首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The growth of the anaerobic acetogenic bacterium Acetobacterium woodii DSM 1030 was investigated in fructose-limited chemostat cultures. A defined medium was developed which contained fructose, mineral salts, cysteine · HCl and Ca pantothenate (1 mg · 1–1) supplied in a vitamin supplement. Growth at high dilution rates was dependent on the presence of CO2 in the gas phase. The max was found to be 0.16 h–1 and the fructose maintenance requirement was 0.1 to 0.13 mmol fructose · (g dry wt)–1 · h–1. A growth yield of 61 g dry wt · (mol fructose)–1, corrected for the cell maintenance requirement and for incorporation of fructose carbon into cell biomass, was determined from the fructose consumption. A corresponding growth yield of 69 g dry wt · (mol fructose)–1 was calculated from the acetate production assuming that fructose fermentation was homoacetogenic. A YATP of 12.2 to 13.8 g dry wt · (mol ATP)–1 was calculated from these growth yields using a value of 5 mol ATP · (mol fructose)–1 as an estimate of the amount of ATP synthesised from fructose fermentation. The addition of yeast extract (0.5 g · 1–1) to the medium did not influence the max or cell yield. After prolonged growth under fructose-limited conditions the requirement of the culture for CO2 in the gas phase was reduced.Abbreviations YE yeast extract - IC inorganic carbon - D fermenter dilution rate : h–1 - MX maintenance requirement for X: mmol X · (g dry wt)–1 · h–1 - X may be fructose (Fruct), fructose consumed in energy metabolism (Fruct [E]), acetate (Ac) - ATP CO2, NH inf4 sup+ or Pi - qX specific rate of utilisation or consumption of X: mmol X · (g dry wt)–1 · h–1 - V fermenter volume: litre - rC · Cell, fermenter cell carbon production: mmol C · h–1 - YX yield of cells on X: g dry wt · (mol X)–1 - Y infx supmax the yield corrected for cell maintenance: g dry wt · (mol X)–1 - SATP stoichiometry of ATP synthesis from fructose: mol ATP · (mol frucose)–1 - x cell concentration: g dry wt · 1–1 - specific growth rate : h–1 - max maximum specific growth rate: h–1  相似文献   

2.
Summary The production of -linolenic acid (GLA) by the fungus Mucor rouxii CBS 416.77 was studied on low budget nitrogen and carbon sources, i.e. rape meal, cocos expeller and two types of yeast extract (nitrogen sources), and starch, starch hydrolysate, beet molasses and cocos expeller (carbon sources). As references, Difco yeast extract and glucose were used. In flask cultivations the three yeast extracts were fully interchangeable, while the Difco yeast extract (the most expensive of those tested) gave a higher productivity of GLA in fermentor cultures (14 mg·l–1·h–1). The yield of lipids and GLA were increased in the order yeast extract < rape meal < cocos expeller. Thus the amount of lipid increased from 0.56 to 2.8 g·l–1, and that of GLA from 0.15 to 0.33 g·l–1. Use of beet molasses or cocos expeller as carbon sources gave poor growth. Starch and starch hydrolysate resulted in better productivity of GLA than glucose (4.7 and 4.9 compared to 3.4 mg·l–1·h–1). Offsprint requests to: A.-M. Lindberg  相似文献   

3.
Eicosapentaenoic (EPA) and docosahexaenoic (DHA) acid productivities from chemostat cultures of an isolate of Isochrysis galbana have been studied. The productivities reached in the interval of dilution rates between 0.0295 h–1 and 0.0355 h–1 were 1.5mg·1–1·h–1 for lipids, 300 g·1–1·h–1 for EPA and 130g1·1–1·h–1 for DHA. Furthermore, light attenuation by mutual shading, and agitation speed influences on growth and fatty acid composition were analysed. A model relating steady-state dilution rates to internal average light intensity has been proposed, the parameter values of which obtained by non-linear regression were: maximum specific growth rate (max)=0.0426 h–1; the affinity of cells to light (Ik) = 10.92 W·m–2; the exponent (n) = 5.13; regression coefficient (r 2)=0.9999. Correspondence to: E. Molina Grima  相似文献   

4.
The effects of light intensity, oxygen concentration, and pH on the rates of photosynthesis and net excretion by metalimnetic phytoplankton populations of Little Crooked Lake, Indiana, were studied. Photosynthetic rates increased from 1.42 to 3.14 mg C·mg–1 chlorophylla·hour–1 within a range of light intensities from 65 to 150E·m–2·sec–1, whereas net excretion remained constant at 0.05 mg C·mg–1 chlorophylla·hour–1. Bacteria assimilated approximately 50% of the carbon released by the phytoplankton under these conditions. Excreted carbon (organic compounds either assimilated by bacteria or dissolved in the lake water) was produced by phytoplankton at rates of 0.02–0.15 mg C·mg–1 chlorophylla·hour–1. These rates were 6%–13% of the photosynthetic rates of the phytoplankton. Both total excretion of carbon and bacterial assimilation of excreted carbon increased at high light intensities whereas net excretion remained fairly constant. Elevated oxygen concentrations in samples incubated at 150E· m–2·sec–1 decreased rates of both photosynthesis and net excretion. The photosynthetic rate increased from 3.0 to 5.0 mg C·mg–1 chlorophylla· hour–1 as the pH was raised from 7.5 to 8.8. Net excretion within this range decreased slightly. Calculation of total primary production using a numerical model showed that whereas 225.8 g C·m–2 was photosynthetically fixed between 12 May and 24 August 1982, a maximum of about 9.3 g C·m–2 was released extracellularly.  相似文献   

5.
Two strains of cultured tobacco cells (Nicotiana tabacum L. cv. Wisconsin 38) differing in their requirement for exogenous cytokinins (cytokinin-dependent and cytokinin-autonomous) were immobilized on polyphenylenoxide (Sorfix) activated with glutaraldehyde. Columns packed with immobilized cells were continually eluted with diluted Murashige and Skoog's medium lacking or supplemented with synthetic cytokinin (6-benzylaminopurine; BA). Purified samples of column eluates were fractionated by HPLC, andtrans-zeatin (t-Z) andtrans-zeatin riboside (t-ZR) content was estimated by enzyme immunoassay. Both cytokinin-autonomous and cytokinin-dependent tobacco cells produced and excretedt-Z and its riboside, and there were significant quantitative differences between the strains. The steady-state excretion rate oft-Z was 19.8 ng · g–1 dw · h–1 and 4 ng · g–1 dw · h–1, respectively, and that oft-ZR 4 ng · g–1 dw · h–1 and 1 ng · g–1 dw · h–1, respectively. Exposure of cytokinin-dependent cells to BA after 72 h of starving for this synthetic cytokinin caused temporary increase in excretion of both zeatin and its riboside. After the application of 5 M BA for 24 h, the excretion rate oft-ZR reached 5 ng · g–1 dw · h–1 (5-fold increase), and that oft-Z achieved 12 ng · g–1 dw · h–1 (3-fold increase). The elevation oft-Z excretion was delayed about 13 h compared witht-ZR excretion, which started increasing almost immediately after BA application. A pulse of BA in lower concentration (1.5 M for 30 h) provoked lower response.  相似文献   

6.
Styrene was degraded as sole source of carbon and energy by a selected bacterial community in a two-phase aqueous-organic medium (80%:20%, vol/vol). Silicone oil was used to solubilize styrene, which is sparingly soluble in water and to prevent its toxicity toward microorganisms. Preliminary studies with the mixed population in batch cultures indicate that the specific activity and the maximum growth rate at optimal 3H 6.0 were 46 mg·g–1·h–1 and 0.15 h–1, respectively. In pH-regulated chemostat cultures, styrene was degraded at dilution rates ranging from 0.05 to 0.20 h–1. Kinetic parameters and the proportion of each strain in the mixed culture were followed. At 0.20 h–1, only one strain as compared to four initially present, remained in the medium. This strain Pseudomonas aeruginosa, degrades styrene with a specific activity of 293 mg·g–1·h–1. Such results could lead to industrial treatment of waste gas or water polluted with styrene. Correspondence to: J,-M. Lebeault  相似文献   

7.
Production of hydrogen peroxide has been found in Ulva rigida (Chlorophyta). The formation of H2O2 was light dependent with a production of 1.2 mol·g FW–1·h–1 in sea water (pH 8.2) at an irradiance of 700 mol photons m–2·s–1. The excretion was also pH dependent: in pH 6.5 the production was not detectable (< 5 nmol·g FW–1·h–1) but at pH 9.0 the production was 5.0 mol·g FW–1·h–1. The production of H2O2 was totally inhibited by 3-(3,4-dichlorophenyl)-1,1 dimethylurea (DCMU). The ability of U. rigida growing in tanks (7501) under a natural light regime to excrete H2O2 was checked and found to be seven times higher at 08.00 hours than other times of the day. The H2O2 concentration in the cultivation tank (density: 2 g FW·l–1) reached the highest value (3 M) at 11.00 hours. Photosynthesis was not influenced by H2O2 formation. The H2O2 is suggested to come from the Mehler reaction (pseudocyclic photophosphorylation). With an oxygen evolution of 120 mmol·g FW–1·h–1 at pH 8.2 and 90 mmol·g FW–1·h–1 at pH 9.0, 0.5% and 2.7% of the electrons were used for extracellular H2O2 production. The H2O2 production is sufficiently high to be of physiological and ecological significance, and is suggested to be a part of the defence against epi and endophytes.Abbreviations ACL artificial, continuous light - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - GNL greenhouse - LDC Luminol-dependent chemiluminescence - SOD Superoxide dismutase This investigation was supported by SAREC (Swedish Agency for Research Cooperation with Developing Countries), Hierta-Retzius Foundation, Marianne and Marcus Wallenberg Foundation, the Swedish Environmental Protection Board, and CICYT Spain.  相似文献   

8.
Summary A series of continuous fermentations were carried out with a production strain of the yeast Saccharomyces cerevisiae in a membrane bioreactor. A membrane separation module composed of ultrafiltration tubular membranes retained all biomass in a fermentation zone of the bioreactor and allowed continuous removal of fermentation products into a cell-free permeate. In a system with total (100%) cell recycle the impact of fermentation conditions [dilution rate (0.03–0.3 h–1); substrate concentration in the feed (50–300 g·1–1); biomass concentration (depending on the experimental conditions)] was studied on the behaviour of the immobilized cell population and on ethanol formation. Maximum ethanol productivity (15 g·1–1·h–1) was attained at an ethanol concentration of 81 g·1–1. The highest demands of cells for maintenance energy were found at the maximum feed substrate concentration (300 g·1–1) and at very low concentrations of cells in the broth.  相似文献   

9.
Optimization of batch pyrite bioleaching with Sulfolobus acidocaldarius was performed using statistical modelling and experimental design. First a screening design was made followed by response surface modelling. The dominating factors identified were pH, pulp density and particle size. The highest batch leaching rate after optimization was 270 mg iron·l–1·h–1 for 6% (w/v) pulp density, pH = 1.5 and particle size <20 m. This represents a 3.5-fold increase from the leaching rate of 80 mg iron·l–1·h–1 obtained under our standard laboratory conditions. Correspondence to: E. B. Lindström  相似文献   

10.
Summary Some environmental affects on cell aggregation described in the literature are briefly summarized. By means of a biomass recirculation culture (Contact system), using the yeast Torulopsis glabrata, the aggregation behavior of cells in static and in dynamic test systems is described. Sedimentation times required to obtain 50 g · l–1 yeast dry matter in static systems were always higher than in dynamic ones.In addition to, influencing the biomass yield, the specific growth rate of the yeast also affected cell aggregation. The specific growth rate and therefore the aggregation could be regulated by the biomass recirculation rate as well as by the sedimenter volume.Abbreviations fo Overflow flow rate (l·h–1) - fR Recycle flow rate (l·h–1) - ft0t Total flow rate through the fermenter (l·h–1) - g Gram - h Hour - DR Fermenter dilution rate due to recycle (h–1) - DS Fermeter dilution rate due to substrate (h–1) - Dtot Total fermenter dilution rate (h–1) - l Liter - Specific growth rate (h–1) - PF Fermenter productivity (g·l–1·h–1) - PFS Overall productivity (g·l–1·h–1) - RpM Rates per minute - RS Residual sugar content in the effluent with respect to the substrate concentration (%) - Y Yield of biomass with respect to sugar concentration (%) - Sed 50 Sedimentation time to reach a YDM of 50 g·l–1 (min) - V Volume (l) - VF Fermenter volume (l) - VSed Sedimenter volume (l) - VVM Volumes per volume and minute - XF YDM in the fermenter (g·l–1) - XF YDM in the recycle (g·l–1) - XS Yeast dry matter due to substrate concentration (g·l–1) - YDM Yeast dry matter (g·l–1)  相似文献   

11.
Tryptamine levels have been determined in mouse brain regions and spinal cord and in rat spinal cord. They were; caudate nucleus 2.5 ng·g–1, hypothalamus <0.5 ng·g–1, hippocampus <0.7 ng·g–1, olfactory bulb <0.7 ng·g–1, olfactory tubercles <0.6 ng·g–1, brain stem <0.4 ng·g–1, cerebellum <1.0 ng·g–1, and the rest 0.9 ng·g–1. The mouse whole brain was found to have 0.5 ng·g–1, the mouse spinal cord 0.3 ng·g–1, and the rat spinal cord 0.3 ng·g–1. These concentrations increased rapidly to 22.8 ng·g–1, 14.2 ng·g–1, and 6.6 ng·g–1 respectively at 1 hr after 200 mg·kg–1 pargyline. The turnover rates and half lives of tryptamine in the mouse brain and spinal cord and rat spinal cord were estimated to be 0.14 nmol·g–1·h–1 and 0.9 min; 0.054 nmol·g–1·h–1 and 1.5 min and 0.04 nmol·g–1·h–1 and 1.6 min respectively. The aromaticl-aminoacid decarboxylase inhibitors NSD 1034 and NSD 1055 reduced synthesis of tryptamine in controls and pargyline pretreated animals. Tryptophan increased the concentrations of mouse striatal tryptamine and 5-hydroxytryptamine and brain stem 5-hydroxyindole acetic acid.p-Chlorophenylalanine reduced formation of 5-hydroxytryptamine and 5-hydroxyindoleacetic acid but did not change that of tryptamine.  相似文献   

12.
Summary A double-chambered bioreactor based on a composite immobilized-cell gel layer/microporous membrane structure was applied to the continuous denitrification of high-nitrate water. Immobilized denitrifying bacteria (Pseudomonas denitrificans) were provided with separate flows of nitrate and carbon (C) nutrient, with no contamination of the treated water by cell leakage from the gel. Using acetate (7.5 mm) as a C source and a C/N ratio of 3 (mol/mol), specific denitrification rates ranging from 15 to 25 g NO inf3 sup– · h–1 · – cm–2 membrane surface (50–85 g NO inf3 sup– · h–1 · cm–3 gel) were obtained. The denitrifying activity remained stable for several months. At the flow rate used (10 cm3 · h–1), the effluents contained noticeable amounts of NO inf2 sup– ions but the treated water remained uncontaminated by the carbon nutrient. Most NO inf2 sup– ions disappeared from the treated water in a second reactor connected in series. When fed with an unchlorinated sludge supernatant as C nutrient, immobilized bacteria performed efficient denitrification of water for only 3 weeks. Diffusion experiments showed that acetate ions diffused much less rapidly than NO inf3 sup– or NO inf2 sup– ions through the composite structure. Further developments of the system are considered.  相似文献   

13.
Summary An amylolytic lactic acid bacterium identified as Lactobacillus plantarum was isolated from cassava roots (Manihot esculenta var. Ngansa) during reting. The amylolytic enzyme synthesized was an extracellular -amylase with an optimum pH of 5.0 and an optimum temperature of 55° C. Cultured on starch, the strain displayed a growth rate of 0.43 h–1, a biomass yield of 0.19 g·g–1 and a lactate yield of 0.81 g·g–1. The growth kinetics were similar on starch and glucose. Sufficient enzyme was synthesized and starch hydrolysis was not a limiting factor for growth. Biosynthesis of the enzyme was observed when the glucose concentration was less than 6.7 g·l–1 and reached up to 4 IU·ml–1 at the end of the fermentation. Offprint requests to: M. Raimbault  相似文献   

14.
Degradation of polyaromatic hydrocarbons by Burkholderia cepacia 2A-12   总被引:1,自引:1,他引:0  
A new strain of bacterium degrading polyaromatic hydrocarbons (PAHs), Burkholderia cepacia 2A-12, was isolated from oil-contaminated soil. Of three PAHs, the isolated strain could utilize naphthalene (Nap) and phenanthrene (Phe) as a sole carbon source but not pyrene (Pyr). However, the strain could degrade Pyr when a cosubstrate such as yeast extract (YE) was supplemented. The PAH degradation rate of the strain was enhanced by the addition of other organic materials such as YE, peptone, glucose, and sucrose. YE was a particularly effective additive in stimulating cell growth as well as PAH degradation. When 1 g YE l–1, an optimum concentration, was supplemented into the basal salt medium (BSM) with 215 mg Phe l–1, the specific growth rate (0.30 h–1) and Phe-degrading rate (29.6 mol l–1 h–1) were enhanced approximately ten and three times more than those obtained in the BSM with 215 mg Phe l–1, respectively. Both cell growth and PAH degradation rates were increased with increasing Phe and Pyr concentrations, and B. cepacia 2A-12 had a tolerance against Phe and Pyr toxicity at the high concentration of 730–760 mg l–1. Through kinetic analysis, the maximum specific growth rate ( max) and PAH degrading rate ( max) for Phe were obtained as 0.39 h–1 and 300 mol l–1 h–1, respectively. Also, max and max for Pyr were 0.27 h–1 and 52 mol l–1 h–1, respectively. B. cepacia 2A-12 could simultaneously degrade crude oil as well as PAHs, indicating that this bacterium is very useful for the removal of oils and PAHs contaminants.  相似文献   

15.
Summary A new method of d(–)lactic acid production based on the aggregated form of growth of Bacillus laevolacticus in continuous culture in an anaerobic gaslift reactor is presented. With glucose as the substrate a bacterial dry weight of 25 g·1–1 and a lactic acid production rate of 13 g·1–1·h–1 was attained. In conventional glucose-limited chemostat cultures elevated levels of lactic acid stimulated specific lactic acid production while the formation rates of other end-products remained unaffected. In glucose-limited aggregated cultures lactic acid positively influenced the aggregation of cells, improving the volumetric production rate. It is concluded that lactic acid itself is a positive effector in the optimisation of lactic acid production with aggregated cultures of B. laevolacticus.Offprint requests to: J. P. de Boer  相似文献   

16.
Summary Submerged batch cultivation under controlled environmental conditions of pH 3.8, temperature 30°C, and KLa200 h–1 (above 180 mMO2 l –1 h–1 oxygen supply rate) produced a maximum (12.0 g·l –1) SCP (Candida utilis) yield on the deseeded nopal fruit juice medium containing C/N ratio of 7.0 (initial sugar concentration 25 g·l –1) with a yield coefficient of 0.52 g cells/g sugar. In continuous cultivation, 19.9 g·l –1 cell mass could be obtained at a dilution rate (D) of 0.36 h–1 under identical environmental conditions, showing a productivity of 7.2 g·l –1·h–1. This corresponded to a gain of 9.0 in productivity in continuous culture over batch culture. Starting with steady state values of state variables, cell mass (CX–19.9 g·l –1), limiting nutrient concentration (Cln–2.5 g·l –1) and sugar concentration (CS–1.5 g·l –1) at control variable conditions of pH 3.8, 30°C, and KLa 200 h–1 keeping D=0.36 h–1 as reference, transient response studies by step changes of these control variables also showed that this pH, temperature and KLa conditions are most suitable for SCP cultivation on nopal fruit juice. Kinetic equations obtained from experimental data were analysed and kinetic parameters determined graphically. Results of SCP production from nopal fruit juice are described.Nomenclature Cln concentration of ammonium sulfate (g·l –1) - CS concentration of total sugar (g·l –1) - CX cell concentration (g·l –1) - D dilution rate (h–1) - Kln Monod's constant (g·l –1) - m maintenance coefficient (g ammonium sulfate cell–1 h–1) - m(S) maintenance coefficient (g sugar g cell–1 h–1) - t time, h - Y yield coefficient (g cells/g ammonium sulfate) - Ym maximum of Y - YS yield coefficient based on sugar consumed (g cells · g sugar–1) - YS(m) maximum value of YS - µm maximum specific growth rate constant (h–1)  相似文献   

17.
Cyanuric acid in high concentrations (15.5 mm) was degraded completely by Pseudomonas sp. NRRL B-12228 independently of glucose concentration. In the batch fermentations there was a relation between the glucose concentration, on the one hand, and the liberation of ammonia or production of protein, on the other. The greater the supply of carbon, the more biomass was produced, and fewer NH inf4 sup+ ions were released. Continuous fermentations using adsorbed cells could be performed to degrade cyanuric acid. In spite of different glucose feeding there was only a negligible difference in residues of s-triazine. In a one-step continuous system with dilution rates between 0.021 h–1 and 0.035 h–1, even a ratio of 0.65 between glucose and cyanuric acid was not sufficient to degrade the cyanuric acid supplied (320–540 mol l–1 h–1) completely. When a continuous two-step system was applied with dilution rates between 0.035 h–1 and 0.056 h–1, the consumption of carbon source could be minimized while s-triazine degradation up to 860 mol l–1 h–1 was complete. In this way the ratio between glucose and cyanuric acid could be increased to 0.25 (molar C:N ratio = 0.33:1). Thereby the process was made considerably more economic.  相似文献   

18.
Summary A detailed study on the reductive amination of -ketoisovalerate to l-valine by l-valine dehydrogenase using glucose dehydrogenase as an NADH regeneration enzyme was performed. The presence of both enzyme activities in Bacillus megaterium ATCC 39 118 permitted a direct and systematic comparison of the performances (initial l-valine production rate, productivity, molar conversion yield) of different types of conversion systems: purified enzymes or crude extract and whole cells, intact or permeabilized. A maximal l-valine productivity of 8 mmol·l–1 · h–1 was obtained using purified enzymes which constituted the most efficient system with a maximal rate of 0.87 mol · ml–1 · min–1 and a molar conversion yield of 0.91. Permeabilized cells were also an attractive system because of their easy preparation and of the good performances attained.Offprint requests to: F. Monot  相似文献   

19.
The production of extracellular enzymes by the thermophilic fungus Thermomyces lanuginosus was studied in chemostat cultures at a dilution rate of 0.08 h–1 in relation to variation in the ammonium concentration in the feed medium. Under steady state conditions, three growth regimes were recognised and the production of several extracellular enzymes from T. lanuginosus was recorded under different nutrient limitations ranging from nitrogen limitation to carbon/energy limitation. The range and the production of carbohydrate hydrolysing enzymes and lipase increased from Regime I (NH4Cl 600 mg l–1) to Regime III (NH4CI 1200 mg l–1), whereas production of protease was highest in Regime II (600 mg l–1 < NH4Cl <1200 mg l–1).  相似文献   

20.
Summary The function of the caecal bulb, and its adaptation to chronic high- or low-Na+ intake, was investigated by in vivo perfusion of anaesthetised birds. Effects of acute aldosterone injection (125 g·kg–1 body mass) were also measured.Evidence was found for primary active net absorption of Na+, inducing parallel Na-linked absorption of water and Cl and secretion of K+. Around 20–35% of total Cl absorption and K+ secretion were independent of Na+ fluxes, and these components appear to be driven by passive processes with apparent conductances of 6.3×10–3 (G Cl) and 1.1×10–3 (G K) S·cm–2.Acetate (40mM) stimulated Na+ fluxes (8.5–9.9 Eq·cm–2·h–1) and Na-linked water fluxes (27–44 l·cm–2·h–1). Increased coupling ratios (2.9–4.6 l·Eq–1) and other data indicate that these effects may be due to increased osmotic permeabilities of barriers involved in the Na-linked water transfer pathway.Low-Na+ maintenance enhanced EPD (49–69 mV, serosa positive) and all net fluxes:J Na (6.8–11.6);J K (–3.2––4.3);J Cl (4.3–5.6 Eq·cm serosal area–2·h–1);J v (28–43 l·cm–2·h–1) (mucosal-serosal fluxes positive).Acute aldosterone enhancedJ Na (10.8–14.0 Eq·cm–2·h–1) and EPD (54–66 mV) by 3 h after injection, but had no effect on the Na-linked components ofJ K orJ Cl.Abbreviations ECPD, EPD Electrochemical or electrical potential difference - G Cl ,G K ionic conductances (Cl, K+) - J v ,J ion net volume or ion flux rate, mucosa-serosa positive;P d (Cl) diffusive permeability coefficient (of Cl) - SEDM standard error of difference between means  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号