayed rectifier and inward rectifier potassium channels are multi-ion pores. These include unidirectional flux ratios given by the 2--2.5 power of the electrochemical activity ratio, very steeply voltage-dependent block with monovalent blocking ions, relief of block by permeant ions added to the side opposite from the blocking ion, rectification depending on E--EK, and a minimum in the reversal potential or conductance as external K+ ions are replaced by an equivalent concentration of T1+ ions. We consider a channel with a linear sequence of energy barriers and binding sites. The channel can be occupied by more than one ion at a time, and ions hop in single file into vacant sites with rate constants that depend on barrier heights, membrane potential, and interionic repulsion. Such multi-ion models reproduce qualitatively the special flux properties of potassium channels when the barriers for hopping out of the pore are larger than for hopping between sites within the pore and when there is repulsion between ions. These conditions also produce multiple maxima in the conductance-ion activity relationship. In agreement with Armstrong's hypothesis (1969. J. Gen. Physiol. 54:553--575), inward rectification may be understood in terms of block by an internal blocking cation. Potassium channels must have at least three sites and often contain at least two ions at a time.  相似文献   

11.
TPK1 (formerly KCO1) is the founding member of the family of two-pore domain K(+) channels in Arabidopsis (Arabidopsis thaliana), which originally was described following expression in Sf9 insect cells as a Ca(2+)- and voltage-dependent outwardly rectifying plasma membrane K(+) channel. In plants, this channel has been shown by green fluorescent protein fusion to localize to the vacuolar membrane, which led to speculations that the TPK1 gene product would be a component of the nonselective, Ca(2+) and voltage-dependent slow-vacuolar (SV) cation channel found in many plants species. Using yeast (Saccharomyces cerevisiae) as an expression system for TPK1, we show functional expression of the channel in the vacuolar membrane. In isolated vacuoles of yeast yvc1 disruption mutants, the TPK1 gene product shows ion channel activity with some characteristics very similar to the SV-type channel. The open channel conductance of TPK1 in symmetrically 100 mM KCl is slightly asymmetric with roughly 40 pS at positive membrane voltages and 75 pS at negative voltages. Similar to the SV-type channel, TPK1 is activated by cytosolic Ca(2+), requiring micromolar concentration for activation. However, in contrast to the SV-type channel, TPK1 exhibits strong selectivity for K(+) over Na(+), and its activity turned out to be independent of the membrane voltage over the range of +/-80 mV. Our data clearly demonstrate that TPK1 is a voltage-independent, Ca(2+)-activated, K(+)-selective ion channel in the vacuolar membrane that does not mediate SV-type ionic currents.  相似文献   

12.
Ionic Blockage of Sodium Channels in Nerve   总被引:140,自引:73,他引:67       下载免费PDF全文
Increasing the hydrogen ion concentration of the bathing medium reversibly depresses the sodium permeability of voltage-clamped frog nerves. The depression depends on membrane voltage: changing from pH 7 to pH 5 causes a 60% reduction in sodium permeability at +20 mV, but only a 20% reduction at +180 mV. This voltage-dependent block of sodium channels by hydrogen ions is explained by assuming that hydrogen ions enter the open sodium channel and bind there, preventing sodium ion passage. The voltage dependence arises because the binding site is assumed to lie far enough across the membrane for bound ions to be affected by part of the potential difference across the membrane. Equations are derived for the general case where the blocking ion enters the channel from either side of the membrane. For H+ ion blockage, a simpler model, in which H+ enters the channel only from the bathing medium, is found to be sufficient. The dissociation constant of H+ ions from the channel site, 3.9 x 10-6 M (pKa 5.4), is like that of a carboxylic acid. From the voltage dependence of the block, this acid site is about one-quarter of the way across the membrane potential from the outside. In addition to blocking as described by the model, hydrogen ions also shift the responses of sodium channel "gates" to voltage, probably by altering the surface potential of the nerve. Evidence for voltage-dependent blockage by calcium ions is also presented.  相似文献   

13.
The interaction of ryanodine and derivatives of ryanodine with the high affinity binding site on the ryanodine receptor (RyR) channel brings about a characteristic modification of channel function. In all cases, channel open probability increases dramatically and single-channel current amplitude is reduced. The amplitude of the ryanoid-modified conductance state is determined by structural features of the ligand. An investigation of ion handling in the ryanodine-modified conductance state has established that reduced conductance results from changes in both the affinity of the channel for permeant ions and the relative permeability of ions within the channel (Lindsay, A.R.G., A. Tinker, and A.J. Williams. 1994. J. Gen. Physiol. 104:425-447). It has been proposed that these alterations result from a reorganization of channel structure induced by the binding of the ryanoid. The experiments reported here provide direct evidence for ryanoid-induced restructuring of RyR. TEA+ is a concentration- and voltage-dependent blocker of RyR in the absence of ryanoids. We have investigated block of K+ current by TEA+ in the unmodified open state and modified conductance states of RyR induced by 21-amino-9alpha-hydroxyryanodine, 21-azido-9alpha-hydroxyryanodine, ryanodol, and 21-p-nitrobenzoylamino-9alpha-hydroxyryanodine. Analysis of the voltage dependence of block indicates that the interaction of ryanoids with RyR leads to an alteration in this parameter with an apparent relocation of the TEA+ blocking site within the voltage drop across the channel and an alteration in the affinity of the channel for the blocker. The degree of change of these parameters correlates broadly with the change in conductance of permeant cations induced by the ryanoids, indicating that modification of RyR channel structure by ryanoids is likely to underlie both phenomena.  相似文献   

14.
Experiments were performed to compare the mechanism of block of voltage-dependent K channels by various short and long alkyl chain tetraalkylammonium (TAA) ions at internal and external sites. Current through single channels was recorded from excised membrane patches of cultured neuroblastoma cells using the patch-clamp technique. All of the TAA derivatives tested blocked the open channel when applied to either side of the membrane. Tetraethylammonium (TEA) reduced the amplitude of current through the open channel. Tetrabutylammonium (TBA) and tetrapentylammonium (TPeA) reduced the open time as a function of the concentration. An additional nonconducting state was observed when TBA or TPeA was applied internally or externally, due to the presence of a drug-bound and blocked state of the channel. The closing rate under control conditions was similar to that in the presence of external tetramethylammonium (TMA), suggesting that channel closing is independent of external drug binding. The concentration for half maximal block of the channel by external TEA was 80 microM. The channel was less sensitive to internal TEA, which half blocked the channel at 27 mM. The dissociation rate of long alkyl chain TAA ions from the channel was slower when applied to the inside, compared to external application, suggesting the presence of distinct internal and external receptors. Long alkyl chain TAA derivatives, such as TBA had a faster association rate with the open channel when applied to the inside of the membrane than when applied to the outside.  相似文献   

15.
Polyamines such as spermine are thought to be endogenous regulators of NMDA (N-methyl-D-aspartate)-type glutamate receptors. Polyamine block of NMDA receptors was studied in excised outside-out patches from rat hippocampal neurons and Xenopus oocytes expressing recombinant receptors. Extracellular spermine and arcaine reduced NMDA single-channel conductance in a voltage-dependent manner, with partial relief of block evident at large inside negative membrane potentials. Reducing extracellular Na+ concentration increased the apparent affinities for spermine and arcaine, indicating strong interaction between spermine and permeant ions. Internal spermine also blocked NMDA channels in a voltage-dependent manner, with relief of block evident at large inside positive potentials. The Woodhull model of channel block by an impermeant ion adequately described the actions of external spermine from -60 to +60 mV, but failed for more negative potentials. Eyring rate theory for a permeable blocker with two barriers and one binding site adequately described the voltage-dependent block and relief from block by both external and internal spermine over the range of -120 to +60 mV. These findings indicate that polyamines block and permeate neuronal NMDA receptor channels from the extracellular and intracellular sides, although sensitivity to internal spermine is probably too low to be physiologically relevant.  相似文献   

16.
Summary The purified ryanodine receptor channel of the sheep cardiac muscle sarcoplasmic reticulum (SR) membrane functions as a calcium-activated cation-selective channel under voltage-clamp conditions following reconstitution into planar phospholipid bilayers. We have investigated the effects of the tetra-alkyl ammonium (TAA) cations, (C n H2n+1)4N+ and the trimethyl ammonium cations, ethyltrimethyl ammonium and propyltrimethyl ammonium, on potassium conductance through the receptor channel. Small TAA cations (n = 1–3) and the trimethyl ammonium derivatives act as asymmetric, voltage-dependent blockers of potassium current. Quantitative analysis of the voltage dependence of block indicates that the conduction pathway of the sheep cardiac SR ryanodine receptor channel contains two distinct sites for the interaction of these small organic cations. Sites are located at approximately 50% for tetramethyl ammonium (TMA +) and 90% for tetraethyl ammonium (TEA+) and tetrapropyl ammonium (TPrA+) of the voltage drop across the channel from the cytosolic face of the protein. The chemical substitution of an ethyl or propyl group for one of the methyl groups in TMA+ increases the voltage dependence of block to a level similar to that of TEA + and TPrA+. The zero-voltage dissociation constant (K b(0)) falls with the increasing number of methyl and methylene groups for those blockers acting 90% of the way across the voltage drop. This is interpreted as suggesting a hydrophobic binding site at this point in the conduction pathway. The degree of block increases as the concentration of small TAA cations is raised. The concentration dependence of tetraethyl ammonium block indicates that the cation interacts with a single site within the conduction pathway with a K m of 9.8±1.7 mm (mean±sd) at 40 mV. Larger TAA cations (n = 4–5) do not induce voltage-dependent block of potassium current of the form seen with the smaller TAA cations. These data support the contention that the sheep cardiac SR ryanodine receptor channel may be occupied by at most one ion at a time and suggest that a large proportion of the voltage drop falls over a relatively wide region of the conduction pathway.This work was supported by funds from the Medical Research Council and the British Heart Foundation. We would like to thank Richard Montgomery for his considerable help with the chemical synthesis. We are grateful to Drs. John Chambers, Nick Price and staff for showing us the intricacies of NMR spectroscopy.  相似文献   

17.
Summary The patch-clamp technique is used here to investigate the kinetics of Ca2+ block in single high-conductance Ca2+-activated K+ channels. These channels are detected in the membrane surounding cytoplasmic drops fromChara australis, a membrane which originates from the tonoplast of the parent cell. The amplitudes and durations of single channel events are measured over a wide range of membrane potential (–300 to 200 mV). Ca2+ on either side of the channel reduces its K+ conductance and alters its ion-gating characteristics in a voltage-dependent manner. This Ca2+-induced attenuation of conductance is analyzed using the theory of diffusion-limited ion flow through pores. Interaction of external Ca2+ with the channel's ion-gating mechanism is examined in terms of a kinetic model for ion-gating that includes two voltage-dependent gating mechanisms. The kinetics of channel block by external Ca2+ indicates that (i) external Ca2+ binds at two sites, a superficial site and a deep site, located at 8 and 40% along the trans-pore potential difference, (ii) the external vestibule cannot be occupied by more than one Ca2+ or K+, and (iii) the kinetics of Ca2+ binding at the deep site is coupled with that of a voltage-dependent gate on the external side of the channel. Kinetics of channel block by internal Ca2+ indicates that more than one Ca2+ is involved.  相似文献   

18.
Protective antigen (PA) of anthrax toxin forms ion-conductive channels in planar lipid bilayers and liposomes under acidic pH conditions. We show here that PA has a similar permeabilizing action on the plasma membranes of CHO-K1 and three other mammalian cell lines (J774A.1, RAW264.7 and Vero). Changes in membrane permeability were evaluated by measuring the efflux of the K+ analogue, 86Rb+, from prelabelled cells, and the influx of 22Na+. The permeabilizing activity of PA was limited to a proteolytically activated form (PAN) and was dependent on acidic pH for membrane insertion (optimal at pH 5.0), but not for sustained ion flux. The flux was reduced in the presence of several known channel blockers: tetrabutyl-, tetrapentyl-, and tetrahexylammonium bromides. PAN facilitated the membrane translocation of anthrax edema factor under the same conditions that induced changes in membrane permeability to ions. These results indicate that PAN permeabilizes cellular membranes under conditions that are believed to prevail in the endosomal compartment of toxin-sensitive cells; and they provide a basis for more detailed studies of the relationship between channel formation and translocation of toxin effector moieties in vivo.  相似文献   

19.
Instantaneous K channel current-voltage (I-V) relations were determined by using internally perfused squid axons. When K was the only internal cation, the I-V relation was linear for outward currents at membrane potentials up to +240 mV inside. With 25-200 mM Na plus 300 mM K in the internal solution, an N-shaped I-V curve was seen. Voltage-dependent blocking of the K channels by Na produces a region of negative slope in the I-V plot (F. Bezanilla and C. M. Armstrong. 1972. J. Gen Physiol, 60: 588). At higher voltages (greater than or equal to 160 mV) we observed a second region of increasing current and a decrease in the fraction of the K conductance blocked by Na. Internal tetraethylammonium (TEA) ions blocked currents over the whole voltage range. In a second series of experiments with K-free, Na-containing internal solutions, the I-V curve turned sharply upward about +160 mV. The current at high voltages increased with increasing internal Na concentration was largely blocked by internal TEA. These data suggest that the K channel becomes substantially more permeable to Na at high voltages. This change is apparently responsible for the relief, at high transmembrane voltages, of the blocking effect seen in axons perfused with Na plus K mixtures. Each time a Na ion passed through, vacating the blocking site, the channel would transiently allow K ions to pass through freely.  相似文献   

20.
The anthrax toxin complex consists of three different molecules, protective antigen (PA), lethal factor (LF), and edema factor (EF). The activated form of PA, PA(63), forms heptamers that insert at low pH in biological membranes forming ion channels and that are necessary to translocate EF and LF in the cell cytosol. LF and EF are intracellular active enzymes that inhibit the host immune system promoting bacterial outgrowth. Here, PA(63) was reconstituted into artificial lipid bilayer membranes and formed ion-permeable channels. The heptameric PA(63) channel contains a binding site for LF on the cis side of the channel. Full-size LF was found to block the PA(63) channel in a dose- and ionic-strength-dependent way with half-saturation constants in the nanomolar concentration range. The binding curves suggest a 1:1 relationship between (PA(63))(7) and bound LF that blocks the channel. The presence of a His(6) tag at the N-terminal end of LF strongly increases the affinity of LF toward the PA(63) channel, indicating that the interaction between LF and the PA(63) channel occurs at the N terminus of the enzyme. The LF-mediated block of the PA(63)-induced membrane conductance is highly asymmetric with respect to the sign of the applied transmembrane potential. The result suggested that the PA(63) heptamers contain a high-affinity binding site for LF inside domain 1 or the channel vestibule and that the binding is ionic-strength-dependent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号