首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Male rhesus monkeys were given 100 micrograms [(imBzl)-D-His6,Pro9-NEt]-LHRH (LHRH-A), a potent LHRH agonist, s.c. daily for 40 weeks. The first dose of LHRH-A caused acute increases (2-4 h after injection) in serum LH (50-fold), FSH (2 X 5-fold) and testosterone (15-fold) concentrations. Chronic treatment led to a 95% decrease in LH and FSH responses. In spite of a marked decrease in LH response the effect on testosterone response was less evident. Administration of 50 i.u. hCG to control and LHRH-A-treated animals showed that the testicular steroidogenic response was unimpaired by the chronic treatment. Evaluation of the electroejaculated semen at regular intervals showed that there was no consistent reduction in the sperm count of LHRH-A-treated monkeys. Testicular biopsies showed that normal spermatogenesis was occurring in all treated animals, but testicular volume was significantly decreased. These results suggest that, in rhesus monkeys, the pituitary is more susceptible to desensitization by chronic LHRH agonist treatment than are the testes, and that LHRH agonists do not have direct antitesticular effect in rhesus monkeys.  相似文献   

2.
The pituitary response to three different doses of exogenously administered LHRH was examined in prepubertal (9-wk-old) and postpubertal (32-wk-old) male ferrets. The doses of 5, 10, and 15 ng LHRH/kg body weight tested in this study produced dose-related increases in circulating LH concentrations in both pre- and postpubertal groups. In addition, a significant effect of age on LH response was observed, with the prepubertal animals demonstrating significantly greater serum LH values in response to the two higher doses than the postpubertal males. Prepubertal ferrets also exhibited a significant increase in endogenous LH pulse amplitude in sampling periods following exogenous administration of LHRH compared to baseline pulse amplitudes in periods prior to the LHRH infusions. These results suggest that the low frequency of endogenous LH pulses previously observed in prepubertal ferrets is not due to unresponsiveness of the pituitary gland to LHRH. Thus, suppression of the hypothalamo-hypophyseal axis observed in the prepubertal ferret is probably mediated at the level of the hypothalamus.  相似文献   

3.
Two experiments were conducted to examine the effects of mouse epidermal growth factor (EGF) on the concentrations of testosterone, LH and FSH in jugular blood plasma and on the pituitary responsiveness to LHRH. In 20 rams treated with subcutaneous doses of EGF at rates of 85, 98 or 113 micrograms/kg fleece-free body weight, mean plasma LH and testosterone concentrations were significantly reduced (P less than 0.05) at 6 h after treatment but not at 24 h. EGF treatment at 130 micrograms/kg fleece-free body weight suppressed the plasma content of these hormones for up to 48 h. Mean plasma FSH concentrations decreased significantly (P less than 0.05) for up to 48 h after EGF treatment, the effect being most pronounced in rams with mean pretreatment FSH values greater than or equal to 0.5 ng/ml. Intravenous injections of 1.0 micrograms LHRH given to each of 5 rams before and at 6 h, 24 h and 72 h after EGF treatment produced LH and testosterone release patterns which paralleled those obtained in 5 control rams similarly treated with LHRH. These results suggest that, in rams, depilatory doses of mouse EGF temporarily impair gonadotrophin and androgen secretion by inhibiting LHRH release from the hypothalamus. Such treatment appears to have no effect on the responsiveness of the pituitary to LHRH.  相似文献   

4.
To further clarify the relative importance of the pituitary and gonadal sites of LHRH action, intact and hypophysectomized adult male rats were treated with hCG for 7 days, in the presence or absence of simultaneous treatment with increasing doses of the LHRH agonist [D-Ser(TBU)6des-Gly-NH2(10)]LHRH ethylamide, Buserelin (0.025, 0.25, 2.5 or 25 micrograms/rat, twice daily). Daily treatment of intact adult rats with hCG (25 IU) markedly increased ventral prostate and seminal vesicle weight, while a dose-dependent inhibition of the effect was observed following combined administration of Buserelin. In hypophysectomized rats, treatment with hCG resulted in a partial restoration of ventral prostate and seminal vesicle weight, while combined treatment with a high dose of the LHRH agonist (25 micrograms, twice daily) partially (P less than 0.05) inhibited the stimulatory effect of hCG. LH/hCG receptors were almost completely inhibited after hCG injection alone and a further decrease was observed in the presence of simultaneous LHRH agonist treatment. The hCG-induced stimulation of GH/PRL receptors was counteracted by Buserelin treatment in hypophysectomized animals. The present data demonstrate that although LHRH-induced LH release has been shown to play a major role in the loss of testicular functions induced by low doses of LHRH agonists in the rat, a direct inhibitory action of LHRH agonists can be exerted at the testicular level at high doses of the peptide.  相似文献   

5.
The effects of chronic starvation (1/4 of ad libitum food intake) for 21 or 30 days were studied on the hypothalamic and serum concentrations of LHRH, the pituitary and serum concentrations of LH, and the weights of the anterior pituitary, ovary and uterus in adult female Wistar rats (chronic starved group, CSG). Control female rats were fed ad lib. for the same periods (control group, CG). On day 22 or 31, half of the rats of each group were weighed and sacrificed by decapitation. Since there were no difference on above parameters between the experiments on 22nd and 31st day, the results were combined for each parameters. At the time of sacrifice, the body weight of CSG was on the average 44% lower than that of CG rats, and also marked reduction in anterior pituitary (44%), ovarian (61%) and uterine weights (69%) was observed. Serum LH concentrations (mean +/- SE; 5.67 +/- 0.67 versus 33.30 +/- 6.00 ng/ml, P less than 0.001) and pituitary LH content (286.7 +/- 19.4 vs 451.0 +/- 32.8 micrograms, P less than 0.001) were significantly decreased in CSG than in CG rats. However, pituitary LH concentration was not reduced because of the proportional reduction to the pituitary weight of CSG rats. Hypothalamic immunoreactive LHRH (IR-LHRH) content in CSG showed a significant increase as compared to CG rats (5.77 +/- 0.52 vs 4.41 +/- 0.27 ng/hypothalamic extract, P less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Plasma estradiol (E2), serum LH and FSH, and the gonadotropin response to two consecutive LHRH administrations (10 and 100 micrograms with an interval of 2 h) were determined in 19 patients with anorexia nervosa (AN) at the emaciation phase, before and after estradiol benzoate (E2B) injections (3 micrograms/kg/day for 7 days). The same investigations were repeated after weight restoration in 9 AN patients who remained amenorrheic. Both at the emaciation phase and after weight restoration, E2B enhanced the second LH response to LHRH and decreased serum FSH, suggesting that the functional capacities of the pituitary gonadotrophs are normal in AN. Unlike E2B injections, weight restoration increased all the hormone values, suggesting that the weight restoration effects on the abnormal gonadotropin secretory pattern of AN depend on another mechanism than the E2 lowering. That mechanism is probably a disorder of the hypothalamic LHRH secretion, the consequences of which could be reinforced by the low E2 levels.  相似文献   

7.
TRH (10 and 1000 micrograms/kg body weight (BW] was injected ip into pregnant rats daily from day 0 to 20 of pregnancy, and the pituitary-thyroid axis of their pups (Mat-TRH rats) was examined on days 0, 4, 10, 21 and 90 after birth. The pituitary TSH content of male Mat-TRH rats was significantly lower on day 4, and higher on day 10 than that of control rats. The serum TSH was significantly higher on day 10 (except female 10 micrograms/kg group). An exaggerated TSH response to exogenous TRH (10 micrograms/kg BW; ip) was observed on day 10 (males, 1000 micrograms/kg group). The serum T4 level of female Mat-TRH rats was low on day 4 (1000 micrograms/kg group), and higher on day 10. On days 21 and 90, the levels of pituitary TSH, serum TSH and T4 in Mat-TRH rats were similar to those in controls, but the TSH response to TRH was still exaggerated (1000 micrograms/kg group). No significant difference between control and TRH-treated mothers was seen on days 10 and 90 postpartum except for a decreased pituitary TSH content on day 10 in the 1000 micrograms/kg group. It is concluded that repeated administration of TRH to pregnant rats shows an effect on the pituitary-thyroid axis function of their progeny in later life.  相似文献   

8.
An in-vitro superfusion technique was used to study basal and depolarization-induced (32 mmol K+/l) release of LHRH from the mediobasal hypothalamus (MBH) of pullets at 8-25 weeks of age. Plasma LH concentrations and the incremental change (delta LH) after an i.v. injection of 1 or 15 micrograms synthetic ovine LHRH/kg body weight were also determined. Between 8 and 25 weeks of age, significant (P less than 0.01) increases in basal and depolarization-induced release of LHRH (93 and 330%, respectively) were accompanied by a significant (P less than 0.01) rise in the residual LHRH content of MBH tissue (152%), observations which suggest that the ability of the hypothalamus to synthesize and secrete LHRH increases as sexual maturation proceeds. However, plasma LH, which reached a maximum concentration of 2.05 +/- 0.43 micrograms/l at 15 weeks, fell significantly (P less than 0.05) to 1.14 +/- 0.05 micrograms/l at 25 weeks. Since delta LH in response to exogenous LHRH showed a marked and progressive decline between 12 and 20 weeks of age, the low plasma concentration of LH typical of the mature hen is probably attributable to a direct negative-feedback action of ovarian steroids on the anterior pituitary gland rather than to an impaired secretion of LHRH from the median eminence. It is suggested that a dramatic increase in the responsiveness of LHRH nerve terminals in the MBH to depolarization by 32 mmol K+/l between 20 and 25 weeks of age (mean age at onset of lay 21.9 weeks; range 19-25 weeks) may reflect the development of hypothalamic responsiveness to the positive feedback action of progesterone.  相似文献   

9.
Investigations were undertaken to study the effect of administering s.c. 10, 25, 50, 100, 500 and 1000 ng DHT/rat/day to normal adult male rats, for six weeks, on the basal levels of serum gonadotropin and the sensitivity of the pituitary to LHRH. The control group received olive oil. Animals were weighed and bled via cardiac puncture before the beginning of the treatment and weekly thereafter. After the last bleeding rats were injected intracardially 200 ng LHRH/rat and killed 15 min later. Blood, pituitary and testes were collected. Data were analyzed with respect to the control group and with respect to day zero of the treatment. DHT failed to produce a persistent effect on the serum gonadotropin. 10 and 500 ng DHT suppressed FSH levels significantly on days 21 and 7, respectively. 25, 50, 100 and 1000 ng DHT stimulated the release of FSH on day 42. 10 ng DHT reduced the levels of LH on day 14 of the treatment. 10, 25 and 50 ng DHT increased the sensitivity of the pituitary to release more LH in response to LHRH while 100, 500, 1000 ng DHT inhibited LHRH induced release of FSH. DHT at all doses tested failed to affect intrapituitary levels of LH and FSH. 10, 500 and 1000 ng DHT reduced the weights of the pituitaries as compared to the control group. The data demonstrate effects of DHT which are transient on the basal release of gonadotropins but are more persistent and differential on the sensitivity of the pituitary to LHRH.  相似文献   

10.
K Kato  M R Sairam 《Life sciences》1983,32(3):263-270
The effect of luteinizing hormone releasing hormone (LHRH) and its analogs on the release of FSH and LH by 20 day old whole mouse pituitary incubated in vitro for 3-4 hrs was investigated. Three agonistic analogs (AY 25650, 25205 and Buserelin) all of which are reported to be superactive in vivo showed approximately the same potency in this in vitro test system. Preincubation of the pituitaries for 1 h with the antagonistic analogs [Ac Dp Cl Phe1,2, D Trp3, D Phe6, D Ala10] LHRH and [Ac Dp Cl Phe1,2, D Trp3, D Arg6, D Ala10] LHRH inhibited the secretion of LH and FSH induced by 2.5 x 10(-9)M LHRH. The inhibitory response was dose dependent. The continued presence of the antagonists was not required for effective suppression of the LHRH effect. Experiments designed to find out the minimum time required for eliciting suppression of LHRH revealed that preincubation of the pituitary with the second antagonist for 5 mins followed by removal was adequate to produce effective inhibition of gonadotropin release. At lower doses of the antagonist, LH release was more effectively inhibited than FSH release. The results suggest that antagonistic analogs can effectively bind to LHRH receptors in the whole pituitary incubation preventing the subsequent action of LHRH. With the present incubation system assessment of bioactive LH and FSH release is possible within 24 hrs.  相似文献   

11.
To determine what role pituitary responsiveness plays in the suppression of gonadotropin level during incubation in the turkey, the ability of the pituitary to release luteinizing hormone (LH) in response to luteinizing hormone-releasing hormone (LHRH) was compared in incubating, laying, and photorefractory birds. In all three groups, the i.m. injection of LHRH (4 micrograms/kg) increased serum LH levels; however, the LH response was markedly enhanced in the incubating turkeys as compared with the laying (6.6-fold increase over preinjection levels vs. 1.9-fold; p less than 0.05) or the photorefractory birds (9.7-fold vs. 3.1-fold; p less than 0.05). The LHRH-induced LH release was also determined in turkeys as they shifted from the laying to the incubating phase of the reproductive cycle. This response increased (p less than 0.05) in magnitude as the birds started to incubate. The high prolactin level of incubating turkeys does not have a depressing effect on LHRH-stimulated LH release; thus, impaired LH response to LHRH is not a mechanism involved in the diminished gonadotropin secretion of incubating turkeys.  相似文献   

12.
The present series of experiments was conducted in an attempt to correlate previously reported dose-dependent and site-selective inhibitory effects of an antiestrogen, CI-628, on 17 beta-estradiol (E2)-receptor interactions in the anterior pituitary gland (AP) and hypothalamus with its effects on the preovulatory surges of luteinizing hormone (LH), follicle-stimulating hormone (FSH), and prolactin. The effects of CI-628 on the response of the AP to luteinizing hormone-releasing hormone (LHRH) and thyrotropin-releasing hormone (TRH) also were examined. In the first study, rats exhibiting 4-day estrous cycles were injected with various doses (0.02, 0.20, 2.0, and 20 mg/kg) of CI-628 or vehicle at 0900 h on diestrus-2 and proestrus. The preovulatory LH surge and both preovulatory and secondary FSH surges were marginally affected by 0.02 mg/kg CI-628, but were completely abolished by higher doses. In contrast, a dose of 0.20 mg/kg only delayed the prolactin surge; however, higher doses were effective in extinguishing cyclic prolactin release. In a second experiment, CI-628 in rats treated on diestrus-2 and proestrus exerted a dose-dependent suppression of the AP LH response to an initial injection of LHRH on proestrous afternoon in rats whose endogenous LH surges were blocked by phenobarbital. However, AP LH responses to a second LHRH injection to assess the self-priming capacity of LHRH were attenuated only in rats given 0.20, 2.0, and 20 mg/kg CI-628. Contrastingly, the AP prolactin response to TRH was suppressed only in rats given 0.20 mg/kg CI-628.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The effect of bombesin (5 ng/kg/min X 2.5 h) on basal pituitary secretion as well as on the response to thyrotropin releasing hormone (TRH; 200 micrograms) plus luteinizing hormone releasing hormone (LHRH; 100 micrograms) was studied in healthy male volunteers. The peptide did not change the basal level of growth hormone (GH), prolactin, thyroid-stimulating hormone (TSH), luteinizing hormone (LH) and follicle-stimulating hormone (FSH). On the contrary, the pituitary response to releasing hormones was modified by bombesin administration. When compared with control (saline) values, prolactin and TSH levels after TRH were lower during bombesin infusion, whereas LH and FSH levels after LHRH were higher. Thus bombesin affects in man, as in experimental animals, the secretion of some pituitary hormones.  相似文献   

14.
Hypothalamic regulation of luteinizing hormone (LH) secretion and ovarian function were investigated in beef heifers by infusing LH-releasing hormone (LHRH) in a pulsatile manner (1 microgram/ml; 1 ml during 1 min every h) into the external jugular vein of 10 hypophysial stalk-transected (HST) animals. The heifers were HST approximately 30 mo earlier. All heifers had increased ovarian size during the LHRH infusion. The maximum ovarian size (16 +/- 2.7 cm3) was greater (P less than 0.01) than the initial ovarian size (8 +/- 1.4 cm3). Ovarian follicular growth occurred in 4 of 10 HST heifers in response to pulsatile LHRH infusion. In 2 heifers, an ovarian follicle developed to preovulatory size, but ovulation occurred in only 1 animal after the frequency of LHRH was increased (1 microgram every 20 min during 8 h). In blood samples obtained at 20-min intervals every 5th day, LH concentrations in peripheral serum remained consistently low (0.9 ng/ml) and nonepisodic in the 10 HST heifers during infusion of vehicle on the day before beginning LHRH. In 7 of 10 HST animals, episodic LH secretion occurred in response to pulsatile infusion of LHRH. In 3 of these long-term HST heifers, however, serum LH remained at basal levels and the isolated pituitary seemingly was unresponsive to pulsatile infusion of LHRH as indicated by sequential patterns of gonadotropin secretion obtained at 5-day intervals. These results indicate that pulsatile infusion of LHRH induces LH release in HST beef heifers.  相似文献   

15.
Red deer stags were infused continuously with the LHRH agonist buserelin at 180-270 micrograms/day (1.2-1.8 micrograms/kg/day) for 72 days starting in late winter with the aim of suppressing reproductive function and inducing premature casting of the antlers. Contrary to expectation, the treatment resulted in a long-term stimulation of testicular activity lasting at least 2 months; the increases in plasma concentrations of testosterone were associated with an increase in aggressive behaviour and the development of rutting odour in the urine. The stags cast their antlers at the normal time in spring after the end of the treatments. The results indicate that the pituitary gonadotroph cells in the stag can continue to secrete LH in response to chronic exposure to an LHRH agonist and do not become rapidly desensitized. The effect of the agonist is therefore to cause significant stimulation of testicular activity which is a conspicuous response in the non-breeding season when the stags are already in a hypogonadal state.  相似文献   

16.
The responsiveness of the anterior pituitary to exogenous luteinizing hormone-releasing hormone (LHRH; 20 micrograms/kg body weight) and the subsequent stimulation of testosterone secretion by the testes was studied after administration of dietary aflatoxin (10 ppm) to 9-wk-old male chickens. In both control and aflatoxin-treated males, there were significant (p less than 0.05) increases in plasma luteinizing hormone (LH) concentrations following LHRH administration, which peaked at 5 min post injection and declined thereafter. Plasma testosterone levels increased soon after the LHRH injection in control males, secondary to elevated LH levels in the peripheral circulation, and continued to increase throughout the experimental period. In contrast, this LH-induced elevation in plasma testosterone was delayed in aflatoxin-treated males, with no substantial increase until 20 min post-LHRH injection. In a subsequent experiment, castration of aflatoxin-fed males resulted in an altered response to exogenous LHRH, as compared to their intact counterparts. Based on these data, it appeared that while the LH-secretory capacity of the anterior pituitary was not diminished in birds receiving aflatoxin, the testicular response to exogenous LHRH was altered during aflatoxicosis. Additionally, the effect of castration on plasma LH profiles after LHRH administration provides preliminary evidence for extra-testicular effects of dietary aflatoxin on reproduction in the avian male.  相似文献   

17.
During the i.v. infusion of a depilatory dose (100 micrograms/kg bodyweight) of mouse epidermal growth factor (EGF) into ovariectomized Merino ewes the frequency of pulsatile LH release was significantly reduced. However, the amplitude of pulses of LH secretion, either those naturally occurring or those induced by LHRH injection, was unchanged or only slightly reduced. Similar infusions of mouse EGF were made in progestagen-treated anoestrous Merino ewes in which LH secretion was maintained by injections of LHRH. These ewes did not experience oestrus or ovulate in response to PMSG injected 1 day after mouse EGF treatment (2 days before progestagen withdrawal); both responses occurred in controls. The EGF-treated ewes experienced oestrus and ovulated following progestagen-PMSG treatment 6 weeks later. These results suggest that mouse EGF inhibits the hypothalamic pulse generator responsible for LH release in the ewe but has little if any effect on pituitary sensitivity to LHRH; and mouse EGF apparently has a direct effect on the ovaries, temporarily impairing their ability to ovulate in response to exogenous gonadotrophin.  相似文献   

18.
The paradoxical antifertility effects of luteinizing hormone releasing hormone (LHRH) agonists in experimental male and female animals have been reported. Treatment with LHRH induces luteolysis and inhibits ovulation in normal women; in men, the same treatment decreases testicular steroidogenesis. This paper examines the mechanisms responsible for the paradoxical antifertility effects of LHRH agonists. A series of experiments was conducted in rats to determine the following: 1) the effect of lower and more physiological doses of the LHRH agonist on testicular gonadotropin receptors, 2) the time course of the effect of daily administration of 1 mcg of LHRH agonist on testicular and plasma concentration of steroid intermediates, 3) cellular changes occurring in the testis during longterm administration of the agonist, and 4) characteristics of LHRH receptors in the testis. The results show that LHRH agonists: 1) produce an inhibiting effect on testicular prolactin receptor concentrations, 2) can cause a dramatic fall in testicular androstenedione and testosterone concentration following treatment, 3) induce degenerative cellular changes in rat testis during longterm administration, and 4) may play a role in the physiological control of gonadal functions by a locally produced LHRH-like molecule. Similar experiments on the ovarian functions in female rats show that relatively low doses of LHRH agonist leads to marked loss of ovarian LH (luteinizing hormone) receptor accompanied by a decreased plasma progesterone concentration and uterine weight. The presence of specific ovarian LHRH receptors raises the possibility that LHRH secreted locally could be involved in the control of ovarian activity. In 6 normal men, a single intranasal administration of a potent LHRH agonist clearly showed inhibition of testicular steroidogenesis while studies on the luteolytic and antiovulatory activity in normal women demonstrated a luteolytic action of LHRH and its agonists. Progesterone secretion from the corpus luteum is important for the implantation and the maintenance of early pregnancy. The intranasal route of administration of LHRH agonists offers the advantage of easy, routine application by the general population.  相似文献   

19.
An enzymatically dispersed pituitary preparation from Japanese quail (Coturnix coturnix) was used to study the dynamics of gonadotropin release. After an 18-h incubation, the cells were challenged with different luteinizing hormone-releasing hormones (LHRH) for 90 min. Using pituitary cells from mature males, mammalian and chicken LHRH I (Gln8-LHRH) had approximately equal luteinizing hormone (LH)-releasing activity whereas chicken LHRH II (His5, Trp7, Tyr8-LHRH) was 8-9 times more potent. The LHRH agonist (Trp6, Pro9-NEt-LHRH) had 15 times greater potency than chicken LHRH I. Pre-incubation with an LHRH antagonist (D-Phe2, D-Trp6-LHRH) significantly suppressed LH release. Acid extracts of median eminence released LH from pituitary cells, extracts from short-day and long-day males had equal activity, while tissue extracts from castrated males had significantly greater LH-releasing activity. Pituitary cells from sexually immature males released LH in response to chicken LHRH I in a similar profile to cells from mature males. These data indicate that the quail LHRH receptor in the male recognizes several different molecular species of LHRH and the response to LHRH is comparable between short- and long-day males. Pituitary cells from ovulating females were variably sensitive to LHRH peptides, possibly due to changes in pituitary sensitivity during the ovulatory cycle. Pituitary cells from immature females did not release LH in response to chicken LHRH I. However, pituitary cells from immature females photostimulated for 1 wk displayed a response to chicken LHRH I and II similar to that of pituitary cells from males.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The in vitro incorporation of [3H]leucine into immunoprecipitable follicle-stimulating hormone (FSH) and luteinizing hormone (LH) was assessed for pituitaries from pony mares treated with testosterone propionate (TP) or oil (controls). Mares were treated every other day with TP (n = 4) at 350 micrograms/kg of body weight or with an equivalent volume of oil (n = 4). One day following the sixth injection of TP, each mare received an intravenous injection of gonadotropin releasing hormone (GnRH) at 1.0 micrograms/kg body weight and was bled frequently for 4 h. Treatment of mares with TP reduced FSH (P less than 0.05) and LH (P less than 0.01) concentrations in daily blood samples and increased (P less than 0.01) the amount of FSH secreted in response to GnRH compared with control mares. Incorporation of [3H]leucine into immunoprecipitable FSH was also greater (P less than 0.01) in pituitaries from TP-treated mares compared with control mares on both a per mg tissue and per anterior pituitary basis. The amount of LH secreted after GnRH, the amount left in the pituitary and the incorporation of [3H]leucine into LH were not affected by treatment. These results confirm earlier conclusions drawn from indirect evidence that androgens increase the production of FSH in the mare.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号