首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The response of the cenosis composition of soil saprotrophic microfungi able to utilize the fulvic fraction of soil organic matter to increased concentration of atmospheric carbon dioxide, plant species cover quality and different levels of nitrogen fertilization was determined under field conditions in a free-air carbon dioxide enrichment experiment. Twenty-nine species of microfungi were isolated from the tested soil. The effects of CO2 enrichment and plant species cover were not significant. Nitrogen fertilization was identified as the only significant factor inducing changes in the abundance of soil microorganisms. This was reflected in a relatively low value of quantitative Sørensen similarity index on comparing fertilized and unfertilized treatments and in 2-way ANOVA of total CFU counts. Some differences were observed in species diversity between the two variants of all treatments. No association between microfungi and the factors under study was found by using the Monte Carlo Permutation test in redundancy analysis.  相似文献   

2.
Part of the missing sink in the global CO2 budget has been attributed to the positive effects of CO2 fertilization and N deposition on carbon sequestration in Northern Hemisphere terrestrial ecosystems. The genus Sphagnum is one of the most important groups of plant species sequestrating carbon in temperate and northern bog ecosystems, because of the low decomposability of the dead material it produces. The effects of raised CO2 and increased atmospheric N deposition on growth of Sphagnum and other plants were studied in bogs at four sites across Western Europe. Contrary to expectations, elevated CO2 did not significantly affect Sphagnum biomass growth. Increased N deposition reduced Sphagnum mass growth, because it increased the cover of vascular plants and the tall moss Polytrichum strictum. Such changes in plant species composition may decrease carbon sequestration in Sphagnum‐dominated bog ecosystems.  相似文献   

3.
We measured soil CO2 flux over 19 sampling periods that spanned two growing seasons in a grassland Free Air Carbon dioxide Enrichment (FACE) experiment that factorially manipulated three major anthropogenic global changes: atmospheric carbon dioxide (CO2) concentration, nitrogen (N) supply, and plant species richness. On average, over two growing seasons, elevated atmospheric CO2 and N fertilization increased soil CO2 flux by 0.57 µmol m?2 s?1 (13% increase) and 0.37 µmol m?2 s?1 (8% increase) above average control soil CO2 flux, respectively. Decreases in planted diversity from 16 to 9, 4 and 1 species decreased soil CO2 flux by 0.23, 0.41 and 1.09 µmol m?2 s?1 (5%, 8% and 21% decreases), respectively. There were no statistically significant pairwise interactions among the three treatments. During 19 sampling periods that spanned two growing seasons, elevated atmospheric CO2 increased soil CO2 flux most when soil moisture was low and soils were warm. Effects on soil CO2 flux due to fertilization with N and decreases in diversity were greatest at the times of the year when soils were warm, although there were no significant correlations between these effects and soil moisture. Of the treatments, only the N and diversity treatments were correlated over time; neither were correlated with the CO2 effect. Models of soil CO2 flux will need to incorporate ecosystem CO2 and N availability, as well as ecosystem plant diversity, and incorporate different environmental factors when determining the magnitude of the CO2, N and diversity effects on soil CO2 flux.  相似文献   

4.
The aim of this work was to examine the response of wheat plants to a doubling of the atmospheric CO2 concentration on: (1) carbon and nitrogen partitioning in the plant; (2) carbon release by the roots; and (3) the subsequent N uptake by the plants. The experiment was performed in controlled laboratory conditions by exposing fast-growing spring wheat plants, during 28 days, to a 14CO2 concentration of 350 or 700 L L–1 at two levels of soil nitrogen fertilization. Doubling CO2 availability increased total plant production by 34% for both N treatment. In the N-fertilized soil, the CO2 enrichment resulted in an increase in dry mass production of 41% in the shoots and 23% in the roots; without N fertilization this figure was 33% and 37%, respectively. In the N-fertilized soil, the CO2 increase enhanced the total N uptake by 14% and lowered the N concentration in the shoots by 23%. The N concentration in the roots was unchanged. In the N-fertilized soil, doubling CO2 availability increased N uptake by 32% but did not change the N concentrations, in either shoots or roots. The CO2 enrichment increased total root-derived carbon by 12% with N fertilization, and by 24% without N fertilization. Between 85 and 90% of the total root derived-14C came from respiration, leaving only 10 to 15% in the soil as organic 14C. However, when total root-derived 14C was expressed as a function of root dry weight, these differences were only slightly significant. Thus, it appears that the enhanced carbon release from the living roots in response to increased atmospheric CO2, is not due to a modification of the activity of the roots, but is a result of the increased size of the root system. The increase of root dry mass also resulted in a stimulation of the soil N mineralization related to the doubling atmospheric CO2 concentration. The discussion is focused on the interactions between the carbon and nitrogen allocation, especially to the root system, and the implications for the acquisition of nutrients by plants in response to CO2 increase.Abbreviations N soil fertilization without nitrogen - N soil fertilization with nitrogen  相似文献   

5.
Increasing the belowground translocation of assimilated carbon by plants grown under elevated CO2 can cause a shift in the structure and activity of the microbial community responsible for the turnover of organic matter in soil. We investigated the long‐term effect of elevated CO2 in the atmosphere on microbial biomass and specific growth rates in root‐free and rhizosphere soil. The experiments were conducted under two free air carbon dioxide enrichment (FACE) systems: in Hohenheim and Braunschweig, as well as in the intensively managed forest mesocosm of the Biosphere 2 Laboratory (B2L) in Oracle, AZ. Specific microbial growth rates (μ) were determined using the substrate‐induced respiration response after glucose and/or yeast extract addition to the soil. For B2L and both FACE systems, up to 58% higher μ were observed under elevated vs. ambient CO2, depending on site, plant species and N fertilization. The μ‐values increased linearly with atmospheric CO2 concentration at all three sites. The effect of elevated CO2 on rhizosphere microorganisms was plant dependent and increased for: Brassica napus=Triticum aestivum<Beta vulgaris<Populus deltoides. N deficiency affected microbial growth rates directly (N limitation) and indirectly (changing the quantity of fine roots). So, 50% decrease in N fertilization caused the overall increase or decrease of microbial growth rates depending on plant species. The μ‐value increase was lower for microorganisms growing on yeast extract then for those growing on glucose, i.e. the effect of elevated CO2 was smoothed on rich vs. simple substrate. So, the r/K strategies ratio can be better revealed by studying growth on simple (glucose) than on rich substrate mixtures (yeast extract). Our results clearly showed that the functional characteristics of the soil microbial community (i.e. specific growth rates) rather than total microbial biomass amount are sensitive to increased atmospheric CO2. We conclude that the more abundant available organics released by roots at elevated CO2 altered the ecological strategy of the soil microbial community specifically a shift to a higher contribution of fast‐growing r‐selected species was observed. These changes in functional structure of the soil microbial community may counterbalance higher C input into the soil under elevated atmospheric CO2 concentration.  相似文献   

6.
Elevated atmospheric CO2 may alter decomposition rates through changes in plant material quality and through its impact on soil microbial activity. This study examines whether plant material produced under elevated CO2 decomposes differently from plant material produced under ambient CO2. Moreover, a long‐term experiment offered a unique opportunity to evaluate assumptions about C cycling under elevated CO2 made in coupled climate–soil organic matter (SOM) models. Trifolium repens and Lolium perenne plant materials, produced under elevated (60 Pa) and ambient CO2 at two levels of N fertilizer (140 vs. 560 kg ha?1 yr?1), were incubated in soil for 90 days. Soils and plant materials used for the incubation had been exposed to ambient and elevated CO2 under free air carbon dioxide enrichment conditions and had received the N fertilizer for 9 years. The rate of decomposition of L. perenne and T. repens plant materials was unaffected by elevated atmospheric CO2 and rate of N fertilization. Increases in L. perenne plant material C : N ratio under elevated CO2 did not affect decomposition rates of the plant material. If under prolonged elevated CO2 changes in soil microbial dynamics had occurred, they were not reflected in the rate of decomposition of the plant material. Only soil respiration under L. perenne, with or without incorporation of plant material, from the low‐N fertilization treatment was enhanced after exposure to elevated CO2. This increase in soil respiration was not reflected in an increase in the microbial biomass of the L. perenne soil. The contribution of old and newly sequestered C to soil respiration, as revealed by the 13C‐CO2 signature, reflected the turnover times of SOM–C pools as described by multipool SOM models. The results do not confirm the assumption of a negative feedback induced in the C cycle following an increase in CO2, as used in coupled climate–SOM models. Moreover, this study showed no evidence for a positive feedback in the C cycle following additional N fertilization.  相似文献   

7.
Rising atmospheric carbon dioxide partial pressure (pCO2) and nitrogen (N) deposition are important components of global environmental change. In the Swiss free air carbon dioxide enrichment (FACE) experiment, the effect of altered atmospheric pCO2 (35 vs. 60 Pa) and the influence of two different N‐fertilization regimes (14 vs. 56 g N m?2 a?1) on root colonization by arbuscular mycorrhizal fungi (AMF) and other fungi (non‐AMF) of Lolium perenne and Trifolium repens were studied. Plants were grown in permanent monoculture plots, and fumigated during the growth period for 7 years. At elevated pCO2 AMF and non‐AMF root colonization was generally increased in both plant species, with significant effects on colonization intensity and on hyphal and non‐AMF colonization. The CO2 effect on arbuscules was marginally significant (P=0.076). Moreover, the number of small AMF spores (≤100 μm) in the soils of monocultures (at low‐N fertilization) of both plant species was significantly increased, whereas that of large spores (>100 μm) was increased only in L. perenne plots. N fertilization resulted in a significant decrease of root colonization in L. perenne, including the AMF parameters, hyphae, arbuscules, vesicles and intensity, but not in T. repens. This phenomenon was probably caused by different C‐sink limitations of grass and legume. Lacking effects of CO2 fumigation on intraradical AMF structures (under high‐N fertilization) and no response to N fertilization of arbuscules, vesicles and colonization intensity suggest that the function of AMF in T. repens was non‐nutritional. In L. perenne, however, AM symbiosis may have amended N nutrition, because all root colonization parameters were significantly increased under low‐N fertilization, whereas under high‐N fertilization only vesicle colonization was increased. Commonly observed P‐nutritional benefits from AMF appeared to be absent under the phosphorus‐rich soil conditions of our field experiment. We hypothesize that in well‐fertilized agricultural ecosystems, grasses benefit from improved N nutrition and legumes benefit from increased protection against pathogens and/or herbivores. This is different from what is expected in nutritionally limited plant communities.  相似文献   

8.
The free air carbon dioxide enrichment (FACE) and N deposition experiments on four ombrotrophic bogs in Finland, Sweden, the Netherlands and Switzerland, revealed that after three years of treatment: (1) elevated atmospheric CO2 concentration had no significant effect on the biomass growth of Sphagnum and vascular species; and (2) increased N deposition reduced Sphagnum growth, because it increased the cover of vascular plants and the tall moss Polytrichum strictum, while vascular plant biomass growth was not affected. This paper focuses on water chemistry, plant nutrient content, and litter decomposition rates. Potassium limitation, or low supply of K and P, may have prevented a significant increase of Sphagnum growth under elevated CO2 and N deposition. Vascular plant growth under elevated CO2 and N deposition was also limited by K, or by K in combination with P or N (N in CO2 experiment). Elevated CO2 and N deposition had no effect on decomposition rates of Sphagnum and vascular plant litter. Aside from a possible effect of N deposition on light competition between species, we expect that elevated atmospheric CO2 and N deposition concentrations will not affect Sphagnum and vascular plant growth in bogs of north‐west Europe due to K‐, or K in combination with N‐ or P‐, limited growth. For the same reason we expect no effect of elevated CO2 and N deposition on litter decomposition. Net primary production of raised ombrotrophic bogs that are at or close to steady state, is regulated by input of nutrients through atmospheric deposition. Therefore, we hypothesize that the expected increase of plant growth under elevated CO2 and N deposition is diminished by current levels of K (and to some extent P and N) in atmospheric deposition.  相似文献   

9.
Identifying soil microbial responses to anthropogenically driven environmental changes is critically important as concerns intensify over the potential degradation of ecosystem function. We assessed the effects of elevated atmospheric CO2 on microbial carbon (C) and nitrogen (N) cycling in Mojave Desert soils using extracellular enzyme activities (EEAs), community‐level physiological profiles (CLPPs), and gross N transformation rates. Soils were collected from unvegetated interspaces between plants and under the dominant shrub (Larrea tridentata) during the 2004–2005 growing season, an above‐average rainfall year. Because most measured variables responded strongly to soil water availability, all significant effects of soil water content were used as covariates to remove potential confounding effects of water availability on microbial responses to experimental treatment effects of cover type, CO2, and sampling date. Microbial C and N activities were lower in interspace soils compared with soils under Larrea, and responses to date and CO2 treatments were cover specific. Over the growing season, EEAs involved in cellulose (cellobiohydrolase) and orthophosphate (alkaline phosphatase) degradation decreased under ambient CO2, but increased under elevated CO2. Microbial C use and substrate use diversity in CLPPs decreased over time, and elevated CO2 positively affected both. Elevated CO2 also altered microbial C use patterns, suggesting changes in the quantity and/or quality of soil C inputs. In contrast, microbial biomass N was higher in interspace soils than soils under Larrea, and was lower in soils exposed to elevated CO2. Gross rates of NH4+ transformations increased over the growing season, and late‐season NH4+ fluxes were negatively affected by elevated CO2. Gross NO3 fluxes decreased over time, with early season interspace soils positively affected by elevated CO2. General increases in microbial activities under elevated CO2 are likely attributable to greater microbial biomass in interspace soils, and to increased microbial turnover rates and/or metabolic levels rather than pool size in soils under Larrea. Because soil water content and plant cover type dominates microbial C and N responses to CO2, the ability of desert landscapes to mitigate or intensify the impacts of global change will ultimately depend on how changes in precipitation and increasing atmospheric CO2 shift the spatial distribution of Mojave Desert plant communities.  相似文献   

10.
Elevation of atmospheric CO2 concentration is predicted to increase net primary production, which could lead to additional C sequestration in terrestrial ecosystems. Soil C input was determined under ambient and Free Atmospheric Carbon dioxide Enrichment (FACE) conditions for Lolium perenne L. and Trifolium repens L. grown for four years in a sandy‐loam soil. The 13C content of the soil organic matter C had been increased by 5‰ compared to the native soil by prior cropping to corn (Zea mays) for > 20 years. Both species received low or high amounts of N fertilizer in separate plots. The total accumulated above‐ground biomass produced by L. perenne during the 4‐year period was strongly dependent on the amount of N fertilizer applied but did not respond to increased CO2. In contrast, the total accumulated above‐ground biomass of T. repens doubled under elevated CO2 but remained independent of N fertilizer rate. The C:N ratio of above‐ground biomass for both species increased under elevated CO2 whereas only the C:N ratio of L. perenne roots increased under elevated CO2. Root biomass of L. perenne doubled under elevated CO2 and again under high N fertilization. Total soil C was unaffected by CO2 treatment but dependent on species. After 4 years and for both crops, the fraction of new C (F‐value) under ambient conditions was higher (P= 0.076) than under FACE conditions: 0.43 vs. 0.38. Soil under L. perenne showed an increase in total soil organic matter whereas N fertilization or elevated CO2 had no effect on total soil organic matter content for both systems. The net amount of C sequestered in 4 years was unaffected by the CO2 concentration (overall average of 8.5 g C kg?1 soil). There was a significant species effect and more new C was sequestered under highly fertilized L. perenne. The amount of new C sequestered in the soil was primarily dependent on plant species and the response of root biomass to CO2 and N fertilization. Therefore, in this FACE study net soil C sequestration was largely depended on how the species responded to N rather than to elevated CO2.  相似文献   

11.
Liedgens  Markus  Richner  Walter  Stamp  Peter  Soldati  Alberto 《Plant and Soil》2000,220(1-2):89-98
Increased atmospheric carbon dioxide (CO2) concentration will likely cause changes in plant productivity and composition that might affect soil decomposition processes. The objective of this study was to test to what extent elevated CO2 and N fertility-induced changes in residue quality controlled decomposition rates. Cotton (Gossypium hirsutum L.) was grown in 8-l pots and exposed to two concentrations of CO2 (390 or 722 μmol mol-1) and two levels of N fertilization (1.0 or 0.25 g l-1 soil) within greenhouse chambers for 8 wks. Plants were then chemically defoliated and air-dried. Leaf, stem and root residues were assayed for total non-structural carbohydrates (TNC), lignin (LTGA), proanthocyanidins (PA), C and N. Respiration rates of an unsterilized sandy soil (Lakeland Sand) mixed with residues from the various treatments were determined using a soda lime trap to measure CO2 release. At harvest, TNC and PA concentrations were 17 to 45% higher in residues previously treated with elevated CO2 compared with controls. Leaf and stem residue LTGA concentrations were not significantly affected by either the elevated CO2 or N fertilization treatments, although root residue LTGA concentration was 30% greater in plants treated with elevated CO2. The concentration of TNC in leaf residues from the low N fertilization treatment was 2.3 times greater than that in the high N fertilization treatment, although TNC concentration in root and stem residues was suppressed 13 to 23% by the low soil N treatment. PA and LTGA concentrations in leaf, root and stem residues were affected by less than 10% by the low N fertilization treatment. N concentration was 14 to 44% lower in residues obtained from the elevated CO2 and low N fertilization treatments. In the soil microbial respiration assay, cumulative CO2 release was 10 to 14% lower in soils amended with residues from the elevated CO2 and low N fertility treatments, although treatment differences diminished as the experiment progressed. Treatment effects on residue N concentration and C:N ratios appeared to be the most important factors affecting soil microbial respiration. The results of our study strongly suggest that, although elevated CO2 and N fertility may have significant impact on post-harvest plant residue quality of cotton, neither factor is likely to substantially affect decomposition. Thus, C cycling might not be affected in this way, but via simple increases in plant biomass production. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

12.
We examined plant community responses to interactions between arbuscular mycorrhizal (AM) fungi and availability of atmospheric CO2 and soil N. Communities of 14 plant species were grown in mesocosms containing living or killed AM fungal inoculum, ambient or elevated atmospheric CO2 and low or enriched soil N. After one growing season, significantly different plant communities existed in the different treatments. Plant species richness was lowest in +N mesocosms and highest in +AM + CO2 mesocosms. At ambient CO2, AM fungi reduced richness but at elevated CO2 they increased it. This was caused by changes in mortality rates of several C3 forbs and may suggest that CO2 enrichment ameliorates the carbon cost of some AM symbioses. Soil moisture was higher in +CO2 mesocosms but +AM counteracted this effect. These results suggest that AM symbioses may be important mediators of plant community responses to anthropogenic CO2 and N enrichment.  相似文献   

13.
The carbon/nutrient balance hypothesis suggests that leaf carbon to nitrogen ratios influence the synthesis of secondary compounds such as condensed tannins. We studied the effects of rising atmospheric carbon dioxide on carbon to nitrogen ratios and tannin production. Six genotypes of Populus tremuloides were grown under elevated and ambient CO2 partial pressure and high- and low-fertility soil in field open-top chambers in northern lower Michigan, USA. During the second year of exposure, leaves were harvested three times (June, August, and September) and analyzed for condensed tannin concentration. The carbon/nutrient balance hypothesis was supported overall, with significantly greater leaf tannin concentration at high CO2 and low soil fertility compared to ambient CO2 and high soil fertility. However, some genotypes increased tannin concentration at elevated compared to ambient CO2, while others showed no CO2 response. Performance of lepidopteran leaf miner (Phyllonorycter tremuloidiella) larvae feeding on these plants varied across genotypes, CO2, and fertility treatments. These results suggest that with rising atmospheric CO2, plant secondary compound production may vary within species. This could have consequences for plant–herbivore and plant–microbe interactions and for the evolutionary response of this species to global climate change.  相似文献   

14.
Anthropogenic nitrogen (N) deposition effects on soil organic carbon (C) decomposition remain controversial, while the role of plant species composition in mediating effects of N deposition on soil organic C decomposition and long‐term soil C sequestration is virtually unknown. Here we provide evidence from a 5‐year grassland field experiment in Minnesota that under elevated atmospheric CO2 concentration (560 ppm), plant species determine whether N deposition inhibits the decomposition of soil organic matter via inter‐specific variation in root lignin concentration. Plant species producing lignin‐rich litter increased stabilization of soil C older than 5 years, but only in combination with elevated N inputs (4 g m?2 year?1). Our results suggest that N deposition will increase soil C sequestration in those ecosystems where vegetation composition and/or elevated atmospheric CO2 cause high litter lignin inputs to soils.  相似文献   

15.
We investigated the effects of spring barley growth on nitrogen (N) transformations and rhizosphere microbial processes in a controlled system under elevated carbon dioxide (CO2) at two levels of N fertilization (applied with 15N labelling). After 25 d, elevated CO2 (twice ambient) increased plant growth (dry weight, DW) by 141% at low‐N fertilization and by 60% at high‐N fertilization, but its positive effect on the root‐to‐shoot ratio was only significant at low‐N input. As a result of this plant response, elevated CO2 caused a greater soil CO2 efflux, rhizosphere soil DW, and soil microbial biomass under N‐limiting conditions than under high N availability. Elevated CO2 also caused a significant (P < 0.001) increase in the N recovered by the plant from both the labelled (Nf) and unlabelled (Ns + Nuf) N pools. The dynamics of N in the system as affected by elevated CO2 were driven principally by mineralization–immobilization turnover, with little loss by denitrification. Under N‐limiting conditions, there is evidence to suggest enhanced nutrient release from soil organic matter (SOM) pools—a process which could be defined as priming. The results of our experiment did not indicate a direct plant‐mediated effect of elevated CO2 on nitrous oxide (N2O) fluxes or denitrification activity.  相似文献   

16.
Elevated atmospheric CO2 increases aboveground plant growth and productivity. However, carbon dioxide-induced alterations in plant growth are also likely to affect belowground processes, including the composition of soil biota. We investigated the influence of increased atmospheric CO2on bacterial numbers and activity, and on soil microbial community composition in a pasture ecosystem under Free-Air Carbon Dioxide Enrichment (FACE). Composition of the soil microbial communities, in rhizosphere and bulk soil, under two atmospheric CO2 levels was evaluated by using phospholipid fatty acid analysis (PLFA), and total and respiring bacteria counts were determined by epifluorescence microscopy. While populations increased with elevated atmospheric CO2 in bulk soil of white clover (Trifolium repens L.), a higher atmospheric CO2 concentration did not affect total or metabolically active bacteria in bulk soil of perennial ryegrass (Lolium perenne L.). There was no effect of atmospheric CO2 on total bacteria populations per gram of rhizosphere soil. The combined effect of elevated CO2 on total root length of each species and the bacterial population in these rhizospheres, however, resulted in an 85% increase in total rhizosphere bacteria and a 170% increase in respiring rhizosphere bacteria for the two plant species, when assessed on a per unit land area basis. Differences in microbial community composition between rhizosphere and bulk soil were evident in samples from white clover, and these communities changed in response to CO2 enrichment. Results of this study indicate that changes in soil microbial activity, numbers, and community composition are likely to occur under elevated atmospheric CO2, but the extent of those changes depend on plant species and the distance that microbes are from the immediate vicinity of the plant root surface.  相似文献   

17.
By affecting plant growth and phytochemistry elevated CO2 may have indirect effects on the performance of herbivores. These effects show considerable variability across studies and may depend on nutrient availability, the carbon/nutrient‐balance in plant tissues and the secondary metabolism of plants. We studied the responses to elevated CO2 and different nutrient availability of 12 herbaceous plant species differing in their investment into secondary compounds. Caterpillars of the generalist herbivore Spodoptera littoralis were reared on the leaves produced and their consumption and growth rates analysed. Elevated CO2 resulted in a similar increase of biomass in all plant species, whereas the positive effect of fertilization varied among plant species. Specific leaf weight was influenced by elevated CO2, but the effect depended on nutrient level and identity of plant species. Elevated CO2 increased the C/N ratio of the leaves of most species. Caterpillars consumed more leaf material when plants were grown under elevated CO2 and low nutrients. This indicates compensatory feeding due to lower tissue quality. However, the effects of elevated CO2, nutrient availability and plant species identity on leaf consumption interacted. Both the effects of CO2 and nutrient availability on the relative growth rate of the herbivore depended on the plant species. The feeding rate of S. littoralis on plant species that do not produce nitrogen‐containing secondary compounds (NCSC) was higher under low nutrient availability. In contrast, in plants producing NCSC nutrient availability had no effect on the feeding rate. This suggests that compensatory feeding in response to low nutrient contents may not be possible if plants produce NCSC. We conclude that elevated CO2 causes species‐specific changes in the quality of plant tissues and consequently in changes in the preferences of herbivores for plant species. This could result in changes in plant community composition.  相似文献   

18.
Two plant species, Medicago truncatula (legume) and Avena sativa (non-legume), were grown in low-or high-N soils under two CO2 concentrations to test the hypothesis whether C allocation within plant-soil system is interactively or additively controlled by soil N and atmospheric CO2 is dependent upon plant species. The results showed the interaction between plant species and soil N had a significant impact on microbial activity and plant growth. The interaction between CO2 and soil N had a significant impact on soil soluble C and soil microbial biomass C under Madicago but not under Avena. Although both CO2 and soil N affected plant growth significantly, there was no interaction between CO2 and soil N on plant growth. In other words, the effects of CO2 and soil N on plant growth were additive. We considered that the interaction between N2 fixation trait of legume plant and elevated CO2 might have obscured the interaction between soil N and elevated CO2 on the growth of legume plant. In low-N soil, the shoot-to-root ratio of Avena dropped from 2.63±0.20 in the early growth stage to 1.47±0.03 in the late growth stage, indicating that Avena plant allocated more energy to roots to optimize nutrient uptake (i.e. N) when soil N was limiting. In high-N soil, the shoot-to-root ratio of Medicago increased significantly over time (from 2.45±0.30 to 5.43±0.10), suggesting that Medicago plants allocated more energy to shoots to optimize photosynthesis when N was not limiting. The shoot-to-root ratios were not significantly different between two CO2 levels.  相似文献   

19.
Reduced soil N availability under elevated CO2 may limit the plant's capacity to increase photosynthesis and thus the potential for increased soil C input. Plant productivity and soil C input should be less constrained by available soil N in an N2‐fixing system. We studied the effects of Trifolium repens (an N2‐fixing legume) and Lolium perenne on soil N and C sequestration in response to 9 years of elevated CO2 under FACE conditions. 15N‐labeled fertilizer was applied at a rate of 140 and 560 kg N ha?1 yr?1 and the CO2 concentration was increased to 60 Pa pCO2 using 13C‐depleted CO2. The total soil C content was unaffected by elevated CO2, species and rate of 15N fertilization. However, under elevated CO2, the total amount of newly sequestered soil C was significantly higher under T. repens than under L. perenne. The fraction of fertilizer‐N (fN) of the total soil N pool was significantly lower under T. repens than under L. perenne. The rate of N fertilization, but not elevated CO2, had a significant effect on fN values of the total soil N pool. The fractions of newly sequestered C (fC) differed strongly among intra‐aggregate soil organic matter fractions, but were unaffected by plant species and the rate of N fertilization. Under elevated CO2, the ratio of fertilizer‐N per unit of new C decreased under T. repens compared with L. perenne. The L. perenne system sequestered more 15N fertilizer than T. repens: 179 vs. 101 kg N ha?1 for the low rate of N fertilization and 393 vs. 319 kg N ha?1 for the high N‐fertilization rate. As the loss of fertilizer‐15N contributed to the 15N‐isotope dilution under T. repens, the input of fixed N into the soil could not be estimated. Although N2 fixation was an important source of N in the T. repens system, there was no significant increase in total soil C compared with a non‐N2‐fixing L. perenne system. This suggests that N2 fixation and the availability of N are not the main factors controlling soil C sequestration in a T. repens system.  相似文献   

20.
Elevated atmospheric carbon dioxide (CO2) has the potential to alter soil carbon (C) and nitrogen (N) cycling in arid ecosystems through changes in net primary productivity. However, an associated feedback exists because any sustained increases in plant productivity will depend upon the continued availability of soil N. We took soils from under the canopies of major shrubs, grasses, and plant interspaces in a Mojave Desert ecosystem exposed to elevated atmospheric CO2 and incubated them in the laboratory with amendments of labile C and N to determine if elevated CO2 altered the mechanistic controls of soil C and N on microbial N cycling. Net ammonification increased under shrubs exposed to elevated CO2, while net nitrification decreased. Elevated CO2 treatments exhibited greater fluxes of N2O–N under Lycium spp., but not other microsites. The proportion of microbial/extractable organic N increased under shrubs exposed to elevated CO2. Heterotrophic N2‐fixation and C mineralization increased with C addition, while denitrification enzyme activity and N2O–N fluxes increased when C and N were added in combination. Laboratory results demonstrated the potential for elevated CO2 to affect soil N cycling under shrubs and supports the hypothesis that energy limited microbes may increase net inorganic N cycling rates as the amount of soil‐available C increases under elevated CO2. The effect of CO2 enrichment on N‐cycling processes is mediated by its effect on the plants, particularly shrubs. The potential for elevated atmospheric CO2 to lead to accumulation of NH4+ under shrubs and the subsequent volatilization of NH3 may result in greater losses of N from this system, leading to changes in the form and amount of plant‐available inorganic N. This introduces the potential for a negative feedback mechanism that could act to constrain the degree to which plants can increase productivity in the face of elevated atmospheric CO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号