首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In vivo 13C NMR has been used to detect the transient formation of S-(hydroxymethyl)glutathione (GSCH2OH) from glutathione and [13C]formaldehyde in Escherichia coli. Two-dimensional 1H-13C shift correlation was used to locate the chemical shift of the formaldehyde-derived protons of the adduct. The adduct GSCH2OH is formed by chemical reaction in the first few minutes after cells are challenged with formaldehyde and remains within the cell until consumed by metabolism.  相似文献   

2.
3.
We have developed Escherichia coli strains that internalize glucose utilizing the GalP permease instead of the phosphoenolpyruvate:carbohydrate phosphotransferase system. It has been demonstrated that a strain with these modifications (PTS(-)Glc(+)) can direct more carbon flux into the aromatic pathway than the wild-type parental strain (N. Flores et al., 1996, Nat. Biotechnol. 14, 620-623; G. Gosset et al., 1996, J. Ind. Microbiol. 17, 47-52; J. L. Baéz et al., 2001, Biotechnol. Bioeng. 73, 530-535). In this study, we have determined and compared the carbon fluxes of a wild-type strain (JM101), a PTS(-)Glc(-) strain, and two isogenic PTS(-)Glc(+) derivatives named PB12 and PB13 by combining genetic, biochemical, and NMR approaches. It was determined that in these strains a functional glk gene in the chromosome is required for rapid glucose consumption; furthermore, glucokinase-specific activities were higher than in the wild-type strain. (13)C labeling and NMR analysis allowed the determination of differences in vivo which include higher glycolytic fluxes of 93.1 and 89.2% compared with the 76.6% obtained for the wild-type E. coli. In PB12 and PB13 we found a flux through the malic enzymes of 4 and 10%, respectively, compared to zero in the wild-type strain. While flux through the Pck enzyme was absent in PB12 and PB13, in the wild type it was 7.7%. Finally, it was found that in the JM101 and PB12 strains both the oxidative and the nonoxidative branches of the pentose phosphate pathway contributed to ribose 5-phosphate synthesis, whereas in PB13 this pentose was synthesized almost exclusively through the oxidative branch. The determined carbon fluxes correlate with biochemical and genetic characterizations.  相似文献   

4.
The sesquiterpene diol with antispasmodic properties, earlier isolated from Cymbopogon proximus, is shown to be identical with cryptomeridiol.  相似文献   

5.
The muropeptide composition of peptidoglycan from Escherichia coli W7 cultivated at different growth rates in chemostat cultures was compared by using high-pressure liquid chromatography. At a low growth rate (D = 0.1 h-1), about 40% more covalently bound lipoprotein and at least twofold more diaminopimelyl-diaminopimelic acid cross-bridges were found than at a high growth rate (D = 0.8 h-1). The total degree of cross-linkage was only slightly increased, and the fraction of trimeric muropeptides and the average length of the glycan chains were not changed significantly. Analysis of the peptidoglycan from a morphological variant strain of W7 revealed that the altered peptidoglycan composition in slowly growing W7 cells was not correlated with the observation that these cells, due to their decreased cell length, were relatively enriched in polar material. In fact, our results suggested that peptidoglycan forming cell poles is chemically identical to that forming lateral wall.  相似文献   

6.
[99%, 1-13C]- and [90%, 2-13C]3-deoxy-D-manno-octulosonic acid (KDO) were prepared enzymatically and used to determine the anomeric specificity of the CTP:CMP-3-deoxy-D-manno-octulosonate cytidylyl transferase (CMP-KDO synthetase) by 13C NMR spectroscopy. Addition of CMP-KDO synthetase to reaction mixtures containing either 1-13C- or 2-13C-labeled KDO resulted in rapid CMP-KDO formation which was accompanied by a substantial decrease in the 13C-enriched resonances of the beta-pyranose form of KDO relative to the resonances of other KDO species in solution, demonstrating that the beta-pyranose is the preferred substrate. Concomitant with the production of CMP-KDO was the appearance of peaks at 174.3 and 101.4 ppm when [1-13C]- and [2-13C]KDO, respectively, were used as substrates. The correspondence of these resonances to the enriched carbons in CMP-KDO was confirmed by the expected 3-bond (3JP,C-1 = 6.9 Hz) and 2-bond coupling (2JP,C-2 = 8.3 Hz) between the labeled carbons and the ketosidically linked phosphoryl group. A large coupling (3J = 5.7 Hz) was observed in proton-coupled spectra of CMP-[1-13C]KDO between carbon 1 and the axial proton at carbon 3 of KDO. The magnitude of this coupling constant supports a diaxial relationship between these two groups and, along with chemical shift data, indicates that KDO retains the beta-configuration when linked in CMP-KDO.  相似文献   

7.
The effects of changing the composition of the growth medium, the dilution rate and the source of the bacterial host on maintenance of the plasmid pAT153 in Escherichia coli HB101 have been studied. In a medium supplemented with Casamino acids, the plasmid was maintained longer during phosphate-limited growth at a dilution rate of 0.3 h-1 than at 0.15 h-1. In contrast, phosphate-limited growth was not achieved when the Casamino acids were replaced by proline, leucine and thiamin to satisfy the auxotrophic requirements of the host. Although 100% of the bacteria were still ampicillin resistant after 72 generations of growth at a dilution rate of 0.15 h-1, the original plasmid had almost totally been replaced by a structurally modified plasmid which lacked a functional tet gene. Further experiments confirmed that neither the host nor the plasmid was retained unchanged in the minimal medium. The changes were highly reproducible and reflected periodic selection of sub-populations which were either plasmid-free or carried a structurally modified plasmid, which had reverted to Leu+ or Pro+, or had acquired other chromosomal mutations which gave them a selective advantage. We conclude that in complex media the plasmid is maintained longer by E. coli HB101 at a high than at a low growth rate and that different results reported from different laboratories are largely due to differences in analytical techniques and the growth medium rather than to differences in the bacterial host or the plasmid used. A fermenter-adapted strain was isolated which reproducibly maintained the plasmid longer during phosphate-limited continuous growth than the original strain which had been cultured on laboratory media.  相似文献   

8.
The novel compound 2,3-cyclopyrophosphoglycerate (CPP) is the major small molecule carbon pool in Methanobacterium thermoautotrophicum. High-field 13C NMR 13CO2 pulse/unenriched CO2 chase experiments have shown that the labeled CPP rapidly loses its 13C to an insoluble pool, while the CPP steady-state concentration is maintained (as monitored by 31P NMR spectroscopy). The biosynthesis of CPP from CO2, acetyl coenzyme A, and pyruvate as precursors has been established by a 13C NMR study of ethanol extracts of Mb. thermoautotrophicum fed with 13CO2, [1-13C]- and [2-13C]acetate, and [1-13C]pyruvate. That CPP is a post-phosphoenolpyruvate metabolite has been confirmed by in vitro experiments with cell extracts. A role for CPP in carbohydrate metabolism was established when [1-13C]glucose fed to cells resulted in the formation of [3-13C]CPP exclusively. Possible functions of CPP within the cell are discussed.  相似文献   

9.
10.
This report presents the backbone assignments and the secondary structure determination of the A domain of the Escherichia coli mannitol transport protein, enzyme-IImtl. The backbone resonances were partially assigned using three-dimensional heteronuclear 1H NOE 1H-15N single-quantum coherence (15N NOESY-HSQC) spectroscopy and three-dimensional heteronuclear 1H total correlation 1H-15N single-quantum coherence (15N TOCSY-HSQC) spectroscopy on uniformly 15N enriched protein. Triple-resonance experiments on uniformly 15N/13C enriched protein were necessary to complete the backbone assignments, due to overlapping 1H and 15N frequencies. Data obtained from three-dimensional 1H-15N-13C alpha correlation experiments (HNCA and HN(CO)CA), a three-dimensional 1H-15N-13CO correlation experiment (HNCO), and a three-dimensional 1H alpha-13C alpha-13CO correlation experiment (COCAH) were combined using SNARF software, and yielded the assignments of virtually all observed backbone resonances. Determination of the secondary structure of IIAmtl is based upon NOE information from the 15N NOESY-HSQC and the 1H alpha and 13C alpha secondary chemical shifts. The resulting secondary structure is considerably different from that reported for IIAglc of E. coli and Bacillus subtilis determined by NMR and X-ray.  相似文献   

11.
Abstract In an Escherichia coli strain, the levels of penicillin-binding proteins (PBPs) 1A plus 1B, both peptidoglycan transglycosylase/transpeptidases, were found to be relatively independent of the imposed growth ratw in chemostat cultures under different nutrient limitation conditions. A considerable increase in levels of PBP 6 was observed as the growth rate was reduced, whilst, in contrast, a decrease was observed in levels of the other PBPs.  相似文献   

12.
The assignment of backbone resonances and the secondary structure determination of the Cys 10 Ser mutant of enzyme IIBcellobiose of the Escherichia coli cellobiose-specific phosphoenol-pyruvate-dependent phosphotransferase system are presented. The backbone resonances were assigned using 4 triple resonance experiments, the HNCA and HN(CO)CA experiments, correlating backbone 1H, 15N, and 13C alpha resonances, and the HN(CA)CO and HNCO experiments, correlating backbone 1H,15N and 13CO resonances. Heteronuclear 1H-NOE 1H-15N single quantum coherence (15N-NOESY-HSQC) spectroscopy and heteronuclear 1H total correlation 1H-15N single quantum coherence (15N-TOCSY-HSQC) spectroscopy were used to resolve ambiguities arising from overlapping 13C alpha and 13CO frequencies and to check the assignments from the triple resonance experiments. This procedure, together with a 3-dimensional 1H alpha-13C alpha-13CO experiment (COCAH), yielded the assignment for all observed backbone resonances. The secondary structure was determined using information both from the deviation of observed 1H alpha and 13C alpha chemical shifts from their random coil values and 1H-NOE information from the 15N-NOESY-HSQC. These data show that enzyme IIBcellobiose consists of a 4-stranded parallel beta-sheet and 5 alpha-helices. In the wild-type enzyme IIBcellobiose, the catalytic residue appears to be located at the end of a beta-strand.  相似文献   

13.
R E Klevit  E B Waygood 《Biochemistry》1986,25(23):7774-7781
Sequence-specific resonance assignments of the 1H NMR spectrum of the 85-residue histidine-containing phosphocarrier protein (HPr) are complete [Klevit, R. E., Drobny, G. P., & Waygood, E. B. (1986) Biochemistry (first paper of three in this issue)]. Additional side-chain assignments have been made with long-range coherence transfer experiments [Klevit, R. E., & Drobny, G. P. (1986) Biochemistry (second paper of three in this issue)]. In this paper, the NMR assignments were used to determine the secondary structure and the tertiary folding of HPr in solution. The secondary structural elements of the protein were determined by visual inspection of the pattern of nearest-neighbor nuclear Overhauser effects (NOEs) and the presence of persistent amide resonances. Escherichia coli HPr consists of four beta-strands, three alpha-helices, four reverse turns, and several regions of extended backbone structure. Long-range NOEs, especially among side-chain protons, were used to determine the tertiary structure of the protein by use of the secondary structural components. The four beta-strands form a single antiparallel beta-pleated sheet. The hydrophobic faces of the alpha-helices interact to form a hydrophobic core and sit above the hydrophobic face of the beta-sheet, forming an open-face beta-sheet sandwich structure. The active site histidine, His-15, is on a short kinked segment of backbone that is accessible to the solvent. The positively charged phosphorylation site (His-15 and Arg-17) interacts with the negatively charged carboxyl terminus of the protein (Glu-85).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The anomeric specificity of Escherichia coli CMP-N-acetylneuraminic acid (CMP-NeuAc) synthetase was investigated by NMR using 13C-labeled N-acetylneuraminic acid (NeuAc). Consumption of the beta-anomer of [2-13C]N-acetylneuraminic acid was observed upon addition of enzyme, with a concomitant appearance of an anomeric resonance for CMP-N-acetylneuraminic acid. Inhibition by substrate analogues the anomeric oxygen was determined in a similar manner using [2-13C,(50 atom %)18O]N-acetylneuraminic acid. An upfield shift of 1.5 Hz in the anomeric resonance of both the [13C]NeuAc substrate and CMP-[13C]NeuAc product was observed due to the 18O substitution. This result implies conservation of the NeuAc oxygen. Results of steady-state kinetic analysis suggest a sequential-type mechanism and therefore no covalent intermediate. Thus, CMP-beta-NeuAc is probably formed by a direct transfer of the anomeric oxygen of beta-NeuAc to the alpha-phosphate of CTP.  相似文献   

15.
T A Gerken  N Jentoft 《Biochemistry》1987,26(15):4689-4699
Nearly all of the resonances in the 13C NMR spectrum of porcine submaxillary mucin glycoprotein (PSM) have been assigned to the peptide core carbons and to the carbons in the eight different oligosaccharide side chains that arise from the incomplete biosynthesis of the sialylated A blood group pentasaccharide (alpha-GalNAc(1-3) [alpha-Fuc(1-2)]-beta-Gal(1-3) [alpha-NeuNGl(2-6)]- alpha-GalNAc-O-Ser/Thr). By use of these assignments, a nearly complete structural analysis of intact PSM has been performed without resorting to degradative chemical methods. Considerable structural variability in the carbohydrate side chains was observed between mucins obtained from different animals, while no variability was observed between glands in a single animal. The dynamics of the PSM core and carbohydrate side chains were examined by using the carbon-13 nuclear magnetic resonance relaxation times and nuclear Overhauser enhancements of each assigned carbon resonance. The peptide core of PSM exhibits internal segmental flexibility that is virtually identical with that of ovine submaxillary mucin (OSM), whose carbohydrate side chain consists of the alpha-NeuNAc(2-6)alpha-GalNAc disaccharide. The longer oligosaccharide side chains of PSM, therefore, have no significant effect on peptide core mobility compared to the shorter side chains of native OSM or asialo-OSM. Although the dynamics of the shorter carbohydrate side chains shared by both OSM and PSM appear to be identical, the A and H blood group structures in PSM have reduced mobilities, indicating that the glycosidic linkages of the terminal sugars in these determinants are relatively inflexible. These results differ from most reports of glycoprotein dynamics, which typically find the terminal carbohydrate residues to be undergoing rapid internal rotation about their terminal glycosidic bonds. The results reported here are consistent with previous studies on the conformations of the A and H determinants derived from model oligosaccharides and further indicate that the conformations of these determinants are unchanged when covalently bound to the mucin peptide core. In spite of their carbohydrate side-chain heterogeneity, mucins appear to be ideal glycoproteins for the study of O-linked oligosaccharide conformation and dynamics and for the study of the effects of glycosylation on polypeptide conformation and dynamics.  相似文献   

16.
Escherichia coli tRNAs were labeled with stable isotope 15N in vivo. Three species of tRNA, tRNA(Glu), tRNA(Lys) and tRNA(Ile), were purified by an HPLC system and their NMR spectra were observed. In heteronuclear 1H-15N multiple or single quantum coherence (HMQC or HSQC) spectra, the crosspeaks corresponding to NH3 of U and NH1 of G can be distinguished clearly since their 15N chemical shifts are significantly different from each other. Thus, this combination of 15N-labeling and the proton detected heteronuclear experiments are useful for the signal assignment and the conformational analysis of tRNAs. Furthermore, C1'- selective 13C-labeling of nucleotides was examined in vivo in order to resolve the H1' signals of tRNAs. By using a newly constructed E. coli mutant strain, the isotopic enrichments of more than 90% at C1' and of less than 10% for other ribose carbons were achieved.  相似文献   

17.
We have constructed a strain that overproduces ribonuclease I of Escherichia coli and we have purified large quantities of the enzyme. Data from fluorescence, CD, and DSC measurements showed that it was a very stable protein. The conformation energy determined from urea and guanidine hydrochloride denaturation experiments was 11.5 kcal mol(-1) at pH 7.5. Thermal denaturation studies indicated that it had a T(m) of 64 degrees C at pH 4.0. RNase I belongs to the RNase T2/S-RNase group of endoribonucleases, but near the amino terminus it has an unusually long hydrophilic segment. Part of this was removed in the deletion construct, RNase I Delta(26-38). We have obtained crystals of both RNase I and of an enzyme-G2'p5'G complex in the P2(1) space group and oligonucleotide complexes with both wild type and mutant enzymes. The current study lays the groundwork for extensive investigation into the structure, function, and physical properties of this widely distributed group of ribonucleases.  相似文献   

18.
The cell densities of Escherichia coli strains B/rA, BrF, and K-12 (OV-2) were measured at several growth rates and found to be very near 1.105 g/ml in all cases. Ninety percent of the cells of any exponentially growing population banded at densities differing less than 0.75% from the mean. Synchronized populations of B/rA selected as newborn cells were found to keep their density constant for longer than one generation time. However, if selection was based on cell size, by sedimentation through a sucrose gradient, cell density was found to be almost 2% lower than that of newborn cells, but it reached normal values before the first division had taken place. These results meant that mass and volume during the lifetime of the bacterial cell followed parallel kinetics. It was unlikely that density could regulate any event of the lifetime of a cell; on the contrary, density seemed to be a physical parameter that was well controlled during the bacterial growth.  相似文献   

19.
The differences in ribosomal degradation and the fate of degradation products between Escherichia coli wild-type (B) and a ribonuclease less mutant (Q-13) during phosphate starvation were compared. The degradation rate of 32P-labeled ribosomes was found to be of the same order at the early stage but to differ at the later stage of deficiency between Escherichia coli B strain and Q-13 strain. The degradation in Q-13 nearly stopped after 6-h starvation, while it continued for more than 10 h in B strain, resulting in more than 80% degradation of 32P-prelabeled ribosomes.In the acid-soluble 32P pool of Q-13 strain, there was an increase in the nucleoside monophosphates but no increase and a continuous decrease in nucleoside di-and triphosphates, respectively. Q-13 contained no nucleoside 2′,3′-cyclic phosphate or nucleoside 3′-phosphate and little oligonucleotide, all of which had been detected in B strain during this stage. From these facts it was suggested that ribosomal RNA degradation in Escherichia coli Q-13 is mainly caused by ribonuclease II in vivo.  相似文献   

20.
Mts1 is a member of the S100 family of Ca2+-binding proteins and is implicated in promoting tumor progression and metastasis. To better understand the structure-function relationships of this protein and to begin characterizing its Ca2+-dependent interaction with protein binding targets, the three-dimensional structure of mts1 was determined in the apo state by NMR spectroscopy. As with other S100 protein family members, mts1 is a symmetric homodimer held together by noncovalent interactions between two helices from each subunit (helices 1, 4, 1', and 4') to form an X-type four-helix bundle. Each subunit of mts1 has two EF-hand Ca2+-binding domains: a pseudo-EF-hand (or S100-hand) and a typical EF-hand that are brought into proximity by a small two-stranded antiparallel beta-sheet. The S100-hand is formed by helices 1 and 2, and is similar in conformation to other members of the S100 family. In the typical EF-hand, the position of helix 3 is similar to that of another member of the S100 protein family, calcyclin (S100A6), and less like that of other S100 family members for which three-dimensional structures are available in the calcium-free state (e.g., S100B and S100A1). The differences in the position of helix 3 in the apo state of these four S100 proteins are likely due to variations in the amino acid sequence in the C-terminus of helix 4 and in loop 2 (the hinge region) and could potentially be used to subclassify the S100 protein family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号